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Electrocardiographic imaging aims at reconstructing cardiac electrical events from

electrical signals measured on the body surface. The most common approach relies on

the inverse solution of the Laplace equation in the torso to reconstruct epicardial potential

maps from body surface potential maps. Here we apply a method based on a parameter

identification problem to reconstruct both activation and repolarization times. From an

ansatz of action potential, based on the Mitchell-Schaeffer ionic model, we compute

body surface potential signals. The inverse problem is reduced to the identification of the

parameters of the Mitchell-Schaeffer model. We investigate whether solving the inverse

problem with the endocardium improves the results or not. We solved the parameter

identification problem on two different meshes: one with only the epicardium, and one

with both the epicardium and the endocardium. We compared the results on both the

heart (activation and repolarization times) and the torso. The comparison was done on

validation data of sinus rhythm and ventricular pacing. We found similar results with both

meshes in 6 cases out of 7: the presence of the endocardium slightly improved the

activation times. This was the most visible on a sinus beat, leading to the conclusion

that inclusion of the endocardium would be useful in situations where endo-epicardial

gradients in activation or repolarization times play an important role.

Keywords: ECGI, endocardium, parameter optimization, gradient descent method, Mitchell-Schaeffer, endo-

epicardial gradients

1. INTRODUCTION

Electrocardiographic imaging aims at reconstructing cardiac electrical events from electrical signals
measured on the body surface. The most common approach relies on the inverse solution of
the Laplace equation in the torso to reconstruct epicardial potential maps from the body surface
electrical potential maps (BSPM) (Wang and Rudy, 2006). This technique requires a regularization
strategy to deal with the ill-posedness of the problem, for example Tikhonov regularization.
However, as this regularization is applied to potential patterns, it suppresses the steep voltage
gradients that characterize activation wavefronts. This leads to prominent errors such as artefactual
block lines in the reconstructed activation map (Duchateau et al., 2017; Ravon et al., 2017).
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Other methods have been designed to reconstruct directly
the activation times (van Oosterom and Oostendorp, 1992;
Liu et al., 2006). While Liu et al. (2006) look for the three-
dimensional activation sequence in the ventricular muscle,
van Oosterom and Oostendorp (1992) reconstruct activation
on both the epicardium and the endocardium. van Dam et al.
(2009) proposed a method that solved both the activation and
the repolarization. Based on an equivalent double layer model,
it updates activation and repolarization times alternatingly.
Ghodrati et al. (2006) developed two methods to reconstruct
epicardial information. One optimizes the position of the
depolarization front at each time. The second reconstructs
epicardial potentials with a regularization term based on the
estimation of the wavefront behavior. These approaches still
rely on a Tikhonov-like regularization technique. Recently,
studies that reconstruct both the activation and the recovery,
with a novel regularization technique, have been published
(Cluitmans et al., 2017, 2018). The regularization is done through
an electrophysiological input and the potentials on the torso
are sparsely represented to deal with the ill-posedness of the
problem. Others used a probabilistic approach to find parameters
(Rahimi et al., 2016; Dhamala et al., 2018). The former used
the two-variable Aliev-Panfilov model (Aliev and Panfilov,
1996) to model the AP. Their aim was to probabilistically
personalize a model parameter using machine learning methods.
The estimation was made on a whole-heart 3D model, from
BSPMs or extracellular potentials. In the latter the parameters
of the model are assumed and the behavior of the wavefront
is optimized. The same group worked on regularizing both the
spatial and the temporal propagation of action potential (Wang
et al., 2010). The method relies on a two-variable propagation
model with fixed parameters in a volumetric myocardium.
It was then improved in Ghimire et al. (2017). Note that
in these studies constraints in the spatial distribution are
considered.

In a previous study (Ravon et al., 2017) we introduced
a new technique that aims at recovering directly both the
activation and repolarization maps on the epicardium. The
general idea consists in looking for an ansatz of an action
potential (AP) under the form of a function v(P; t) parameterized
by a small number of parameters P, e.g., less than three. The
upstroke of this AP is supposed to be at t = 0. From
the knowledge of the activation times τ (x) on the heart, we
can map the AP to a space- and time-dependent function
Vm(t, x) = v(P; t − τ ). In addition, the parameters P may
have space-dependent values distributed on the surface, which
enriches the model, but increases the number of unknown
parameters. Then this transmembrane voltage function Vm(t, x)
is projected to body surface potential signals. The method
searches for the parameters P and activation map τ that
realize the best fit to the target body surface signals on a
given time interval. It amounts to solving a nonlinear least
squares parameter identification problem with a small number
of (possibly distributed) parameters. We previously represented
the action potential as the product of two logistic functions, as
proposed by Van Oosterom and Jacquemet (2005). The final
parameter identification problem (Ravon et al., 2017) consisted

of identifying three distributed parameters, given the BSPM of
a complete ventricular activation and repolarization sequence
(i.e., a QRST waveform). This method was demonstrated to
give a better range of activation times (ATs) and a smoother
AT distribution than a solution based on the Laplace equation
with Tikhonov regularization of order zero. However, it only
reconstructed APs on the epicardium. In general, large and
physiologically very relevant differences in AT and repolarization
time (RT) can exist across the wall. Therefore, in this study we
investigated whether including the endocardium improves the
results.

To this aim, we tested our method on in silico data with
and without important transmural gradients. The parameter
identification problem was solved either on the epicardium only,
or on both the epicardium and endocardium. We found that the
quality of the reconstructed activation and repolarization maps
(in terms of correlation coefficients) was similar when transmural
gradients were small, but that inclusion of the endocardium
improved the solution in a case where these gradients were
important.

As compared to Ravon et al. (2017), we also changed the
representation of the AP from the product of two logistic
functions to the solution of the two-variable ionic model
of Mitchell and Schaeffer (2003), to have a more relevant AP
shape without increasing the number of parameters.

We resorted to a discretize-then-optimize strategy: we first set
the direct problem that maps the parameters P and activation
map τ to the voltage Vm(t, x), and then to the BSPM φT.
This problem was discretized using triangulated surfaces. The
parameters were identified in the discrete problem using a
gradient descent method on a discrete least squares cost
function.

2. MATERIALS AND METHODS

2.1. Mapping the Parameters to the
Transmembrane Voltage
The parameterization was based on the two-current model
proposed by Mitchell and Schaeffer (2003). This model describes
the dynamics of two functions: the voltage v and an auxiliary
variable h. Both quantities are dimensionless and scaled between
0 and 1, and solve the following ordinary differential equations:

v′ =
hv2(1− v)

τin
−

v

τout
, (1)

h′ =
1− h

τopen
if v < vgate, and h′ =

−h

τclose
if v > vgate. (2)

The five parameters were originally chosen as (Mitchell and
Schaeffer, 2003): τin = 0.3 ms, τout = 6 ms, τopen = 120 ms,
τclose = 150 ms, and vgate = 0.13. The steady state for this model
is (v, h) = (0, 1). The voltage v takes the shape of an AP if we set
the initial condition as

(

v(0), h(0)
)

= (0.15, 1), see the red curve
in Figure 1.

The function v(t) defined for t ≥ 0 as the solution of the initial
value problem (1)-(2) with

(

v(0), h(0)
)

= (0.15, 1) was completed
by 0 for t < 0. It was our ansatz of an AP, denoted by v(P; t)
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for t ∈ R, and in general P = {τin, τout, τopen, τclose, vgate}. For
instance, the blue curve in Figure 1 is the graph of v(P, t − τ ) for
an activation time τ = 50 ms and the default values for P stated
above.

In practice, the parameters τin and τopen define the upstroke
of the AP, and were fixed with their default values τin =

0.3 ms and τopen = 120 ms. Similarly, the parameter vgate
defines the excitability threshold and was fixed at vgate = 0.13.
Hence, only the parameters τout and τclose were searched as
unknown parameters, because they are directly related to the
AP duration. τclose can be seen as the plateau phase duration
whereas τout is linked to the speed of the repolarization. τout
also has a small impact on the amplitude of the voltage
v.

In addition, we rescaled the voltage v by a factor A, so as to
fit the scaling of the measured BSPM. Hence, we considered the

FIGURE 1 | Red curve: voltage v(P, t) with the default parameters P. Blue

curve: TMP Vm(t) = v(P; t− τ ) with τ = 50 ms.

mapping

P : = (A, τout, τclose
︸ ︷︷ ︸

P

, τ ) ∈ R
4 7→ Vm(x, t) = Av (P, t − τ) . (3)

The parameter τ was distributed on the heart surface by the
design of the method. Meanwhile, the parameters A, τout, and
τclose may be constant or distributed. Since AP duration varies
across the heart surface, we would rather consider varying
distributed parameters τout and τclose.

2.2. Projecting the Transmembrane Voltage
to the Body Surface Potential Map
Afterwards, we mapped the transmembrane voltage Vm(x, t) to
extracellular potentials φe(x, t) as in Potse et al. (2009):

Vm(x, t) 7→ φe(x, t) = Vm(t)− Vm(x, t), (4)

where Vm(t) was a fixed spatial average of Vm(x, t), Vm(t) =
1
|S|

∫

S Vm(x, t)ds(x) where S is the heart surface (epicardium

only, or epicardium and endocardium). The rationale of the
formula is a rewriting of the bidomain model coupled with the
hypothesis that conductivity tensor fields in both extra- and
intra-cellular domains are homogeneous and isotropic. Here
the ratio of conductivities was hidden in the factor A. Finally,
we projected the extracellular potentials φe(x, t) to the body
surface potentials φT(y, t) for any point y on the torso surface as
follows:

φe(x, t) 7→ φT(y, t) =

∫

S

1

4π‖x− y‖
φe(x, t)ds(x), (5)

This amounted to approximating the solution of the Laplace
equation outside the heart domain, assuming it is an infinite
homogeneous medium (Malmivuo and Plonsey, 1995;
Macfarlane et al., 2010).

2.3. Discrete Surfaces and Approximations
In practice, the endocardial and epicardial surfaces were
discretized by two separate triangular meshes (Figure 2) with

FIGURE 2 | Left: epicardium-only mesh (Mesh1); middle: endocardial and epicardial mesh (Mesh2); right: refined mesh of Mesh2. Right posterior oblique view.
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vertices denoted by (xi)i=1...NH . The endocardial surface included
the surface of the free wall and the septum (Figure 2, middle).

For the sake of computational simplicity, the mappings (4)
and (5) were replaced by their discrete counterparts:

φe(xi, t) =
1

NH

NH∑

k=1

Vm(xk, t)− Vm(xi, t),

φT(y, t) =

NH∑

i=1

1

4π‖xi − y‖
φe(xi, t), (6)

where Vm(xi, t) was given by the mapping (3) for given
parameters A ∈ R,

(

τout(xi)
)

i
∈ R

NH ,
(

τclose(xi)
)

i
∈ R

NH and
(

τ (xi)
)

i
∈ R

NH . Hence there are 1 + 3NH parameters to be
identified.

2.4. The Parameter Identification Problem
We looked for the parameter setP = (A, τout, τclose, τ ) ∈ R

1+3NH

that minimized the least squares error

J(P)=
1

2

Tmax∑

k=1

NT∑

j=1

∣
∣
∣

(

φT(yj, tk)− φT(tk)
)

−

(

φ⋆(yj, tk)− φ⋆(tk)
)∣
∣
∣

2
,

(7)
where (yj)j=1...NT were the NT electrode locations on the body
surface, (tk)k=1...Tmax

was the time sequence of interest, (φ⋆(yj, tk))
were the measured BSPMs, and (φT(yj, tk)) were the BSPMs
computed according to equations (6). For each time tk, the

spatial averages φT(tk) and φ⋆(tk) were defined by φT(tk) =
1
NT

∑NT
j=1 φT(yj, tk) and φ⋆(tk) = 1

NT

∑NT
j=1 φ⋆(yj, tk). Potentials

are given up to a constant. This constant can be a reference
electrode on the torso, theWCT or the mean of all the electrodes.
We chose the mean. As Wilson’s Central Terminal it was also a
way to reduce noise. Moreover, it rescaled the data around their
mean value.

The total number of data elements is finally TmaxNT , which
may be compared to the number of unknown parameters 1 +

3NH . This nonlinear least squares problem was solved by the
gradient descent method with the RMSprop update (Tieleman
and Hinton, 2012). This is an adaptive learning rate method: at
each iteration, the update reads:

κ : = γ κ + (1− γ )∇PJ ⊗∇PJ in R
1+3NH , (8)

P : = P− η∇PJ ⊘ (κ◦1/2 + 10−7) in R
1+3NH , (9)

with κ ∈ R
1+3NH an intermediate variable, η ∈ R the

learning rate and γ = 0.9. The learning rate was not fixed, an
optimal value for η was chosen at each iteration in the range
[

10−5, 102
]

. In equations 8 and 9 the operators ⊗, ⊘, and ◦

denote the Hadamard product, division, and power, respectively.
The gradient of the cost function J with respect to the unknown
parameters P was calculated analytically.

For the gradient descent method, an initial guess was required.
We arbitrarily chose A = 10, the default values τout,i = 6 ms
and τclose,i = 150 ms for all i, and τi constant τi = τ0 ∈ R.
Since the initialization was the same for all the nodes, the initial

torso potentials were zero. The optimization ended when the cost
function J and its gradient remained constant. The code was in
Matlab and not parallel. Computational time was quite long and
similar for all the cases, namely about one day. A more flexible
stopping criterion and parallelism would reduce computational
time.

2.5. Validation Data
In order to create testing data, simulations were run on an
anatomically realistic 3D geometry of the torso, including
heart, blood vessels, lungs, and skeletal muscle (Figure 3).
Each organ had its own conductivity. Propagating AP were
generated using a monodomain reaction-diffusion model with
a TNNP membrane model (Ten Tusscher et al., 2004) on an
anisotropic heart model at 0.2 mm resolution. To compute φT the
computed transmembrane current density in the myocardium
was projected on an inhomogeneous heart-torso model with
anisotropic skeletal muscle layer at 1 mm resolution and
the potential field φT was found by solving an anisotropic
Laplace problem using a finite-difference method (Potse, 2018).
Boundary conditions did not match between the monodomain
model and the Laplace equation. This approach leads to
slightly different extracellular potentials within a few hundred

FIGURE 3 | Heart-torso mesh used for the computation of validation data.

The 252-electrode body surface mapping set is shown. Red electrodes mark

two locations used in Figure 8.
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micrometers from the surface only (Potse et al., 2006). All
simulations were performed with a recent version of the
Propag-5 software (Krause et al., 2012) on a BullX cluster
machine.

We had access to the activation times on the epicardium
and the endocardium (named reference ATs in the following).
Repolarization times were computed from extra-cellular
potentials as the time with highest positive slope during the
repolarization phase.

3. RESULTS

On the same model anatomy, seven different simulations were
run: one sinus rhythm (SR) and six different pacing cases.
The description of the cases can be found in Table 1. For all
the cases, we solved the parameter identification problem on
the epicardium-only mesh (Mesh1) and on the epicardium and
endocardium mesh (Mesh2). Mesh1 and Mesh2 had 641 and 534
vertices respectively. We will describe the results in detail for two
cases: right-ventricular pacing and sinus rhythm.

3.1. Epicardial Ventricular Pacing
The reconstructed activation maps in case of right-ventricular
pacing were of the same quality on both meshes. In particular
the late ATs were not well reconstructed in both cases (first
row, dark blue part in Figure 4). The correlation coefficient
(CC) and relative error (RE) between ATs were close for both
meshes, about 0.7 and 0.3 respectively. However, Figure 5 shows
that a part of the reference ATs between 120 and 160 ms was
less well reconstructed with Mesh1 than with Mesh2. For both
meshes some reference ATs between 100 and 150 ms were not
well reconstructed (Figure 5, left, black box). These points were
located between the two valves, where the reconstruction is
more difficult. The pacing site was better localized with Mesh1
(11.4 mm from the actual position, geodesic distance) than with
Mesh2 (16 mm), as shown in Figure 12. For Mesh2 we also
calculated CC for the points on the epicardium (CC = 0.72) and
on the endocardium (CC = 0.77). With the endocardium we did
not improve the accuracy on the epicardium compared to the
results with the epicardium only.

The benefit of considering the endocardium was to look
for gradients of depolarization between the endocardium and
epicardium. For each point on the epicardium, we selected the
closest point on the endocardium and computed the delay in

TABLE 1 | Description of the 7 cases.

Case Description

1 Epicardial ventricular pacing

2 Sinus rhythm

3 Endocardial ventricular pacing

4 Epicardial ventricular pacing (near apex)

5 Endocardial ventricular pacing (near apex)

6 Pacing on the basis of the pulmonary vein

7 Pacing on the septum, halfway up to the right ventricle

the activation. Figure 6 presents box plot of these delays for the
7 cases. Delays existed in the reference ATs (first box) and the
delays we obtained were smaller on average. We also obtained
large delays (more than 20 ms and up to 135) that were not
consistent with the actual ones.

On both meshes, the quality of repolarization maps was less
good than the activation maps (Figure 4, second row). The CC
was slightly better with Mesh1 (0.55 vs. 0.51). It was highlighted
on the scatter plot, especially for the earlier RTs (Figure 5, right).

Figure 7 shows the evolution in time of the CC between the
measured BSPM and the reconstructed ones. Reconstructed torso
potentials were computed from equation (3), (4), and (5) with
the optimized parameters and the corresponding mesh Mesh1
or Mesh2. On both meshes, the behavior was similar: at the
beginning and the end of the simulation the reconstruction was
less accurate. As shown by Figure 8, after 400 ms, measured
and reconstructed BSPMs are close to zero, which explained
that the CC dropped. On average, the CC was 0.88 with Mesh1,
and 0.9 with Mesh2. On both electrodes, depolarization, and
repolarization phases were quite well fitted for the two meshes.
There were just slight differences between the reconstructed
BSPMs. We also calculated the root mean square error (RMSE)
between the measured BSPMs and the reconstructed ones
(Figure 9). Two peaks can be seen: one corresponding to the
depolarization phase and the second to the repolarization phase.
They were mainly due to the amplitude: the optimized amplitude
did not allow to fit the signals on all the electrodes (Figure 8).
RMSE was similar for the 2 meshes.

3.2. Sinus Rhythm
It is well known that the QRS duration is shorter in sinus
beat than in a paced beat. Moreover, there were multiple
breakthroughs in the myocardium. For these reasons it was
harder to obtain a satisfying reconstruction than in the pacing
cases. For both meshes the reconstructed total activation time
was longer than the actual. The CC and RE were better with the
endocardium than without, but still not as good as in the pacing
cases (Figure 10, left). For Mesh2 we also calculated CC for the
points on the epicardium (CC = 0.64) and on the endocardium
(CC = 0.57).With the endocardiumwe improved the accuracy on
the epicardium (CC = 0.64) compared to the results with Mesh1
(CC = 0.49).

We also looked at the delays between endocardium and
epicardium (Figure 6). These were similar on the reference ATs
for the SR and RV pacing case (first and third boxes). Since the
total activation time (TAT) is smaller in a sinus beat, the relative
values of these gradients to the TAT were more important than
in RV pacing. We reconstructed different delays for this two
cases. The delays were not reconstructed as well for the SR as
for the pacing cases. Indeed as shown in Figure 11, there was a
gradient of activation on the left ventricular free wall that we did
not recover. Similarly there were delays in the activation of the
septum that we did not reconstruct.

CC and RE for the repolarization times were better with
Mesh1: 0.51 and 0.18 respectively with the endocardium and 0.68
and 0.1 without (Figure 10, right). Indeed with the endocardium

Frontiers in Physiology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 1946

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ravon et al. The Endocardium in ECGI

FIGURE 4 | Activation, repolarization and APD90 maps of the RV pacing case. Left: reference ATs; middle: optimized ATs from Mesh1; right: optimized ATs from

Mesh2. Right posterior oblique view.

the range of RTs wasmuch larger, from t = 108ms to t = 628ms,
whereas the actual range was from t = 259 ms to t = 393 ms.

Finally we compared the signals on the torso. As in the pacing
case, CC and RMSE evolved in the same way for both meshes,
with close values over time. In both cases the CC dropped after
350 ms because reconstructed T waves sometimes ended later
than the real ones. In the simulation the heart was almost at
rest after 350 ms, which was not the case with our optimized
parameters. On average, the CC was 0.83 with Mesh1, and 0.87
withMesh2.

3.2.1. Sensitivity to the Initialization
In order to test if the method was sensitive to the initialization,
we solved the inverse problem with two other triplets. The
results we previously presented were obtained from the triplet
(τi, τout,i, τclose,i) = (60, 6, 150). The second and third triplets
were (75, 5, 130) and (75, 6, 15) respectively. The results are
presented in Table 2. The three initializations ended with very
close results: CC for ATs and RTs were in the same range, as well
as for the BSPM. Moreover, for the three triplets, the method

gave a better accuracy of the ATs with Mesh2, while RTs were
better reconstructed with Mesh1. Changing the initial ATs did
not improve the accuracy on the reconstructed ATs. Finally, the
reconstructed torso potentials were very close to each other for
the three initializations (CC between 0.83 and 0.9). Especially, the
QRS complex and the T wave were fitted in the same way.

3.3. All the Cases
We present the results for all the cases in Table 3. A box plot
representation can be found on Supplementary Material, as well
as activation, repolarization, and APD90 maps for all the cases.
In cases 4 and 6 CC of ATs were better with Mesh2. In all others
cases, CC were similar for both meshes. In all cases, solving the
inverse problem with Mesh2 gave at least as accurate ATs on
the epicardium as with Mesh1. Optimized RTs were better with
Mesh2 in only 2 cases: pacing on the basis of the pulmonary vein
(case 6) and pacing on the septum (case 7). Figure 6 shows the
delays in activation. On average we reconstructed smaller delays
in all cases.
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FIGURE 5 | Scatter plot of the ATs (left) and RTs (right) for the RV pacing case. For each point, the x coordinate is the reference AT (resp. RT) and the y coordinate is

the corresponding reconstructed AT (resp. RT). The dashed lines represent the linear fitting. The black box on the left exhibits ATs that were badly reconstructed with

both meshes.

FIGURE 6 | Delays in ATs between endocardium and epicardium for the 7

cases. Box plot represent the median and the first and third quartiles.

Whiskers represent the extreme values. Optimized ATs are AT given by the

inverse method with Mesh2.

Concerning the reconstructed BSPMs, averaged CC and
RMSE are given in Table 3. Except in case 7, the averaged CC
were very similar for both meshes. They kept very close values

FIGURE 7 | Correlation coefficient of the BSPM, RV pacing case.

over time.We observed the same behavior for the RMSE in all the
cases. The lower averaged CC in case 7 with Mesh2 was due to a
shorter total activation time: late ATs were not well reconstructed.

A statistical T-test was performed on the CC for ATs, RTs,
and BSPM. The resulting p-values were 0.5, 0.41, and 0.28
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FIGURE 8 | Potentials on the torso, RV pacing case. The locations of the 2 electrodes are marked in red in Figure 3.

FIGURE 9 | Root mean square error of the BSPM, RV pacing case.

respectively, showing no significant differences between the two
meshes.

We computed the geodesic distance between the actual
pacing site locations and the one given by the inverse solution
for cases 1, 4, and 6 (epicardial pacing). For endocardial
pacing (cases 3, 5, and 7) we computed the distance between
actual and reconstructed breakthrough on the epicardium.

From the optimization, the pacing site (or breakthrough) was
identified as the mesh node with the earliest AT (resp. on the
epicardium). We added a visual validation to exclude irrelevant,
isolated, early ATs. Results can be found in Figure 12. In
most of the cases, the distance was smaller with Mesh1 than
Mesh2. However, except for case 6, the identified site with
Mesh2 was a neighbor of the actual site. So the differences
in the mesh density could explain the smaller distances with
Mesh1.

We looked at the AP duration. For the 7 cases the reference
APD90 varied between 225 and 285 ms. A difference was
clearly visible between the endocardium and the epicardium.
We were not able to reproduce this difference with Mesh2.
However, APD90 were similar on the epicardium for
both meshes. Our method tended to reconstruct maximal
APD90s much higher than 285 ms, especially in cases 1,
2, and 7.

4. DISCUSSION

We presented a new ECGI method designed to recover both
the depolarization and the repolarization sequence, by solving
a parameter identification problem. We hypothesized that this
method would work better when both the endocardium and
epicardium are included in the model, since important and
physiologically relevant differences in both depolarization and
repolarization timing exist between these surfaces. Therefore,
we tested the method on two different heart meshes: the one a
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FIGURE 10 | Scatter plot of the ATs (left) and RTs (right) for the SR case. For each point, the x coordinate is the reference AT (resp. RT) and the y coordinate is the

corresponding reconstructed AT (resp. RT). The dashed lines represent the linear fitting.

FIGURE 11 | Activation maps on Mesh2, SR case. Left: reference activation map, right: reconstructed activation map.

closed surface of the epicardium alone, and the other including
both epicardium and endocardium. Tests were performed using
in silico data for a sinus beat and six different ventricularly
paced beats. Results were very similar for both meshes in
6 cases: all the characteristics we looked at were of the
same good quality. The presence of the endocardium slightly
improved the ATs on the epicardium. In contrast, for the
RTs the effect of including the endocardium was variable.

In two other cases (sinus rhythm, case 2, and septal pacing
case 7), the reconstruction of AT with Mesh1 was poor.
In the sinus rhythm case, inclusion of the endocardium
(Mesh2) improved the reconstruction substantially. This was
the only case where endo-epicardial gradients, with respect
to the total activation time, were significant. In all cases,
the repolarization times were better reconstructed with the
epicardium only.
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We showed that our method was not sensitive to the
initialization. Especially the choice for τout and τclose did not
impact the reconstruction of ATs, since these two parameters
play a role only during the repolarization. Similarly, imposing
global instead of distributed parameters will not worsen ATs
reconstruction. The quality of the estimation of the Mitchell-
Schaeffer parameters can only be seen through RTs and APD90
reconstructions. CC for RTs were smaller than the ones for ATs
which may suggest that the reconstruction of τout and τclose was
less precise than ATs reconstruction. APD90 maps confirmed
that, on a same case, we can overestimate as well as underestimate
APD90 on large areas.

In general, our method underestimated AT delays between
endocardium and epicardium (Figure 6). A possible explanation
is that from the torso surface the two heart surfaces are too
close to be seen separately. The endocardial activity is masked

TABLE 2 | Comparison of different initializations for the sinus rhythm case. Each

triplet is of the form (τi , τout,i , τclose,i ).

Heart Torso

ATs RTs BSPM Reduction of J (%)

Initialization Mesh CC CC CC

(60, 6, 150) Mesh1 0.49 0.68 0.83 ± 0.25 87

Mesh2 0.6 0.51 0.87 ± 0.17 83

(75, 5, 130) Mesh1 0.44 0.65 0.9 ± 0.12 83

Mesh2 0.51 0.54 0.87 ± 0.16 81

(75, 6, 150) Mesh1 0.48 0.65 0.84 ± 0.26 86

Mesh2 0.59 0.57 0.89 ± 0.12 82

by the epicardial one, even in the case of endocardial pacing.
The problems we solved, withMesh1 orMesh2, were actually the
same; we ended with similar results. It may also explain why we
did not reconstruct APD differences between the epicardium and
the endocardium.

Another possible explanation is the difference in density
between the two meshes. We chose to have about the same
number of nodes in each mesh, so that the difference in the
number of parameters to identify could not alone explain the
results. However, it implied that Mesh2 was coarser than Mesh1.
A test was made on a refined mesh of Mesh2 (Figure 2, right).
This third mesh had 1328 nodes and a density similar to the
one of Mesh1. We solved the inverse problem on this mesh for
the ventricular pacing case 1. The results we obtained were very
similar to those with Mesh2: the CC for ATs was 0.79 (0.77 for
Mesh2) and the average CC for the BSPM was 0.86 (0.9 for
Mesh2). This test may suggest that the density of the mesh does
not have an impact on the results.

We solved the inverse problem with a constant factor A

over the whole heart. However, this factor (proportional to the
amplitude of the AP) may not be constant, e.g., in the case of
ischemia. We attempted to consider a distributed factor, more
relevant from a physiological point of view. In that case the
method was not converging, or converged to both positive and
negative amplitudes.

So far we did not add noise to the testing data. Even if the
models to create the data and to solve the inverse problem are
different, it would be helpful to assess the robustness of the
method.

Validation data were created from a volumetric heart mesh
with amuch higher density thanMesh1 andMesh2. The reference

TABLE 3 | Results for the 7 cases.

Heart Torso

ATs RTs BSPM

Case Mesh CC RE CC epi CC RE CC epi CC RMSE Reduction of J (%)

1 Mesh1 0.72 0.3 0.55 0.14 0.88 ± 0.19 0.06 ± 0.05 90

Mesh2 0.77 0.28 0.72 0.51 0.15 0.5 0.9 ± 0.1 0.07 ± 0.06 86

2 Mesh1 0.49 0.47 0.68 0.1 0.83 ± 0.25 0.04 ± 0.04 87

Mesh2 0.6 0.42 0.64 0.51 0.18 0.5 0.87 ± 0.17 0.05 ± 0.05 83

3 Mesh1 0.86 0.22 0.7 0.16 0.89 ± 0.17 0.15 ± 0.09 88

Mesh2 0.85 0.23 0.89 0.61 0.19 0.69 0.86 ± 0.26 0.15 ± 0.1 87

4 Mesh1 0.67 0.32 0.75 0.14 0.84 ± 0.23 0.16 ± 0.13 78

Mesh2 0.74 0.31 0.67 0.54 0.19 0.44 0.81 ± 0.24 0.16 ± 0.13 79

5 Mesh1 0.73 0.28 0.76 0.13 0.84 ± 0.26 0.12 ± 0.1 87

Mesh2 0.72 0.29 0.72 0.7 0.14 0.75 0.85 ± 0.24 0.12 ± 0.1 87

6 Mesh1 0.66 0.35 0.67 0.17 0.74 ± 0.44 0.15 ± 0.14 74

Mesh2 0.77 0.23 0.74 0.7 0.15 0.7 0.75 ± 0.47 0.14 ± 0.13 77

7 Mesh1 0.4 0.42 0.38 0.17 0.88 ± 0.13 0.05 ± 0.05 87

Mesh2 0.45 0.41 0.43 0.57 0.13 0.48 0.58 ± 0.47 0.08 ± 0.06 89

Case 1: epicardial ventricular pacing. Case 2: sinus rhythm. Case 3: endocardial ventricular pacing. Case 4: epicardial ventricular pacing (near apex). Case 5: endocardial ventricular

pacing (near apex). Case 6: pacing on the basis of the pulmonary vein. Case 7: pacing on the septum.
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FIGURE 12 | Left: Box plots of the geodesic distances between actual and identified pacing sites. Middle and right: actual (sphere), identified with Mesh1

(pentagram) and Mesh2 (square) pacing locations. Red: case 1, blue: case 3, green: case 4, black: case 5, cyan: case 6, magenta: case 7. We obtained a p-value of

0.74.

values (AT, RT) were the values on the mesh nodes. In contrast,
the inverse problem on a surface leads to values that contain
information averaged over a considerable volume. This may
explain why the delays between reconstructed ATs were smaller
than the delays between the reference ATs.

4.1. Comparison With Other Methods
Currently, most ECGI methods are based on a Laplace problem
for the potential in the torso. Using the MFS (Wang and Rudy,
2006) or boundary-element models (Sapp et al., 2012; Bear
et al., 2018) these methods reconstruct instantaneous potential
patterns on the surface of the heart. These methods use Tikhonov
or similar forms of regularization to counter the ill-posedness
of this problem. This form of regularization leads to smooth
solutions for the potential distribution, while the actual pattern,
especially in case of an activation wavefront, is characterized
by steep gradients. This leads to unrealistic solutions for the
activation pattern, featuring large areas that appear to be
activated nearly simultaneously, separated by artefactual lines of
conduction block (Duchateau et al., 2017; Ravon et al., 2017).
Various methods have been proposed to counter this effect,
e.g., by reconstructing AT maps from local delays estimated
from the whole signal morphology (Duchateau et al., 2017) or
by simply smoothing the activation map (Bear et al., 2018).
The latter method claims that it does not wipe out true block
lines, as well as the artefactual ones, without any validation
yet. The method that we proposed here does not require
such postprocessing. It imposes a predefined action potential
waveform, parameterized in terms of AT and parameters of
the Mitchell-Schaeffer model, and does not require further
regularization. We have previously shown that our method

leads to more realistic activation maps than the MFS (Ravon
et al., 2017). In the larger sample of this study we also did
not observe the clustering of AT that is typical for MFS
methods.

A similar parameter optimization approach, also in terms of
endocardial and epicardial AT and RT, was used by van Dam
et al. (2009). In contrast to our method it still relied on a
(Laplacian) regularization of the AT field, and ahead of the
parameter estimation phase it performed an initial estimate based
on an exhaustive search. On the other hand, it used a more
realistic volume conductor model that took the boundedness and
inhomogeneity of the torso into account. Unlike ourmethod they
showed that the choice of the initial estimates had an impact on
the quality of the inverse procedure. This importance had also
been reported by Potyagaylo et al. (2016) and Erem et al. (2014).

Others have worked on the impact of the endocardium in
the case of atrial fibrillation Schuler et al. (2017). Considering
that atria are very thin, they imposed similar TMP values on the
epicardium and the endocardium. Due to the greater thickness
of the ventricles, this hypothesis would not be suitable in our
study. In a previous study (Potyagaylo et al., 2014) the same
group proposed a local regularization of the two surfaces to
localize ectopic beats. The regularization parameter can differ
between the endocardium and the epicardium. It was a way
to better distinguish endocardial events from epicardial events.
This approach might be applicable in our case with two different
factorsA.

4.2. Conclusion
Our parameter optimization method reconstructs accurate
activation times and, to a lesser extent, repolarization times. In
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some cases inclusion of the endocardium in the solution helps to
improve the reconstruction of activation times, while in general
it does not improve the reconstruction of repolarization times.
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