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Abstract

This paper deals with the constraint-based design, optimum design and reconfigura-
tion strategy of a 3-RPS parallel manipulator. Some design conditions related to the base
and moving-platform design parameters and the three degree of-freedom operation modes
are derived. A 3-RPS parallel manipulator with two types of operation modes is generated
by following those conditions. Due to its potential advantages, this manipulator is used
as an ankle rehabilitation device which can cover the ankle joint motion. To derive the
optimum parameters, kinematic optimization is conducted by initially parametrizing the
orientation workspace and it turns out that its orientation workspace is not symmetrical.
The singularity loci are traced in its orientation workspace. A performance index, named
Maximum Inscribed Circle Diameter (MICD) is presented to assess the maximum tilt of
the moving-platform for any azimuth angle. The distributions of MICD are plotted in the
design space for different moving-platform heights. The optimum region with regard to
MICD is obtained. It is noteworthy that the evolution of MICD as a function of moving-
platform height in both operation modes is the opposite. Therefore, a reconfiguration
strategy is proposed to ensure the moving-platform working above the minimum required
orientation for any moving-platform height.

Keywords: Design conditions, optimization, workspace analysis, operation modes, recon-
figuration, singularities.
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1 Introduction

The well-known 3-RPS (R, P, S denote revolute, prismatic, spherical joints, respectively) paral-
lel manipulator with different arrangements of RPS legs has been extensively studied by many
researchers. In 1983 [1], the 3-RPS parallel manipulator with equilateral base and platform was
introduced by Hunt. Schadlbauer et al. in [2] used algebraic approaches explained in [3, 4, 5], to
enumerate sixteen solutions for the direct kinematics of this manipulator. The axode presented
in [6] was employed by Schadlbauer et al. in [7] to characterize two operation modes belong-
ing to the 3-RPS parallel manipulator. Modified 3-RPS parallel manipulator was introduced
by Gan et al. in [8] where the manipulator can be reconfigured into the 3-RPS Cube. The
kinematic behaviour of the 3-RPS Cube parallel manipulator was discussed in [9, 10, 11].

Kalla et al. studied the Σ2 singularities of the 3-RPS parallel manipulator [12]. Inter-
changing the moving-platform with the fixed base in the 3-RPS parallel manipulator, results in
the 3-SPR parallel manipulator. Nayak et al. compared the singularity-free workspace of the
3-RPS and 3-SPR manipulators by means of Maximum Inscribed Circle Radius (MICR) [13].
MICR was also employed in [14] to compare operation modes and singularities of the 3-PRS
parallel manipulator.

The dimension synthesis of parallel manipulators with multiple operation modes can be
assessed by its orientation capability [15, 16, 17] through its singularity loci since many applica-
tions take advantage of rotations. Several performance indices were proposed by researchers to
measure how well the manipulators behave with regard to external wrenches and motions. Sev-
eral transmission indices have been proposed in the literature, e.g., the virtual coefficient [18],
the transmission index (TI) [19], the generalized transmission index (GTI) [20], the output
transmission index (OTI) and the constraint transmission index (CTI) [21, 22], good transmis-
sion orientational workspace (GTOW) [23], variable motion/force transmissibility [24].

This paper focuses on the constraint-based design and dimension synthesis of a 3-RPS
parallel manipulator for ankle rehabilitation [25, 26, 27]. The 3-RPS parallel manipulator is
generated by following the design conditons derived in this paper. The three revolute joint
axes intersect at one point. For any value of design parameters, the 3-RPS parallel manipula-
tor always has two 3-dof operation modes, namely x1 = 0 and x2 = 0. These two operation
modes differ from the ones of the 3-RPS parallel manipulator discussed in [2]. The orientation
workspace is parametrized to recognize the physical interpretations of rotational motions. The
singularities are investigated and a performance index, named Maximum Inscribed Circle Di-
ameter (MICD), is proposed. This index is used for the dimension synthesis of the manipulator
studied in this paper. The reconfiguration strategy is presented to ensure that the manipulator
can work at minimum required orientation for any moving-platform height.

This paper is organized as follows: a detailed description of the manipulator architecture
and its targeted application for ankle rehabilitation are defined in Section 2. Some design con-
ditions are given in Section 3. The orientation workspace and singularities of the manipulator
are analysed in Section 4. The dimension synthesis problem is formulated and solved in Sec-
tion 5. Eventually, Section 6 presents a reconfiguration strategy for the manipulator to work
at minimum required orientation for any moving-platform height.
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2 Manipulator architecture and application

2.1 Manipulator architecture

The architecture of 3-RPS parallel manipulator studied in this paper is shown in Fig. 1. This
manipulator has three RPS legs in which each RPS leg consists of a revolute joint, a prismatic
joint and a spherical joint. The three revolute joint axes intersect at point A1.

The (x, y, z) coordinate system of origin O is defined as the fixed frame Σ0 and located at
the base. The base is bounded by the three revolute joints. The i-th revolute joint axis passing
through point Ai and its unit vector is si (i = 1, 2, 3). Point Ai can be located anywhere in the
plane z = 0 depending upon the design parameters ai and εi. ai is the distance between points
O and Ai, and εi is the angle between x-axis and vector OAi. In what remains, sine, cosine
and tangent of angle εi is written as sεi = sin(εi), cεi = cos(εi) and tεi = tan(εi).
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Figure 1: Parametrization of the 3-RPS parallel manipulator.

In the following, we use projective coordinates to define the position vectors of point Ai,
i = 1, 2, 3. Point A1 is assumed to be located on the x-axis, hence ε1 = 0◦ and the coordinates
of points Ai and vector si expressed in Σ0 are:



L. Nurahmi, S. Caro and M. Solichin 4

r0A1
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1
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0
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=
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sε2a2
0
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0









, (1)

s1 =









0
0
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, s2 =









0
−sε2
cε2
0









, s3 =









0
−sε3
cε3
0









. (2)

The (u, v, w) coordinate system of origin Q is named Σ1 and attached to the moving-
platform. Three spherical joints are located at the vertices of the moving-platform. The center
of the i-th spherical joint is denoted by Bi (i = 1, 2, 3). The locations of point Bi can be
anywhere on the plane w = 0 depending upon the design parameters bi and εi, in which bi
is the distance between points Bi and Q. The first point B1 is assumed to be located on the
u-axis, hence ε1 = 0◦. The coordinates of points Bi are expressed in Σ1 as follows:

r1B1
=









1
b1
0
0









, r1B2
=









1
cε2b2
sε2b2
0









, r1B3
=









1
cε3b3
sε3b3
0









. (3)

As a consequence, the 3-RPS parallel manipulators under study are characterized by eight
design parameters, namely a1, a2, a3, b1, b2, b3, ε2, ε3.

2.2 Targeted application: ankle rehabilitation

The 3-RPS parallel manipulator described in Fig. 1 will be used as an ankle rehabilitation
device. The parallel manipulator should be wearable, thus the base, composed of three revolute
joints, can be hooked to the patient’s lower leg. The moving-platform, composed of three
spherical joints, will be placed on the foot palm. This application is illustrated in Fig. 2.

The key movements of the ankle joint are plantarflexion-dorsiflexion, abduction-adduction
and inversion-eversion, which occur in the sagittal, transverse and frontal planes, respectively.
Combinations of these motions yield 3-dof motions. As the foot can never execute pure inver-
sion and eversion, the ankle joint cannot perform 3-dof rotational motion. On the contrary,
the foot can only perform supination and pronation, which are made up of movement in all
three planes (frontal, sagittal, and transverse planes).

Plantaflexion-dorsiflexion are the dominant motions of the ankle joint which occur primarily
in the sagittal plane. Several studies have indicated that the maximum required range of motion
of plantaflexion-dorsiflexion for walking in everyday activities is 30◦. Therefore, the orientation
capability of the 3-RPS parallel manipulator synthesized in this paper is the utmost concern
and should be larger than 30◦.

As stated in Section 2.1, the ankle rehabilitation device depicted in Fig. 2 is characterized
by eight design parameters, namely a1, a2, a3, b1, b2, b3, ε2, ε3. It should be noted that they are
not independent and their relations depend on the constraints imposed to the moving-platform
as discussed hereafter.
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Figure 2: Application for ankle rehabilitation device
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3 Constraint-based design conditions

The eight design parameters a1, a2, a3, b1, b2, b3, ε2, ε3 are not independent to each other as they
are related to each other by the constraints imposed to the manipulator [25]. Each constraint
represents certain motions or operation modes. The initial step to derive the constraint-based
design conditions is to carry out the coordinate transformation of point Bi on the moving-
platform by means of Euler parametrization. Once the coordinates of all points are expressed
in terms of Euler parametrization, the constraint equation can be formulated by examining its
geometric conditions.

The coordinates of point Bi expressed in the fixed frame Σ0 can be determined through
transformation, i.e. r0Bi

= M r1Bi
. Matrix M is a transformation matrix defined as follows:

M =









x20 + x21 + x22 + x23 0 0 0
X x20 + x21 − x22 − x23 2(x1x2 − x0x3) 2(x1x3 + x0x2)
Y 2(x1x2 + x0x3) x20 − x21 + x22 − x23 2(x2x3 − x0x1)
Z 2(x1x3 − x0x2) 2(x2x3 + x0x1) x20 − x21 − x22 + x23









(4)

The parameters x0, x1, x2, x3, which appear in matrix M, are called Euler parameters of the
rotation. They are useful in the representation of a spatial Euclidean displacement.

As the coordinates of point Bi are then expressed in the fixed frame, the constraint equation
can be derived. The constraint equation describes the motion of point Bi of spherical joint in
the plane of normal vector si and passing through point Ai. Each pair of vertices Ai and Bi is
connected by a prismatic joint. The prismatic length is denoted as ri. Since the i-th prismatic
length is orthogonal to the revolute axis si, the scalar product of vector (r0Bi

− r0Ai
) and vector

si vanishes, namely:

(r0Bi
− r0Ai

)T si = 0, i = 1, 2, 3. (5)

After computing the scalar product for all three legs and eliminating the common denomi-
nator, the constraint equations come out:

g1 : Y + (2x0x3 + 2x1x2)b1 = 0

g2 : 4c
2
ε2
b2x1x2 − 2(x21 − x22)cε2sε2b2 + cε2Y − sε2X + (2x0x3 − 2x1x2)b2 = 0

g3 : 4c
2
ε3
b3x1x2 − 2(x21 − x22)cε3sε3b3 + cε3Y − sε3X + (2x0x3 − 2x1x2)b3 = 0

(6)

Those three constraint equations are written as polynomial ideal I = 〈g1, g2, g3〉 with vari-
ables 〈x0, x1, x2, x3, X, Y, Z〉. The primary decomposition is computed and it turns out that
I cannot be decomposed into several sub-ideals. However, the primary decomposition returns
the new formulation of ideal I as I = 〈h1, h2, h3〉, where h1, h2, h3 take the form:

h1 : α1(x
2
1 + x22) + α2x1x2 + α3x0x3 = 0

h2 : β1(x
2
1 + x22) + β2x1x2 + β3Y = 0

h3 : γ1(x
2
1 + x22) + γ2x1x2 + γ3X = 0

(7)

where αj, βj, γj for j = 1, 2, 3 are polynomial coefficients that are functions of the eight design
parameters.
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From Eq. (7), it is apparent that h1, h2, h3 are free of Z parameter. It means that the 3-RPS
parallel manipulator under study can perform pure translational motion along z-axis for any
value of the design parameters. It should be noted that h2 and h3 are linearly dependent on the
parameters X and Y . It means that the manipulator undergoes translational motions along x
and y axes which are coupled to rotations. Those translational motions are named parasitic

motions [28, 29, 30].
In the following, the orientation parameters x0, x1, x2, x3 from h1, h2, h3 are constrained to

be null successively or in pairs, which leads to different operation modes and motion types.
By fulfilling these conditions, several design conditions can be mathematically formulated to
generate new architectures of 3-RPS parallel manipulator.

3.1 Design Condition 1

From Eq. (7), we can notice that only h1 is in a function of both parameters x0 and x3. When
either x0 or x3 vanishes, equation h1 becomes:

h1 : α1(x
2
1 + x22) + α2x1x2 = 0 (8)

It means that the following derivation of design conditions applies to both constraints x0 = 0
and x3 = 0.

All polynomial coefficients α1, α2 have to vanish and one has to discuss the new ideal J =
〈α1, α2〉. The Groebner basis with lexicographic order is computed for ideal J and 17 solutions
are obtained. Not all solutions are possible and hence some assumptions are formulated, as
follows:

1. The second and the third legs cannot be coincident with the first leg: ε2 6= 0◦ and ε3 6= 0◦

2. The second leg cannot be coincident with the third leg: ε2 6= ε3 or b2 6= b3 6= 0

3. bi (i = 1, 2, 3) should be positive: bi ≥ 0, i = 1, 2, 3

4. The moving-platform cannot be a point: b1 6= b2 6= b3 6= 0

5. There is no complex solution: {b1, b2, b3, ε2, ε3} ∈ R

After removing the solutions that do not fulfil the foregoing assumptions, the following three
design conditions are obtained:

1A : a2 =
a1
tε3
, a3 = 0, b2 =

b1
tε3
, b3 = 0, ε2 =

π

2
, ε3 6= 0 or ε3 6= ±π

1B : a2 = −
a1
tε3
, a3 = 0, b2 = −

b1
tε3
, b3 = 0, ε2 = −

π

2
, ε3 6= 0 or ε3 6= ±π

1C : a1 = a3
c(ε2−ε3)

cε2
, a2 = a3

cε3
cε2
, b1 = b3

c(ε2−ε3)

cε2
, b2 = b3

cε3
cε2
, ε2 6= ±

π

2
or ε2 6= ±

3π

2

(9)

The 3-RPS parallel manipulator can be generated by selecting one of the three design
conditions. Accordingly, the obtained manipulator will have two operation modes, namely
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x0 = 0 and x3 = 0. All feasible poses of the 3-RPS parallel manipulator in operation mode
x0 = 0 are determined from the home configuration by making a π-rotation angle about an
axis combined with a translational motion along the same axis. In the second operation mode
x3 = 0, the poses are obtained by rotating and translating about a transformation axis of
which the direction is parallel to the xy-plane. These two operation modes have been discussed
thoroughly in [7].

3.2 Design Condition 2

It can be seen from Eq. (7) that h1, h2, h3 are in terms of parameters x1 and x2. When parameter
x1 vanishes, equations h1, h2, h3 yields:

h1 : α1x
2
2 + α3x0x3 = 0

h2 : β1x
2
2 + β3Y = 0

h3 : γ1x
2
2 + γ3X = 0

(10)

If parameter x2 vanishes, equations h1, h2, h3 will have the same polynomial coefficients as in
Eq. (10). It means that the following derivation of design conditions applies to both constraints
x1 = 0 and x2 = 0.

All polynomial coefficients α1, α3, β1, β3, γ1, γ3 should vanish and are written as polynomial
ideal J = 〈α1, α3, β1, β3, γ1, γ3〉. The Groebner basis with lexicographic order is computed over
the ideal J and leads to 11 solutions. Not all solutions are feasible and only solutions fulfilling
aforementioned assumptions are kept. Thus, three design conditions are obtained as follows:

2A : a2 = −
a1
tε3
, a3 = 0, ε2 =

π

2
, b2 = −

b1
tε3
, b3 = 0, ε2 =

π

2
, ε3 6= 0 or

ε3 6= ±π

2B : a2 =
a1
tε3
, a3 = 0, b2 =

b1
tε3
, b3 = 0, ε2 = −

π

2
, ε3 6= 0 or ε3 6= ±π

2C : a1 = −a3
c(ε2−ε3)

cε2
, a2 = a3

cε3
cε2
, b1 = −b3

c(ε2−ε3)

cε2
, b2 = b3

cε3
cε2
, ε2 6= ±

π

2
or ε2 6= ±

3π

2

(11)

By selecting one of three design conditions, the 3-RPS parallel manipulator can be generated.
This manipulator will have two operation modes, namely x1 = 0 and x2 = 0. The 3-RPS parallel
manipulators with operation modes x1 = 0 and x2 = 0 have not been discussed before and will
be analysed in more details in this paper. Let us assume that none of the design parameters
can be null, thus the only possible design condition is 2C. This design condition is applied to
generate the 3-RPS parallel manipulator for ankle rehabilitation device as shown in Fig. 2.

3.3 Constraint equations of design condition 2C for ankle rehabili-

tation device

The architecture of ankle rehabilitation device shown in Fig. 2 is generated by selecting the
design condition 2C. By substituting the design condition 2C into the constraint equations
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described in Eq. (6), the number of unknowns can be reduced from 8 to 4, namely: a3, b3, ε2, ε3.
The constraint equations take the form:

g̃1 : cε2Y − 2c(ε2−ε3)(x0x3 + x1x2)b3 = 0

g̃2 : − sε2cε2X + c2ε2Y − 2cε3sε2cε2x
2
1 − sε2cε2x

2
2 − 2c2ε2x1x2 − x0x3 + x1x2)b3 = 0

g̃3 : − sε3X + cε3Y + (−2sε3cε3x
2
1 + 2sε3cε3x

2
2 + 4x1x2c

2
ε3
+ 2x0x3 − 2x1x2)b3 = 0

(12)

Other three constraint equations corresponding to the actuation scheme or inverse kinemat-
ics are derived. The prismatic joint in each leg is assumed to be actuated, hence the distance
between points Ai and Bi is denoted as ri. Once the i-th prismatic joint is locked, point Bi is
free to move along a circle of center Ai and of radius ri. This motion can be mathematically
formulated as follows: ‖r0Bi

−r0Ai
‖2−r2i = 0, i = 1, 2, 3. It leads to the following three constraint

equations:

g̃4 : c
2
ε2
X2 + 2c(ε2−ε3)cε2Xa3 − 2c(ε2−ε3)cε2(x

2
0 + x21 − x22 − x23)Xb3 + c2ε2Y

2... = 0

g̃5 : c
2
ε2
X2 − 2cε3c

2
ε2
Xa3 − 2cε3cε2(2x0x3sε2 − 2x1x2sε2 − cε2x

2
0 − cε2x

2
1 + cε2... = 0

g̃6 :X
2 − 2cε3Xa3 + (−4sε3x0x3 + 4sε3x1x2 + 2cε3x

2
0 + 2x21cε3 − 2cε3x

2
2 − 2... = 0

(13)

As the expressions of g̃4, g̃5, g̃6 are very lengthy, only the first line of each equation is written
in Eq. (13).

The rotational parameters x0, x1, x2, x3 should satisfy the normalization equation based
on [3] and it is defined as the seventh constraint equation:

g̃7 : x
2
0 + x21 + x22 + x23 − 1 = 0 (14)

The set of constraint equations is defined as a new ideal K = 〈g̃1, g̃2, g̃3, g̃4, g̃5, g̃6, g̃7〉. The
computation of Hilbert dimension of ideal K is carried out in both operation modes x1 = 0 and
x2 = 0. By treating the joint variable ri as unknown, it turns out that:

dim(Kx1=0) = 3 (15a)

dim(Kx2=0) = 3 (15b)

where dim denotes the dimension over R[a3, b3, ε2, ε3]. Equations (15a)-(15b) shows that the
operation modes x1 = 0 and x2 = 0 amount to 3-dof motions. In the following, the operation
modes x1 = 0 and x2 = 0 will be parametrized and physically interpreted through its orientation
workspace.

4 Orientation workspace and singularity analysis

4.1 Orientation workspace

The moving-platform in both operation modes can perform coupled rotational motions and a
vertical translational motion. However, the rotational motions in each operation mode cannot
be easily distinguished. Therefore, the manipulator workspace associated with each operation
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mode is parametrized to recognize the physical characteristics of position and orientation of
the moving platform.

From Sec. 3, the position and orientation of the moving-platform are characterized by pa-
rameters x0, x1, x2, x3, X, Y, Z. ParametersX, Y, Z are the Cartesian coordinates of pointQ (the
origin of moving-platform frame) expressed in the fixed frame Σ0. For a better understanding
of the orientation capability of the manipulator at hand, the Euler parameters x0, x1, x2, x3 are
expressed in terms of azimuth φ ∈ [−180◦, 180◦] and tilt θ ∈ [0, 180◦] [31, 32] as follows:

x0 = cos(
θ

2
) cos(

φ

2
+
ψ

2
) x2 = sin(

θ

2
) sin(

φ

2
−
ψ

2
)

x1 = sin(
θ

2
) cos(

φ

2
−
ψ

2
) x3 = cos(

θ

2
) sin(

φ

2
+
ψ

2
)

(16)

As parameter x1 is null in the first operation mode x1 = 0, the torsion angle can be
parametrized, i.e. ψ = φ − π. The remaining orientation parameters are converted into the

tilt and azimuth angles, i.e. x0 = cos
(θ

2

)

sin(φ), x2 = sin
(θ

2

)

, x3 = − cos
(θ

2

)

cos(φ). The

rotation matrix in the first operation mode is denoted by Rx1=0, that takes form:

Rx1=0 =







−2c2θ
2

c2φ + 2c2θ
2

− 1 2c2θ
2

sφcφ 2c2θ
2

sφs θ

2

−2c2θ
2

sφcφ −2c2θ
2

c2φ + 1 −2s θ

2

c θ

2

cφ

−2c θ

2

s θ

2

sφ −2s θ

2

c θ

2

cφ 2c2θ
2

− 1






(17)

where c θ

2

= cos
(θ

2

)

, s θ

2

= sin
(θ

2

)

, sφ = sin(φ), and cφ = cos(φ).

In the second operation mode, the parameter x2 is null and the torsion angle can be
parametrized, i.e. ψ = φ. The remaining orientation parameters are converted into the tilt and

azimuth angles, i.e. x0 = cos
(θ

2

)

cos(φ), x1 = sin
(θ

2

)

, and x3 = cos
(θ

2

)

sin(φ). The rotation

matrix in the second operation mode is denoted by Rx2=0, that takes form:

Rx2=0 =







2c2θ
2

c2φ − 2c2θ
2

+ 1 −2c2θ
2

sφcφ 2s θ

2

c θ

2

sφ

2c2θ
2

sφcφ 2c2θ
2

c2φ − 1 −2c θ

2

s θ

2

cφ

2c θ

2

s θ

2

sφ 2s θ

2

c θ

2

cφ 2c2θ
2

− 1






(18)

Without loss of generality, let us consider the 3-RPS parallel manipulator with the following
design parameter values: a3 = 1, b3 = 0.5, ε2 = 66◦, ε3 = −66◦. The vertical translational
motion of the moving-platform can be easily grasped. However, it is more difficult to distinguish
its 2-dof rotational motions. The moving-platform is assumed to work at given height Z = 1.
Hence, the 2-dof motion performed by this manipulator in both operation modes x1 = 0 and
x2 = 0 are characterized by the rotational matrices defined in Eqs. (17)-(18).

Let us consider the geometric center P of the moving-platform denoted by P of coordinates
r1P = [1 cε2b2+(b1−cε2b2)/3 0 0]T . By substituting all design parameter values and performing
coordinate transformation via rotation matrices defined in Eqs. (17)-(18), the coordinates of
point P can be obtained in the fixed frame (Σ0) in both operation modes.

The 2-dof rotational motions are then represented by the point reachable workspace gener-
ated by the geometric center of moving-platform, point P . It reveals that the 2-dof rotational
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Figure 3: A manipulator pose in operation mode x1 = 0
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φ = 0◦φ = 30◦
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φ = 90◦ φ = 120◦

φ = 150◦

(a) 1-dof motion by φ

x
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z

θ = 0◦

θ = 30◦

θ = 60◦
θ = 90◦

(b) 1-dof motion by θ

Figure 4: Rotational motion presented by φ and θ in operation mode x1 = 0.
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motions in both operation modes are bounded by a particular surface, called the Cross Cap

surface, in both operation modes. This surface has a shape of shrunk Torus-like where the side
is clipped so that they cross, as shown in Figs. 3 and 5 for operation modes x1 = 0 and x2 = 0,
respectively.

Given any value of tilt angle θ, the geometric center of moving-platform P can follow the
red curves as shown in Figs. 4(a) and 6(a) for operation modes x1 = 0 and x2 = 0, respectively.
When the azimuth angle is null (φ = 0◦), the trajectory becomes a straight line. When the
azimuth angle is increased, the trajectory is no longer a straight line but an ellipse. Starting
from φ = 30◦, the ellipses move clockwise until they comeback to φ = 0◦.

x

y

z

Figure 5: A manipulator pose in operation mode x2 = 0

On the other hand, for any given value of azimuth angle φ, the geometric center of moving-
platform follows the blue curves as depicted in Figs. 4(b) and 6(b) for operation modes x1 = 0
and x2 = 0, respectively. When the tilt angle is null (θ = 0◦), the trajectory becomes an ellipse,
which is the equator of the Cross Cap surface. When the tilt angle is increased, the trajectory
changes symmetrically with respect to its equator. Eventually, when the tilt angle reaches
θ = 180◦, the trajectory becomes a point, located at the center of the Cross Cap surface.

The point reachable workspace of 2-dof rotational motions generated by the geometric
center P in both operation modes, are bounded by Cross Cap surfaces. They behave similarly
over the angles φ and θ. However, the Cross Cap surfaces associated to both operation modes
have different orientations and they are facing toward different directions. The clipped side of
the Cross Cap surface belonging to operation mode x1 = 0 faces toward negative x-axis, while
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φ = 0◦φ = 30◦

φ = 60◦

φ = 90◦
φ = 120◦

φ = 150◦

(a) 1-dof motion by φ

x

y

z

θ = 0◦

θ = 30◦

θ = 60◦
θ = 90◦

(b) 1-dof motion by θ

Figure 6: Rotational motion presented by φ and θ in operation mode x2 = 0.

the one belonging to operation mode x2 = 0 faces toward positive x-axis. The combination of
both workspaces is shown in Fig. 7.

The trajectories of point P for variations of azimuth φ ∈ [−180◦, 180◦] and tilt θ ∈ [0◦, 180◦]
are not similarly reflected over the entire workspace. It emphasizes that the orientation
workspace of the 3-RPS parallel manipulator under study is not symmetrical.

4.2 Singularity analysis

A parallel manipulator reaches a parallel singularity when the determinant of its forward Jaco-
bian matrix vanishes. The forward Jacobian of the 3-RPS parallel manipulator is obtained upon
differentiation of the seven constraint equations (g̃1, g̃2, g̃3, g̃4, g̃5, g̃6, g̃7) expressed in Eqs. (12)-
(14), with respect to the seven parameters x0, x1, x2, x3, X, Y, Z, as follows:

J =
( ∂g̃j
∂x0

,
∂g̃j
∂x1

,
∂g̃j
∂x2

,
∂g̃j
∂x3

,
∂g̃j
∂X

,
∂g̃j
∂Y

,
∂g̃j
∂Z

)

, j = 1, ..., 7 (19)

Then the determinant of the forward Jacobian matrix is computed in both operation modes
x1 = 0 and x2 = 0. It appears that this determinant splits into two factors in both operation
modes:

det(Jx1=0) = x2 · f1(a3, b3, ε2, ε3, x0, x2, x3, Z) = 0 (20)

det(Jx2=0) = x1 · f2(a3, b3, ε2, ε3, x0, x1, x3, Z) = 0 (21)

The two factors correspond to two types of parallel singularities, namely constraint and
actuation singularities [33, 34]. These singularities will be further investigated hereafter.

4.2.1 Constraint singularity

The first factors in Eqs. (20)-(21) lead to the constraint singularity configurations that belong
to both operation modes simultaneously, i.e. x1 = x2 = 0. By substituting the orientation
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x
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Mode x1 = 0
Mode x2 = 0

Figure 7: Combination of Cross Cap surfaces

parametrization defined in Eq. (16) into Eqs. (20)-(21), the constraint singularity condition can
be derived. A constraint singularity occurs if and only if the tilt angle is null for any given
azimuth angle φ, hence:

Constraint singularity =
{

θ = 0◦, ∀φ ∈ [−180◦, 180◦]
}

(22)

It means that the 3-RPS parallel manipulator reaches a constraint singularity configuration
when its moving-platform is parallel to the base. It should be noted that constraint singularities
correspond to the transition configurations that allow the 3-RPS parallel manipulator to switch
from operation mode x1 = 0 to operation mode x2 = 0 and vice versa.

4.3 Actuation singularity

The second factors in Eqs. (20)-(21) give the actuation singularity conditions inside the workspace
for both operation modes x1 = 0 and x2 = 0, respectively. These singularities have a great im-
pact onto the manipulator kinematic performance and the orientation capability of its moving-
platform. In what follows, only actuation singularities are considered for dimension optimisation
and they are defined as follows:

S1 : f1(a3, b3, ε2, ε3, x0, x2, x3, Z) = 0 (23)

S2 : f2(a3, b3, ε2, ε3, x0, x1, x3, Z) = 0 (24)

The orientation parametrizations defined in Eq. (16) are substituted into Eqs. (23)-(24) to
derive the condition of actuation singularity. Without loss of generality, we consider the design
of 3-RPS parallel manipulator employed in Sec. 4.1, namely a3 = 1, b3 = 0.5, ε2 = 66◦, ε3 = −66◦

in operation mode x2 = 0. The actuation singularity loci of the 3-RPS parallel manipulator
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that works at given height Z = 1 is depicted by the red curve in Polar coordinate as shown in
Fig. 8(a).

φ=0◦

30◦

60◦
90◦

120◦

150◦

−150◦

−120◦

−90◦
−60◦

−30◦

180◦,−180◦

θ=45◦

90◦

135◦

180◦

(a) In Polar coordinates

x

y

z

(b) In Cartesian coordinates

Figure 8: Actuation singularity loci

Let us recall the workspace of point P (the geometric center of moving-platform) which is
bounded by the Cross Cap surface as shown in Fig. 3. Accordingly, its singularity loci can be
plotted together with the Cross Cap surface in Cartesian space as shown in Fig. 8(b). It is
apparent that the workspace of the manipulator limited by the singularity loci is not symmet-
rical with respect to the home configuration defined by φ = 0◦ and θ = 0◦. Figures 8(a) and
8(b) show that the workspace outside the singularity loci between φ ∈ [−180◦, 0◦] is extremely
large, however this workspace cannot be reached since the platform should pass through the
singularity two times from the home pose (φ = 0◦, θ = 0◦). The workspace inside the singularity
loci between φ ∈ [0◦, 180◦] is more significant and will be considered hereafter to synthesize the
design parameters a3, b3, ε2, ε3.

5 Dimension Optimization

It is well-known that the manipulator performance is strongly affected by its geometrical design
parameters a3, b3, ε2, ε3. According to the analysis performed in Sec. 4.2, the workspace inside
the singularity loci between φ ∈ [0◦, 180◦] is more significant and will be considered for the
dimension synthesis. Here, dimension optimization aims to determine the values of design
parameters a3, b3, ε2, ε3 by considering the maximum tilt angle θ from the home pose φ =
0◦, θ = 0◦ without reaching actuation singularity for azimuth angle φ ∈ [0◦, 180◦] at given
height Z. The design parameters in turn affect the base and moving-platform shapes and sizes.

5.1 Boundary of Design Parameters

The relations among eight design parameters a1, a2, a3, b1, b2, b3, ε2, ε3 for 3-RPS parallel manip-
ulator are given by design condition 2C in Eq. (11). This design condition reduces the number
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of unknowns from 8 to 4, namely a3, b3, ε2, ε3.
However, the relation between the base and moving-platform has not been specified yet.

The fact that all dimensions can be scaled up to each other, we assign the design parameter
a3 = 1. Design parameters b3, ε2, ε3 become the remaining unknowns and should be positive.
Here, b3 is supposed to be smaller than a3. Thus, b3 is bounded between 0 and 1.

As ε1 is assigned to be 0◦, the dimension synthesis process aims to determine the values of
ε2 and ε3. To always fulfil the design condition 2C in Eq. (11), the lower and upper bounds of
design parameters ε2 and ε3 are ε2 ∈ [0◦, 90◦) and ε3 ∈ [0◦,−90◦), respectively. The summary
of the design parameter boundaries is presented in Table 1.

Table 1: Lower and upper bounds of design parameters b3, ε2 and ε3

ε2 ε3 b3
min 0◦ 0◦ 0
max 90◦ −90◦ 1

In what remains, the symmetrical designs are considered since they are usually simpler
than their non-symmetrical counterparts [35, 36]. Thus the relation between ε2 and ε3 is the
following:

ε3 = −ε2 (25)

As all design parameters are now given in terms of parameters b3 and ε2, it is possible to
represent the manipulator performances into the two-dimension design space (b3, ε2).

5.2 Maximum Inscribed Circle Diameter (MICD)

The design parameters b3, ε2 are determined by considering the maximum tilt angle θ from
the home pose (φ = 0◦, θ = 0◦) without reaching actuation singularity for azimuth angle
φ ∈ (0, 180◦] at given height Z.

To deal with the non-symmetrical orientation workspace, Maximum Inscribed Circle Diam-
eter (MICD) is used. A circle is drawn until it becomes tangent to the actuation singularity
loci defined by S1 and S2 (see Eqs. (23) and (24)). The corresponding tilt angle amounts to the
maximum tilting capability of the manipulator, as shown in Fig. 9. The tilt angle is obtained
as MICD which can be mathematically expressed as follows:

MICD = max
0◦≤θ≤180◦

{θ, ∀φ ∈ [0◦, 180◦] , det(J) 6= 0} (26)

5.3 Dimension Synthesis

The MICD defined in Eq. (26) is employed as a basis to compare the maximum tilting capability
of the 3-RPS parallel manipulator over its entire orientation workspace for a specific range of
design parameters. The distributions of MICD is plotted in two-dimensional design space
(b3, ε2) explained in Sec. 5.1.
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Table 2: Distributions of MICD for given height Z

Z Mode x1 = 0 (m1) Mode x2 = 0 (m2) Optimum region
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Figure 9: Maximum Inscribed Circle Diameter

For the parallel manipulator shown in Fig. 1, MICD is traced when the moving-platform
works at five different heights, namely Z=1, 1.25, 1.5, 1.75, 2. The distributions of MICD in
both operation modes x1 = 0 and x2 = 0 (denoted by m1 and m2, respectively) are provided in
Table 2.

In operation mode x1 = 0, the maximum MICD that can be reached is up to 90◦. The higher
Z, the smaller MICD. MICD is a maximum when Z = 1 and the moving-platform size is 0.6
times smaller than the base. MICD is a minimum when Z = 2 and when the moving-platform
is almost as large as the base (0.82 ≤ b3 ≤ 0.98). As a consequence, many architectures of
3-RPS parallel manipulator will perform greater value of MICD in operation mode x1 = 0 if it
is operated at lower altitude.

In operation mode x2 = 0, the maximum MICD which can be attained by all designs at
Z = 1.75 up to Z = 2 is only up to 60◦. At the lower altitude, i.e. Z = 1, 1.25, 1.5, MICD
which can be reached by the platform is only up to 45◦. Unlike in operation mode x1 = 0, the
region of MICD in operation mode x2 = 0 increases significantly as the altitude increases. As
a consequence, many architectures of 3-RPS parallel manipulator will perform greater value of
MICD in operation mode x2 = 0 if it is operated at higher altitude.

For the manipulator to be used as an ankle rehabilitation device, the minimum tilting
capability which should be performed by the moving-platform in both operation modes x1 = 0
and x2 = 0 is 30◦, as explained in Sec. 2.2. Thus, a constraint is defined as follows:

MICD ≥ 30◦ (27)



L. Nurahmi, S. Caro and M. Solichin 19

The optimum region satisfying Eq. (27) is derived at each height which is shown by the red
surfaces in Table 2.

The optimum regions shown in Table 2 decrease as the altitude increases. At lowest altitude
(Z = 1), many architectures of 3-RPS parallel manipulator can exhibit at least 30◦ of MICD in
both operation modes. It occurs if the moving-platform dimension is a lot smaller than the base
(b3 ≤ 0.5). At highest altitude (Z = 2), very few architectures of 3-RPS parallel manipulator
can perform at least 30◦ of MICD in both operation modes.

All optimum regions are combined as shown in Fig. 10 and a new optimum region is obtained
as shown by grey surface. This region tells us the set of optimum design parameters b3, ε2 that
satisfies Eq. (27) at five different heights simultaneously. It is noticeably that this optimum
region lies below ε2 ≈ 53◦. It means that the second and third legs should be assembled at
maximum angle of 53◦ from the x-axis.

0

Z=1
Z=1.25

Z=1.5

Z=1.75

Z=2

optimum region

0 0.2 0.4 0.6 0.8 1
0◦

23◦

44◦

62◦

77◦

90◦

ε2

b3

Figure 10: Optimum set of design parameters when MICD ≥ 30◦

6 Reconfiguration strategy

One selected architecture of 3-RPS parallel manipulator from the optimum region shown in
Fig. 10, can work at minimum tilt angle of 30◦ from Z = 1 up to Z = 2. However, if the
moving-platform is required to work at lower and higher altitudes, i.e. Z ≤ 1 and Z ≥ 2
respectively, its MICD may reduce below 30◦ in either operation mode x1 = 0 or operation
mode x2 = 0. To overcome this issue, the moving-platform should switch from operation mode
x1 = 0 to x2 = 0 or vice versa, depending on the orientation capability of each operation mode.
This reconfiguration should be conducted at a specific range of height.
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Let us consider the parameters b3 = 0.5 and ε2 = 44◦, which are selected within the optimum
region given in Fig. 10. By substituting these values into the design condition 2C defined in
Eq. (11) and Eq. (25), other design parameters can be derived as shown in Table 3.

Table 3: Selected design parameters

Base Platform Angles
a1 a2 a3 b1 b2 b3 ε1 ε2 ε3
1.38 1 1 0.69 0.5 0.5 0◦ 44◦ −44◦

To investigate the relationship between MICD and the height Z of this manipulator, all
MICD is plotted as a function of moving-platform height from 0 up to 5, as shown in Fig. 11.
Let us assume that the selected 3-RPS parallel manipulator works from altitude 0 to 5 with
minimum orientation defined by Eq. (27), namely θmin = 30◦, shown by dash line in Fig. 11.

0 1 2 3 4 5

30◦

60◦

90◦

120◦

150◦

180◦

M
IC

D

Z

x1=x2=0

θmin θmin

transition
region

workspace

workspace
mode x1=0

mode x2=0

Figure 11: Reconfiguration altitude

The workspaces of operation modes x1 = 0 and x2 = 0 can be detected as shown by the
blue and green surfaces, respectively. It is shown that the orientation workspace limited by
MICD of operation mode x1 = 0 is much larger at lower altitude, i.e. Z ≤ 2.5. For operation
mode x2 = 0, the orientation workspace limited by MICD is much larger at higher altitude, i.e.
Z ≥ 1, although MICD cannot reach up to 90◦. The intersection of the two workspaces yield a
transition region that allows the manipulator to switch from operation mode x1 = 0 to x2 = 0
or vice versa, while maintaining high orientation capability given in Eq. (27). This transition
region is bounded between 1 ≤ Z ≤ 2.5.
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For the manipulator to be able to work at Z ≥ 2.5 while maintaining the orientation to
be θ ≥ 30◦, the moving-platform should switch into operation mode x2 = 0. To switch the
operation mode, the condition of constraint singularity defined in Eq. (22) should be satisfied. It
means that the moving-platform should enter a constraint singularity configuration by changing
its orientation to be θ = 0◦. It can be carried out if and only if the moving-platform reaches
the transition region, namely when the moving-platform height is in the range 1 ≤ Z ≤ 2.5.
The constraint singularity configuration is described as a common configuration that belongs to
both operation modes simultaneously, which yields x1 = x2 = 0 (shown by red line in Fig. 11).

xy

z

(a) Mode x1 = 0 at Z < 1

xy

z

(b) Reconfiguration at Z=1

xy

z

(c) Mode x2 = 0 at Z > 1

Figure 12: Reconfiguration strategy to maintain θmin = 30◦ at different heights

x

z

(a) Mode x1 = 0 at Z < 1

x

z

(b) Reconfiguration at Z=1

x

z

(c) Mode x2 = 0 at Z > 1

Figure 13: Side view: reconfiguration strategy to maintain θmin = 30◦ at different heights

Once the constraint singularity configuration is reached, the moving-platform can enter the
operation mode x2 = 0 by switching its orientation back to θ ≥ 30◦. Eventually, the moving-
platform can work with minimum orientation θ ≥ 30◦ at higher altitude. All steps and poses of
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the reconfiguration strategy are demonstrated in Figs. 12(a)-12(c). Figs. 13(a)-13(c) illustrate
manipulator poses during reconfiguration strategy from side view. This reconfiguration strategy
can be executed easily and is not affected by the leg collisions since the transition configuration
occurs inside the workspace at θ = 0◦.

7 Conclusions

In this paper, several constraint-based design conditions were introduced for the design of 3-RPS
parallel manipulators. Those conditions describe the relations among the base and moving-
platform design parameters. One design condition was selected and by following this condition,
a 3-RPS parallel manipulator with 3-dof operation mode was generated and used as an ankle
rehabilitation device. The kinematic optimization was performed to synthesize its optimum
parameters. First, the parametrization of orientation workspace was performed to investigate
the moving-platform capability in terms of translational and rotational motions. It reveals
that the orientation workspace is not symmetrical. A performance index, named Maximum
Inscribed Circle Diameter (MICD) was proposed to trace the maximum tilt angle for any
azimuth angle without reaching any singularity. A two-dimensional design space was created
which to make it possible to plot the distributions of MICD for different moving-platform
heights. The optimum regions with regard to MICD were obtained and a set of dimensionless
design parameters was selected within this region. The relationship among MICD, operation
modes and moving-platform height was investigated for the selected design. It shows that the
evolution of MICD as a function of moving-platform height is the opposite. To overcome this
issue, a reconfiguration strategy was proposed to ensure the moving-platform working above
the minimum required orientation for any moving-platform height.

References

References

[1] K. H. Hunt. “Structural Kinematics of in-parallel-actuated Robot-arms”, Journal of
Mechanisms, Transmission, and Automation in Design, 105, pp. 705–712, 1983.

[2] J. Schadlbauer, D.R. Walter, M. Husty. “The 3-RPS Parallel Manipulator from an Alge-
braic Viewpoint”, Mechanism and Machine Theory, 75, pp. 161–176, 2014.
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