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Abstract: In order to face the population ageing problem, most countries with PAYG systems
introduced pension reforms during the last twenty years. However, in many cases these reforms
are considered as insufficient to guarantee the pension sustainability; in other cases, the pension
sustainability is achieved through the introduction of drastic reforms and, thus, at the expense
of a dramatic reduction in the well-being of current and future generations. The objective of this
article is to show that the non-sustainability of PAYG systems and, consequently, the necessity to
introduce drastic pension reforms, is explained by the fact that in countries with PAYG systems
pensions have not been computed according to appropriate rules. In particular, we show that
the sustainability of the pension system is guaranteed if (i) pension benefits are computed using
actuarial principles, (ii) the implicit rate of return on contributions is the same for each retiree
and equal to the average wage bill growth rate, and (iii) pension reserves are remunerated at a
risk-free interest rate equal to the average wage bill growth rate. These conditions allow a PAYG
system to face any demographic shock, such as an increase in life expectancy and a transitory
increase in fertility rates (baby boom) followed by a transitory reduction in fertility rates (baby
boost).
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1 Introduction

Most pension systems, especially in Europe, are public PAYG systems (where the pensions

perceived by current retirees are financed using the contributions paid by current workers) with

earning-related pension benefits. With respect to fully-funded systems, which are based on

the accumulation of financial assets, PAYG systems are based on the promise that people who

pay contributions when active will receive pension benefits when retired. According to Barr

(2002), any public pension system should have the following goals: to provide a mechanism for

consumption smoothing, to provide income security for the elderly and to reduce poverty of

the elderly. To these objectives, we think that it is important to add another one: the pension

system has to guarantee equal treatment to all generations and to all individuals belonging to

the same generation. However, these principles are quite general. This creates the problem

to define the weights that should be attributed to each of these objectives and, in a broader

sense, to define the role of the State in the field of pensions. More concretely, it is necessary

to precisely define the computation rules of pension benefits in order to achieve the objectives

outlined above.

It is well-known that PAYG pension systems are vulnerable to demographic shocks.1 In order

to face the population ageing problem, induced by a simultaneous increase in life expectancy and

reduction in fertility rates, several countries introduced pension reforms during the last twenty

years. However, in many cases, these reforms are considered as insufficient to guarantee the

sustainability of PAYG pension systems; in other cases, the sustainability is achieved through

the introduction of drastic reforms and, thus, at the expense of current and future generations

that incur a considerable reduction in their well-being. The problem of generational inequities

generated by pension reforms has been studied, among others, by Auerbach and Lee (2011)

who compare different PAYG systems and analyze how the risks associated with demographic

shocks are spread among generations.

The objective of this article is not to identify the reforms aiming to ensure the sustainability

of PAYG systems. If a pension system is not sustainable, it is very simple, at least from a

technical point of view, to make it sustainable: it is well-known in the literature that the

solutions are the increase in the contribution rate or in the retirement age, or the reduction

1However, as noted by Barr (2002), even fully-funded schemes are exposed to negative demographic shocks
because they induce a fall in the value of financial assets and then in the value of pensions.
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in the level of pension benefits.2 In the first two cases, the burden of the reform is borne

by workers or by firms, while in the second case it is borne by retirees. All these cases have

important drawbacks: an increase in contributions may reduce individuals’ labor participation

or firms’ competitiveness, while a reduction in pensions may be considered as a break of past

promises and may compromise the achievement of the objective of poverty relief (Barr, 2002).

Even the increase in the retirement age or in the contribution rate can be interpreted as a break

of past promises in the sense that they reduce the implicit rate of return on contributions for the

individuals concerned by these reforms. Some countries like Sweden, Italy, Poland and Latvia

have introduced structural reforms, namely the introduction of an NDC (Notional Defined

Contribution) system3 which permits to better link contributions paid and pensions earned and,

consequently, to reduce the distortions in the labor market. However, if population is ageing, the

introduction of an NDC system is not sufficient to solve the sustainability problem of pension

systems and additional reforms are needed. Settergren and Mikula (2005), Robalino and Bodor

(2009), and Knell (2016) proposed sophisticated adjustment mechanisms of pension benefits

that guarantee the sustainability of NDC pension systems. In any case, the sustainability of

the pension system can be achieved only through a reduction in the implicit rate of return on

contributions for current and future generations which, again, can be seen as a break of past

promises.

The objective of this article is to investigate the reasons of the non-sustainability of PAYG

systems. We will show that the main reason is that, in the past, pension benefits were not

computed according to appropriate rules. In particular, we show in this article that if pensions

are computed using actuarial principles and such that, for all individuals, the implicit rate of

return on contributions is equal to the average wage bill growth rate, then a PAYG system is able

to face any demographic shock. In the case of an increase in life expectancy, this rule guarantees

that the pension system is sustainable if the increase in survival probabilities is (perfectly or at

least partially) anticipated and taken into account in the computation of pension benefits. In

the case of a transitory increase in fertility rates (baby boom) followed by a transitory reduction

in fertility rates (baby boost), this rule implies that the pension system accumulates reserves

during the baby boom that can be used when population is ageing. In particular, we show that

2The financial situation of the pension system may also be improved by introducing labor market policies
aiming at raising women’s labor participation or immigration policies; however, the positive effect of these reforms
is only transitory since, sooner or later, the new workers will earn pension benefits; thus, these policies cannot
solve the pension sustainability problem.

3For a description of NDC systems, see Valdés-Prieto (2000), Disney (1999), and Börsch-Supan (2005).
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the pension system is sustainable if pension reserves are remunerated at a risk-free interest rate

equal to the average wage bill growth rate. The sustainability problem is thus explained by

the fact that (i) the increase in life expectancy has not been correctly anticipated and taken

into account in the computation of pensions; (ii) during the baby boom, where the number

of retirees was considerably low with respect to the number of workers, countries with PAYG

systems had not accumulated sufficient pension reserves to face the future population ageing

problem. In other words, instead of building adequate pension reserves, the high amount of

contributions has been used to pay pensions implying an excessive generosity to retirees during

the baby boom. In particular, these generations obtained very high (and unsustainable) implicit

rates of return on contributions which can be interpreted as a gift that, sooner or later, must

be paid by future generations in order to make the system sustainable.

Interestingly, the role of pension reserves has been underestimated in the literature. For

instance, Barr and Diamond (2009) state that “The state can but does not have to accumulate

assets in anticipation of future pension claims”; Robalino and Bodor (2009) state that “Many of

the systems can have reserves, but these act rather as a “buffer stock” to smooth adjustments to

benefits or contribution rates that become necessary as a result of unexpected macroeconomic

and/or demographic shocks or the gradual maturation of the system”; Oksanen (2001) states

that “Given that in most cases pension reforms will not be sufficient to guarantee pension

sustainability, there is a need for public PAYG systems to build reserves.” Thus, the creation of

pension reserves has been considered as an option (but not as a necessary condition to guarantee

the sustainability and the fairness of the pension system) and as a useful policy that can be

implemented if the system is unsustainable in order to avoid excessive future adjustments.

Even though some countries have established public pension reserves, only in Japan, Korea,

and Sweden public pension reserves represent more than 20% of GDP in 2008 (see table 1).

The numerical simulations presented in the second part of the article, which analyze the

effects of a realistic demographic shock, confirm that a PAYG system is sustainable if the

demographic shock is perfectly anticipated or at least partially anticipated. Clearly, one can

argue that this assumption is unrealistic. However, the existence of a population ageing problem

was known at least in 1974, as documented by the World Population Conference organized by

the United Nations in Bucharest in August 1974.4 Even though, probably, the magnitude of

4As indicated at page 8 of the report of the conference (United Nations, 1975): “The World Population
Conference recommends that great importance should be attached to the phenomenon of aging. Owing to the
decline in fertility and possible medical progress against cancer and the other diseases of old age, aging will sooner
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the demographic shock was not perfectly known in 1974, the fall in mortality and in fertility

rates was already predicted. The simulation analysis based on more reasonable assumptions

(where the demographic shock is assumed to be unanticipated until 1980) confirms that a

PAYG system can face the demographic shock if pension benefits are computed according to

actuarial principles.

The article is organized as follows. Section 2 presents the theoretical model and the anal-

ysis of different demographic shocks on the sustainability of a PAYG pension system, which

is assumed to be an NDC system.5 In particular, we analyze the effects of a temporary and

“symmetric” shock on fertility rates and the effects of a shock on survival probabilities by dis-

tinguishing whether this shock is perfectly anticipated, unanticipated, or partially anticipated.

Section 3 presents numerical simulations using a stylized OLG model (Auerbach and Kotlikoff,

1987) calibrated on German demographic data. These stylized simulations allow to give an idea

of the size of the pension reserves that should have been created in the past decades to face the

population ageing problem in the future decades. Section 4 concludes.

2 The OLG model with an NDC pension system

The theoretical model used in this analysis is a simple OLG model with one representative

firm, four overlapping generations and an NDC pension system. In particular, we consider

a small-open economy in which the representative firm produces one good using a standard

Cobb-Douglas technology, Yt = Kα
t · (At · Lt)1−α, where Yt indicates real GDP, Kt the stock

of capital available in the economy, Lt the number of workers which are assumed to have

the same productivity At. First order conditions for profit maximization require that wt =

(1 − α) · At · [Kt/(At · Lt)]α and rt + δ = α · [Kt/(At · Lt)]α−1, where wt is the real wage, rt is

the interest rate and δ is the depreciation rate. The small-open-economy assumption implies

that the interest rate is exogenously fixed at the world level, rt = r. Consequently, capital

flows adjust in order to keep constant the capital per unit of effective labor, Kt/(At · Lt) = k.

Productivity is assumed to grow at a constant and exogenous rate g, implying that the real

wage wt increases at the same rate g.

or later affect all nations more or less intensely. It will be important to study carefully the social and economic
consequences and the repercussions on morale, particularly with regard to a sense of vitality and progress.”

5We focus on the Notional Account system for convenience. This makes it easier to compute the value of
pension benefits if a shock occurs, in particular in the case of a change in survival probabilities.
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In this economy, we assume that 4 generations coexist in each period. Thus, people can be

classified according to the age group g1, g2, g3 and g4 and each period consists of 20 years. This

simple framework is sufficiently general and allows to consider in each period more than one

generation that work and pay contributions and more than one generation that earns pension

benefits. In particular, we assume that all individuals belonging to the first two age groups work

and pay contributions according to a constant and exogenous rate τ . All workers, independently

of their age, are assumed to have the same productivity At and, thus, earn the same wage wt.

All individuals belonging to the last two age groups do not work and earn pension benefits

according to the rules described in section 2.1.

We assume that all individuals (except those belonging to the last age group) will be alive

in the next period according to an exogenous survival probability ω and that the number of

individuals belonging to the first age group increases over time according to an exogenous fertility

rate n.6 The demographic evolution in the model is described by the following equations:

Ng1,t+1 = Ng1,t · (1 + nt+1) (1)

Ng2,t+1 = Ng1,t · ωg2,t+1 = Ng1,t · Ωg2,t+1 (2)

Ng3,t+1 = Ng2,t · ωg3,t+1 = Ng1,t−1 · Ωg3,t+1 (3)

Ng4,t+1 = Ng3,t · ωg4,t+1 = Ng1,t−2 · Ωg4,t+1 (4)

where ωg2,t+1 represents the conditional probability for individuals belonging to the first age

group in t to be alive in the next period; ωg3,t+1 represents the conditional probability for

individuals that belong to the second age group in t to be alive in the next period; ωg4,t+1 is

the conditional probability for individuals that belong to the third age group in t to be alive in

the next period. Starting from the conditional survival probabilities, it is possible to determine

the unconditional survival probabilities: Ωg2,t+1 = ωg2,t+1 is the probability to be alive in t+ 1

and to belong to the second class group; Ωg3,t+1 = ωg2,t ·ωg3,t+1 is the probability to be alive in

t+ 1 and to belong to the third class group; Ωg4,t+1 = ωg2,t−1 · ωg3,t · ωg4,t+1 is the probability

to be alive in t+ 1 and to belong to the fourth class group.

In the absence of demographic shocks, i.e. if the fertility rates and the survival probabil-

ities remain constant, the population is stable. Thus, the old-age dependency ratio and the

population structure remain constant over time.

6Of course, the parameter n represents the growth rate of the number of young people belonging to the first
age class. This parameter can be interpreted as a proxy of the fertility rate.
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2.1 The computation of pension benefits

We assume the existence of an NDC pension system. For each individual, pension benefits are

computed according to actuarial principles such that the expected present value of pension ben-

efits is equal to the expected capitalized value of contributions.7 In particular, for an individual

who starts working in t− 2 and earns a pension Pg3,t when aged g3 in t and a pension Pg4,t+1

when aged g4 in t+ 1, the rule is the following:

τ ·
[
wt−2 · (1 +R)2 + wt−1 · (1 +R) · Ωg2,t−1

]
= Pg3,t · Ωg3,t +

Pg4,t+1

1 +R
· Ωg4,t+1 (5)

where R is the notional rate of interest used to compute the first pension (by capitalizing past

contributions and by discounting future pensions). The previous pension rule implies that, in

the absence of demographic shocks, the implicit rate of return on contributions IRR coincides

with the notional rate of interest R. In the case of a change in Ωg4,t+1, the implicit rate of return

on contributions IRR coincides with the notional rate of interest R only if the future value of

Ωg4,t+1 is perfectly anticipated and taken into account in the computation of pension benefits

in t. In contrast, if the increase in Ωg4,t+1 is not anticipated in t, the implicit rate of return on

contributions IRR obtained by the individuals who retire in t is higher than the notional rate

of interest R.

In this article, we assume that the notional rate of interest is constant, even if the economy

is hit by demographic or technological shocks. More precisely, the notional rate of interest is

computed as follows:

1 +R = (1 + n) · (1 + g) (6)

where n represents the average (computed over the entire period) fertility rate and g represents

the average (computed over the entire period) productivity growth rate. Thus, in the absence

of shocks or if the shocks are anticipated and taken into account in the computation of pension

benefits, all generations receive exactly the same treatment since the implicit rate of return on

contributions is the same for all retirees and is equal to the average wage bill growth rate.

7Note that this rule is not standard. In general, in NDC systems, pension benefits are computed considering
the capitalized value of contributions, which are not weighted by the survival probabilities. However, in this case,
as indicated by Robalino and Bodor (2009), there not exists a closed form solution for the computation of the
implicit rate of return on contributions (IRR) that guarantees the sustainability of the pension system (which
depends on the wage bill growth rate, but also on survival probabilities and retirement patterns). In contrast, the
rule used in my article allows to avoid this problem. As shown later, the IRR compatible with the sustainability
of the pension system for an economy that is on its balanced growth path is equal to the wage bill growth rate
according to the Aaron-Samuelson condition.
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Finally, we assume that pensions are indexed on inflation (implying that pensions remain

constant in real terms, i.e. Pg4,t+1 = Pg3,t). Thus, the first pension in t is given by:

Pg3,t =
τ ·
[
wt−2 · (1 +R)2 + wt−1 · (1 +R) · Ωg2,t−1

]
Ωg3,t +

Ωg4,t+1

1+R

= wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2,t−1)

(1 + n) · (1 + g) · Ωg3,t + Ωg4,t+1
(7)

Equation 7 implies that the replacement ratio positively depends on the average fertility

rate and the average productivity growth rate and negatively on the probability to be alive at

age g3 and on the expected probability to be alive at age g4.

2.2 The sustainability of the pension system in an economy that is on its

balanced growth path

A pension system can be defined as sustainable if the current and future resources are sufficient to

meet its commitments. More precisely, following Robalino and Bodor (2009), the gross implicit

pension debt (i.e. the present value of the pensions that will be paid to current retirees and to

current contributors) must be covered by the current value of pension reserves and the pension

asset (i.e. the difference between the present value of future contributions and the present value

of pensions ensuing from these contributions). Thus, the pension system is sustainable if the

present value of long-run pension reserves is non-negative. This implies that pension reserves,

in the long run, must be positive or nil. They can also be negative but, in this case, the pension

system is sustainable if the growth rate of the pension debt is lower than the interest rate.

Proposition 1. In the absence of shocks, implying that nt = n, gt = g, Ωg2,t = Ωg2,

Ωg3,t = Ωg3 and Ωg4,t = Ωg4, if pensions are computed according to equation 7, then the

pension system is always balanced and, thus, sustainable.

Proof.

The pension surplus in time t− 1 is given by:

St−1 = τ · wt−1 · (Ng1,t−1 +Ng2,t−1) − (Pg3,t−1 ·Ng3,t−1 + Pg4,t−1 ·Ng4,t−1) (8)
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where:

Ng2,t−1 = Ng1,t−2 · Ωg2 =
Ng1,t−1

1 + n
· Ωg2

Ng3,t−1 = Ng1,t−3 · Ωg3 =
Ng1,t−1

(1 + n)2
· Ωg3

Ng4,t−1 = Ng1,t−4 · Ωg4 =
Ng1,t−1

(1 + n)3
· Ωg4

and:

Pg3,t−1 = wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

(9)

Pg4,t−1 = Pg3,t−2 = wt−3 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

Thus, the pension surplus in time t− 1 is given by:

St−1 = τ · wt−1 ·
(
Ng1,t−1 +

Ng1,t−1

1 + n
· Ωg2

)
− wt−2 ·

τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg3

− wt−3 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)3
· Ωg4 (10)

After some mathematical manipulations,8 it is possible to find:

St−1 = 0 (11)

Q.E.D.

Thus, in the absence of shocks, the economy is on its balanced growth path since the pop-

ulation is stable and the pension system is always balanced and thus sustainable. In addition,

for all retirees, the implicit rate of return on contributions is equal to the wage bill growth rate,

which is consistent with the Aaron-Samuelson condition (Aaron, 1966 and Samuelson, 1958).

8For the mathematical details, see Appendix 1a.
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2.3 Demographic shock on fertility rates

Here, we analyze the effects of a temporary and symmetric shock on fertility rates. Temporary,

in the sense that, after k periods, the fertility rates come back to the initial pre-shock level n.

Symmetric, in the sense that the average fertility rate for the entire period is equal to n. This

means that if the fertility rate increases for some periods, then it must decrease for some other

periods such that
∏k
t=1(1 + nt) = (1 + n)k. Thus, n is the average fertility rate over the k

periods.

Proposition 2. In the case of a temporary and symmetric demographic shock on fertility

rates, if pension benefits are computed according to equation 7 and if pension reserves are

remunerated at the constant and exogenous rate R as defined in equation 6, then a PAYG

pension system is sustainable.

Proof.

Without loss of generality, we assume that the fertility rate increases in t (i.e. nt > n) and

decreases in t + 1 (i.e. nt+1 < n). Starting from t + 2, the fertility rate comes back to the

initial level n. In addition, the demographic shock is assumed to be symmetric, implying that

(1 + nt) · (1 + nt+1) = (1 + n)2.

Until time t− 1, the population is stable and, given that pensions are computed according

to equation 7, the pension system is always balanced as proved in Proposition 1. In particular,

before the demographic shock, the old-age dependency ratio is constant. In t − 1, the old-age

dependency ratio, DR, is:

DRt−1 =
Ng3,t−1 +Ng4,t−1

Ng1,t−1 +Ng2,t−1
=

Ng1,t−1

(1+n)2 · Ωg3 +
Ng1,t−1

(1+n)3 · Ωg4

Ng1,t−1 +
Ng1,t−1

1+n · Ωg2

=
(1 + n) · Ωg3 + Ωg4

(1 + n)2 · (1 + n+ Ωg2)

In time t, the pension surplus is given by:

St = τ · wt · (Ng1,t +Ng2,t) − (Pg3,t ·Ng3,t + Pg4,t ·Ng4,t) (12)
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where:

Ng1,t = Ng1,t−1 · (1 + nt)

Ng2,t = Ng1,t−1 · Ωg2

Ng3,t = Ng1,t−2 · Ωg3 =
Ng1,t−1

1 + n
· Ωg3

Ng4,t = Ng1,t−3 · Ωg4 =
Ng1,t−1

(1 + n)2
· Ωg4

and:

Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

Pg4,t = Pg3,t−1 = wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

In time t, the old-age dependency ratio is equal to:

DRt =
Ng3,t +Ng4,t

Ng1,t +Ng2,t
=

Ng1,t−1

1+n · Ωg3 +
Ng1,t−1

(1+n)2 · Ωg4

Ng1,t−1 · (1 + nt) +Ng1,t−1 · Ωg2

=
(1 + n) · Ωg3 + Ωg4

(1 + n)2 · (1 + nt + Ωg2)

which is lower than the level before the demographic shock because of the increase in the fertility

rate in time t.

The pension surplus in time t is given by:9

St = τ · wt ·Ng1,t−1 · (nt − n) > 0 (13)

The previous result implies that, in time t when the economy is characterized by a baby

boom and by a reduction in the old-age dependency ratio, the pension system has a positive

surplus. This is explained by the fact that contributions paid by the additional workers is not

used to pay pensions. Note that the notional rate of interest is still equal to the average wage

bill growth rate, even if, in time t, the wage bill growth rate increases because of the increase

in the fertility rate.

In time t+ 1, the pension surplus is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1) (14)

9For the mathematical details, see Appendix 1b.
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where:

Ng1,t+1 = Ng1,t · (1 + nt+1) = Ng1,t−1 · (1 + nt) · (1 + nt+1) = Ng1,t−1 · (1 + n)2

Ng2,t+1 = Ng1,t · Ωg2 = Ng1,t−1 · (1 + nt) · Ωg2

Ng3,t+1 = Ng1,t−1 · Ωg3

Ng4,t+1 = Ng1,t−2 · Ωg4 =
Ng1,t−1

1 + n
· Ωg4

and:

Pg3,t+1 = wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

Pg4,t+1 = Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

In time t+ 1, the old-age dependency ratio is equal to:

DRt+1 =
Ng3,t+1 +Ng4,t+1

Ng1,t+1 +Ng2,t+1
=

Ng1,t−1 · Ωg3 +
Ng1,t−1

1+n · Ωg4

Ng1,t−1 · (1 + n)2 +Ng1,t−1 · (1 + nt) · Ωg2

=
(1 + n) · Ωg3 + Ωg4

(1 + n)2 ·
(

1 + n+ 1+nt
1+n · Ωg2

)
which is again lower than the level observed before the demographic shock because the size of

the age class g2 is higher than before the demographic shock, while the size of all other age

classes (including the first one since the shock is assumed to be symmetric) is the same.

The pension surplus in time t+ 1 is given by:10

St+1 = τ · wt+1 ·Ng1,t−1 · (nt − n) · Ωg2 > 0 (15)

Thus, in time t+ 1, the pension system still has a positive surplus. This is explained by the

fact that the old-age dependency ratio is still lower than the initial level.

In time t+ 2, the pension surplus is given by:

St+2 = τ · wt+2 · (Ng1,t+2 +Ng2,t+2) − (Pg3,t+2 ·Ng3,t+2 + Pg4,t+2 ·Ng4,t+2) (16)

10For the mathematical details, see Appendix 1c.
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where:

Ng1,t+2 = Ng1,t+1 · (1 + n) = Ng1,t−1 · (1 + n)3

Ng2,t+2 = Ng1,t+1 · Ωg2 = Ng1,t−1 · (1 + n)2 · Ωg2

Ng3,t+2 = Ng1,t · Ωg3 = Ng1,t−1 · (1 + nt) · Ωg3

Ng4,t+2 = Ng1,t−1 · Ωg4

and:

Pg3,t+2 = wt+1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

Pg4,t+2 = Pg3,t+1 = wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

In time t+ 2, the old-age dependency ratio is equal to:

DRt+2 =
Ng3,t+2 +Ng4,t+2

Ng1,t+2 +Ng2,t+2
=

Ng1,t−1 · (1 + nt) · Ωg3 +Ng1,t−1 · Ωg4

Ng1,t−1 · (1 + n)3 +Ng1,t−1 · (1 + n)2 · Ωg2

=
(1 + nt) · Ωg3 + Ωg4

(1 + n)2 · (1 + n+ Ωg2)

which is higher than the initial level since the baby boomers are now aged g3.

The pension surplus in time t+ 2 is given by:11

St+2 =
τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4

· (n− nt)

< 0 (17)

Thus, in time t + 2, the pension system has a deficit since the old-age dependency ratio is

higher than the initial level and, thus, population is ageing.

In time t+ 3, the pension surplus is given by:

St+3 = τ · wt+3 · (Ng1,t+3 +Ng2,t+3) − (Pg3,t+3 ·Ng3,t+3 + Pg4,t+3 ·Ng4,t+3) (18)

11For the mathematical details, see Appendix 1d.
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where:

Ng1,t+3 = Ng1,t+2 · (1 + n) = Ng1,t−1 · (1 + n)4

Ng2,t+3 = Ng1,t+2 · Ωg2 = Ng1,t−1 · (1 + n)3 · Ωg2

Ng3,t+3 = Ng1,t+1 · Ωg3 = Ng1,t−1 · (1 + n)2 · Ωg3

Ng4,t+3 = Ng1,t · Ωg4 = Ng1,t−1 · (1 + nt) · Ωg4

and:

Pg3,t+3 = wt+2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

Pg4,t+3 = Pg3,t+2 = wt+1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

In time t+ 3, the old-age dependency ratio is equal to:

DRt+3 =
Ng3,t+3 +Ng4,t+3

Ng1,t+3 +Ng2,t+3
=

Ng1,t−1 · (1 + n)2 · Ωg3 +Ng1,t−1 · (1 + nt) · Ωg4

Ng1,t−1 · (1 + n)4 +Ng1,t−1 · (1 + n)3 · Ωg2

=
(1 + n) · Ωg3 + 1+nt

1+n · Ωg4

(1 + n)2 · (1 + n+ Ωg2)

which is higher than the initial level since the baby boomers are now aged g4.

The pension surplus in time t+ 3 is given by:12

St+3 =
τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

· (n− nt) < 0 (19)

Thus, in time t + 3, the pension system has a deficit since the old-age dependency ratio is

again higher than the initial level.

Starting from time t + 4, the population is stable. In fact, the change in the fertility rate

in t and t + 1 does not affect the demographic situation in t + 4. Consequently, starting from

t+ 4, the pension system is balanced according to Proposition 1.

Given that the pension system has a positive surplus in t and t + 1 (i.e. during the baby

boom) and a deficit in t+ 2 and t+ 3 (i.e. when the population is ageing), now we analyze how

pension reserves evolve over time.

12For the mathematical details, see Appendix 1e.
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Pension reserves are equal to zero until time t, since all the previous surpluses are nil. In

time t+ 1, pension reserves become positive:

Rest+1 = St = τ · wt ·Ng1,t−1 · (nt − n) > 0 (20)

In time t + 2, the value of pension reserves depends on the surplus realized in t + 1 and

on the interest on the reserves accumulated in t + 1. Here, we assume that the remuneration

rate on pension reserves is equal to the average wage bill growth rate, i.e. the notional rate of

interest R defined in equation 6. Thus, in time t+ 2, pension reserves are given by:13

Rest+2 = Rest+1 · (1 +R) + St+1

= τ · wt+1 ·Ng1,t−1 · (1 + n+ Ωg2) · (nt − n) > 0 (21)

In time t+ 3, pension reserves are given by:14

Rest+3 = Rest+2 · (1 +R) + St+2

=
τ · wt+2 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

· (nt − n) > 0 (22)

In time t+ 4, pension reserves are given by:15

Rest+4 = Rest+3 · (1 +R) + St+3 = 0 (23)

Thus, the level of pension reserves is nil in the long run and the pension system is sustainable.

Q.E.D.

To resume, if the fertility rate first increases (as during the baby boom) and then decreases

(as during the baby boost) and if pensions are computed according to actuarial principles as

in equation 7, then the pension system has a positive surplus in the first periods (when the

dependency ratio is lower than the initial level) and accumulates pension reserves which will be

used to cover the pension deficits when population is ageing. In particular, if pension reserves

are remunerated at the notional rate of interest R, then pension reserves become nil starting

from time t + 4, i.e. when the old-age dependency ratio comes back to the initial level. The

pension system is sustainable and, thus, is perfectly able to face such a demographic shock.

13For the mathematical details, see Appendix 1f.
14For the mathematical details, see Appendix 1g.
15For the mathematical details, see Appendix 1h.
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2.4 Demographic shock on survival probabilities

Here, we analyze the effects of a permanent shock on survival probabilities. We consider sep-

arately an increase in the conditional probability to be alive at age g3 and an increase in the

conditional probability to be alive at age g4. These two cases are treated separately because in

the first case there is no problem of anticipating the shock since g3 corresponds to the age at

which individuals receive their first pension. In contrast, in the case of an increase in the con-

ditional probability to be alive at age g4, it is necessary to make an assumption about whether

or not this shock is known in advance and taken into account in the computation of pension

benefits.

2.4.1 A permanent increase in ωg3

Proposition 3. In the case of a permanent increase in the conditional probability to be alive

at age g3 (ωg3), and if this shock is taken into account in the computation of pension benefits

according to equation 7, then the pension system is always balanced and, thus, is sustainable.

Proof.

Starting from time t, we assume that the percentage increase in the conditional probability

to be alive at age g3 is ∆ωg3 > 0. This implies that the unconditional probability to be alive at

age g3 and at age g4 become Ωg3,t = Ωg3 ·(1+∆ωg3) and Ωg4,t+1 = Ωg4 ·(1+∆ωg3), respectively.

The level of pension benefits earned by individuals aged g3 in time t is:

Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3
(24)

Thus, pension benefits are lower than in the case without the shock because the pension rule

takes into account that these individuals will live longer. Note that the fall in the replacement

ratio does not imply that the pension system becomes less generous. In fact, the implicit rate

of return on contributions remains unchanged and is equal to the notional rate of interest R.

In time t, the pension surplus is given by:

St = τ · wt · (Ng1,t +Ng2,t) − (Pg3,t ·Ng3,t + Pg4,t ·Ng4,t) (25)
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where:

Ng1,t = Ng1,t−1 · (1 + n)

Ng2,t = Ng1,t−1 · Ωg2

Ng3,t =
Ng1,t−1

1 + n
· Ωg3 · (1 + ∆ωg3)

Ng4,t =
Ng1,t−1

(1 + n)2
· Ωg4

and:

Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3

Pg4,t = Pg3,t−1 = wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

The pension surplus in time t is given by:16

St = 0 (26)

Thus, even though the shock induces an increase in the old-age dependency ratio, the nega-

tive demographic effect is perfectly compensated by the reduction in pension benefits perceived

by the generation that lives longer.

In time t+ 1, the pension surplus is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1) (27)

where:

Ng1,t+1 = Ng1,t · (1 + n)

Ng2,t+1 = Ng1,t · Ωg2

Ng3,t+1 =
Ng1,t

(1 + n)
· Ωg3 · (1 + ∆ωg3)

Ng4,t+1 =
Ng1,t

(1 + n)2
· Ωg4 · (1 + ∆ωg3)

16For the mathematical details, see Appendix 2a.

17



and:

Pg3,t+1 = wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3

Pg4,t+1 = Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3

The pension surplus in time t+ 1 is given by17:

St+1 = 0

Thus, even though the old-age dependency ratio is higher than the level before the shock and

also than the level in t, the pension surplus remains nil since the negative demographic effect

is perfectly compensated by the reduction in pension benefits perceived by the two generations

that live longer.

Starting from t + 1, the old-age dependency ratio remains constant and, consequently, the

pension surplus is nil for all the future periods. Given that all pension surpluses are equal to

zero, the level of pension reserves is always nil and the pension system is sustainable.

Q.E.D.

2.4.2 A permanent and perfectly anticipated increase in ωg4

Proposition 4. In the case of a permanent increase in the conditional probability to be alive

at age g4 (ωg4), if this shock is perfectly anticipated and taken into account in the computation

of pension benefits according to equation 7, then pension reserves are strictly positive in the

long run and the pension system is sustainable.

Proof.

Starting from time t+ 1, we assume that the percentage increase in the conditional survival

probability to be alive at age g4 is ∆ωg4 > 0. This implies that the unconditional probability to

be alive at age g4 becomes Ωg4,t+1 = Ωg4 · (1 + ∆ωg4). The increase in Ωg4,t+1 is assumed to be

perfectly anticipated in time t which implies a reduction, with respect to the situation without

the shock, in the level of pension benefits earned by individuals aged g3 in time t who will live

longer in the future period. In fact:

17For the mathematical details, see Appendix 2b.
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Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
(28)

As in the case of a shock on ωg3, the fall in the replacement ratio does not imply that the

pension system becomes less generous since the implicit rate of return on contributions is still

equal to the notional rate of interest R.

In time t, the pension surplus is given by:

St = τ · wt · (Ng1,t +Ng2,t) − (Pg3,t ·Ng3,t + Pg4,t ·Ng4,t) (29)

where:

Ng1,t = Ng1,t−1 · (1 + n)

Ng2,t = Ng1,t−1 · Ωg2

Ng3,t =
Ng1,t−1

1 + n
· Ωg3

Ng4,t =
Ng1,t−1

(1 + n)2
· Ωg4

and:

Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

Pg4,t = Pg3,t−1 = wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

The pension surplus in time t is:18

St = τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) (30)

·
[

Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
− Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]
> 0

Thus, the pension surplus is positive in t. This is explained by the fact that in time t the

old-age dependency ratio is the same as before the shock (it will increase starting from t + 1)

while pension benefits earned by people aged g3 are reduced according to actuarial principles.

Starting from time t+ 1, given that the increase in the conditional probability to be alive at

age g4 is assumed to be permanent, the old-age dependency ratio remains constant at a higher

level with respect to the situation without the shock.

18For the mathematical details, see Appendix 3a.
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In time t+ 1, i.e. when the shock is observed, the pension surplus is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1) (31)

where:

Ng1,t+1 = Ng1,t−1 · (1 + n)2

Ng2,t+1 = Ng1,t−1 · (1 + n) · Ωg2

Ng3,t+1 = Ng1,t−1 · Ωg3

Ng4,t+1 =
Ng1,t−1

1 + n
· Ωg4 · (1 + ∆ωg4)

and:

Pg3,t+1 = wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

Pg4,t+1 = Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

The pension surplus in time t+ 1 is given by:19

St+1 = 0 (32)

In time t+ 1, the pension surplus is nil since for both generations that are retired and that

live longer than in the situation without the demographic shock, the value of pension benefits

is computed by taking into account the increase in their life expectancy.

Pension reserves are equal to zero until time t, since all the previous surpluses were nil. In

time t+ 1, pension reserves are given by:

Rest+1 = St

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) (33)

·
[

Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
− Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]
> 0

Starting from time t + 2, considering that pension surpluses are nil starting from t + 1,

pension reserves grow at the constant rate R:

Rest+k+1 = Rest+k · (1 +R) > 0 with k ≥ 1 (34)

19For the mathematical details, see Appendix 3b.
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Thus, the long-run level of pension reserves is positive, implying that the pension system is

sustainable.

Q.E.D.

2.4.3 A permanent and unanticipated increase in ωg4

Proposition 5. In the case of a permanent increase in the conditional probability to be alive

at age g4 (ωg4), if this shock is unanticipated, then pension reserves are strictly negative in the

long run and the pension system is not sustainable.

Proof.

As in the previous section, we consider a permanent increase in the conditional probability

to be alive at age g4 starting from time t + 1. In contrast, here, we assume that the shock is

not anticipated in t. However, in t+ 1, the demographic shock is observed. For this reason, we

assume that the demographic shock is taken into account in the computation of pension benefits

of people aged g3 starting from t+ 1.

The fact that the shock is unanticipated implies that the level of pension benefits earned

by individuals aged g3 in time t is computed without considering the future increase in the

probability to be alive at age g4 and, thus, remains at the same level as without the shock.

Here it is important to note that, even though the replacement ratio remains unchanged, the

pension system becomes more generous for these individuals since the implicit rate of return on

contributions is higher than the notional rate of interest R.

Thus, in time t, nothing happens with respect to the case where there is no demographic

shock: pensions are the same and the number of workers and retirees is the same. The pension

surplus is thus equal to zero.

In t + 1, the increase in the probability to be alive at age g4 implies an increase in the

number of retirees and, thus, an increase in the old-age dependency ratio. In t + 1, given that

the demographic shock is observed, the pension earned by people aged g3 is computed by taking

into account the increase in life expectancy. In contrast, the pension earned by individuals aged

g4 (who were aged g3 in t) does not take into account the demographic shock.
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In time t+ 1, the pension surplus is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1) (35)

where:

Ng1,t+1 = Ng1,t−1 · (1 + n)2

Ng2,t+1 = Ng1,t−1 · (1 + n) · Ωg2

Ng3,t+1 = Ng1,t−1 · Ωg3

Ng4,t+1 =
Ng1,t−1

1 + n
· Ωg4 · (1 + ∆ωg4)

and:

Pg3,t+1 = wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

Pg4,t+1 = Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

The pension surplus in time t+ 1 is given by:20

St+1 = τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) (36)

·
[

Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
− Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4

]
< 0

Thus, the pension system has a deficit in t + 1 which is explained by the increase in the

old-age dependency ratio and by the fact that the pension earned by people aged g4 in t + 1

is computed in a wrong way, i.e. without using correct actuarial principles. In fact, for these

individuals, the implicit rate of return on contributions is higher than R.

Starting from time t+2, the pension surplus is always equal to zero. In fact, even if the old-

age dependency ratio is higher than the level before the demographic shock, for both generations

that are retired pension benefits are computed by taking into account the increase in their life

expectancy.

Pension reserves are equal to zero until time t+ 1 (since all the previous surpluses were nil)

and become negative in t+ 2:

Rest+2 = St+1 < 0 (37)

20For the mathematical details, see Appendix 4a.
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In the next periods, considering that pension surpluses are nil starting from t+ 2, we have:

Rest+k+1 = Rest+k · (1 +R) < 0 with k ≥ 2 (38)

Thus, the pension debt increases over time at the rate R which coincides with the wage bill

growth rate and the GDP growth rate (given a Cobb-Douglas technology), implying that the

ratio between pension reserves and GDP is constant in the long run. However, considering that

the interest rate on pension reserves and the growth rate of the pension debt are both equal to

the notional interest rate R, the pension system is not sustainable.

Q.E.D.

2.4.4 A permanent and partially anticipated increase in ωg4

In sections 2.4.2 and 2.4.3 we have shown that in the case of a permanent increase in the

conditional probability to be alive at age g4 (ωg4) pension reserves are positive in the long run

if this shock is perfectly anticipated, while they are negative if the shock is unanticipated. Now

we consider the case where the shock is partially anticipated.

Proposition 6. In the case of a permanent increase in the conditional probability to be

alive at age g4 (ωg4), there exists a scalar χ that lies between 0 and 1 such that if a fraction χ

of the increase in the conditional probability to be alive at age g4 is anticipated, then the value

of pension reserves is nil in the long run and the pension system is sustainable.

Proof.

As in the previous sections, we consider a permanent increase in the conditional probability

to be alive at age g4 starting from period t + 1. Here, we assume that the shock is partially

anticipated in t. Again, in t + 1 i.e. when the demographic shock is observed, we assume that

the shock is taken into account in the computation of pension benefits of people aged g3 starting

from t+ 1.

Considering that pension surpluses are nil starting from t+ 2, the value of pension reserves

is equal to zero in the long run if its value is equal to zero in t+2. The value of pension reserves

in t+ 2 is:
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Rest+2 = Rest+1 · (1 +R) + St+1

= St · (1 +R) + St+1

The value of χ such that Rest+2 = 0 is:21

χ =
Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

β · [β + Ωg4 · (1 + ∆ωg4)] + Ωg4 · (1 + ∆ωg4) · (β + Ωg4)
(39)

with β = (1 + n) · (1 + g) · Ωg3.

Q.E.D.

In particular, the value of χ is lower than 0.5,22 implying that it is sufficient to anticipate

half of the shock to guarantee the sustainability of the pension system.

3 A simulation analysis

In this section, we present some numerical simulations using a stylized OLG model (Auerbach

and Kotlikoff, 1987) calibrated on German demographic data. As most of the European coun-

tries, Germany will suffer the problem of population ageing. The simulations presented here

can be defined as “stylized”, for two reasons. First, all parameters in the model, except those

concerning the demographic evolution, are fixed at a constant level. Second, we assume, the

existence of an NDC pension system where pension benefits are computed according to actuarial

principles as described in the theoretical part of this article.

In what follows, we first present a brief description of the model and the calibration pro-

cedure. Finally, we present the simulation results of the demographic shock. The effects are

analyzed by considering different scenarios, i.e. different ways of computing pension benefits

in response to the demographic shock. The results, even though they are based on a stylized

model, allow to give an idea of the evolution of pension reserves and, consequently, on the

sustainability of the pension system, given a realistic demographic shock.

21For the mathematical details, see Appendix 5a.
22For the mathematical details, see Appendix 5b.
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3.1 Description of the OLG model

3.1.1 Consumers

We assume that individuals live between a = 20 to a = 95 years old. The demographic evolution

is described by the following equations:

N20,t+1 = N20,t · (1 + nt+1) (40)

Na+1,t+1 = Na,t · ωa+1,t+1 for a ≥ 20 (41)

where Na,t is the number of individuals aged a at time t, nt+1 is a measure of the fertility rate

and ωa+1,t+1 is the probability for an individual belonging to the class age a at time t to be

alive in t + 1. Fertility rates and conditional survival probabilities can vary over time even if,

of course, they are kept constant to calibrate the model in steady state.

All individuals are supposed to work between 20 and 64 years old and are retired starting

from age 65. For each generation, we assume the existence of a representative agent who has to

choose the intertemporal profile of consumption by maximizing his expected intertemporal util-

ity subject to his intertemporal budget constraint. The expected intertemporal utility function

for an individual aged a = 20 at time t is:

E[Ut] = Et

[
95∑

a=20

(
1

1 + ρ

)a−20

· ln ca,t+a−20 · Ωa,t+a−20

]
(42)

where ca,t is consumption of the individual aged a in t, ρ is the intertemporal preference rate

and Ωa,t is the unconditional probability to be alive at age a at time t.

Individuals accumulate capital over time and, in the last period, consume all their available

resources, i.e. their wealth, the interest, and the pension earned. Assuming the existence of a life

insurance sector (Yaari, 1965), the evolution of capital is described by the following equation:

ka,t = ka−1,t−1 · (1 + rt) ·
Ωa−1,t−1

Ωa,t
+ (1 − τ − τL) · ηa,t · ŵt · z + Pa,t · z − ca,t (43)

where ka,t is the capital that an individual aged a owns at the end of time t, rt is the real

interest rate, Ωa,t is the unconditional probability to be alive at age a at time t,23 τ is the

23Note that the expression (1 + rt) · Ωa−1,t−1

Ωa,t
implies (1 + rt) · 1

ωa,t
, where ωa,t is the conditional probability

to be alive in t for an individual aged a − 1 in t − 1. The previous expression can be written as (1 + rt + rωa,t)
where rωa,t = (1 − ωa,t) · 1+rt

ωa,t
. Thus, the additional rate of interest paid by the insurance sector (rωa,t) is slightly

different with respect to the mortality probability (1 − ωa,t), as in Yaari (1965), because the model is in discrete
time.
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pension contribution rate, τL is the tax rate applied to labor incomes, ηa,t · ŵt is the gross

wage earned by an individual aged a at time t (which depends on the exogenous individual

productivity differentiated by age ηa,t and on the wage per unit of effective labor ŵt), and

Pa,t represents pension benefits which are computed as indicated in section 3.1.3. Finally z

represents both the employment rate (assumed to be exogenous, constant over time and the

same for each age group) and the fraction of old people that earn pension benefits.

The Euler equation describing the optimal consumption path is:

1

ca,t
=

1

1 + ρ
· Et

[
1 + rt+1

ca+1,t+1

]
(44)

3.1.2 Firms

We assume that a representative firm produces one good using labor and capital according to

a Cobb-Douglas production function:

Yt = Kα
t · Γ1−α

t (45)

where Yt represents real GDP, Kt the quantity of capital employed at the beginning of time

t, and Γt the quantity of labor employed expressed in effective labor units. The demand of

labor and capital is determined in order to maximize profits. First order conditions for profit

maximization are ŵt = (1−α) ·(Kt/Γt)
α and rt+δ = α ·(Kt/Γt)

α−1, where δ is the depreciation

rate.

3.1.3 The pension system and the public sector

Assuming the existence of an NDC system, the first pension earned by an individual aged a = 65

in t + 1 is computed such that the expected present value of pension benefits is equal to the

expected capitalized value of contributions and assuming that pensions are indexed on inflation

and thus remain constant over time. Noting by R the notional rate of interest, we have:

P65,t+1 =

∑64
a=20 τ · ηa,t · ŵt · (1 +R)64−a · Ωa,t+a−64∑95

a=65(1 +R)64−a · Ωa,t+a−64

(46)

and:

Pa+1,t+1 = Pa,t for a ≥ 65 (47)
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The surplus of the pension system is given by the difference between the contributions earned

and the pensions paid:

St =
∑
a

τ · ηa,t · ŵt ·Na,t · z −
∑
a

Pa,t ·Na,t · z (48)

Pension reserves evolve over time according to the surplus defined in the previous equation

and the interest on current reserves computed at a rate equal to the notional rate of interest R

as defined in equation 6:

Rest+1 = Rest · (1 +R) + St (49)

Concerning the government, the public surplus is given by the difference between taxes

on labor incomes (on the basis of the exogenous tax rate τL) and government outlays (public

expenditures Gt and the interest on the public debt Bt which is assumed to be computed using

the notional rate of interest R defined in equation 6):

SGt =
∑
a

τL · ηa,t · ŵt ·Na,t · z − (Gt +Bt ·R) (50)

The public debt Bt evolves over time according to:

Bt+1 = Bt − SGt (51)

Finally, we assume that pension reserves are used to finance the public debt:24

Rest = Bt

24This hypothesis is necessary since the theoretical results presented in the previous sections require that
pension reserves are remunerated at a rate equal to the notional rate of interest R. Thus, in the model, it is
necessary to consider a financial asset (here, government bonds) that pays interest at the same rate of return.
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3.1.4 Equilibrium

The equilibrium conditions in the goods market, in the capital market and in the labor market

are respectively:

Yt =
∑
a

ca,t ·Na,t + It +Gt +NXt (52)

Kt =
∑
a

ka,t−1 ·Na,t−1 +KRoW
t (53)

Γt =
∑
a≤64

ηa,t ·Na,t · z (54)

where It represents investments, NXt net exports and KRoW
t the stock of capital owned by

foreign residents (if positive) at the beginning of time t. Investments are given by the sum of

private savings, public savings and savings with respect to the rest of world.

In some simulations we assume that the economy is a small-open economy. Thus, the

interest rate is fixed at an exogenous and constant level rt = r. This implies that the capital-

labor ratio is constant Kt/Γt = k =
(
r+δ
α

) 1
α−1 and the wage per unit of effective labor is constant

ŵt = (1 − α) · kα. In contrast, in the last simulations, we assume that the economy is closed.

As noted in the theoretical part of the article, the open economy assumption is necessary

to analytically solve the model since, given this assumption, wages grow at a constant rate.

However, it is important to note that in the context of population ageing the open economy

assumption is not suitable. In fact, population ageing induces a fall in the marginal productivity

of capital and, if the domestic interest rate is assumed to be fixed at an exogenous level, this

leads to important capital outflows which negatively affect economic growth. This result is

reasonable if the country under analysis is the only one facing the demographic shock, which

is clearly not the case. In fact, all developed countries will face the population ageing problem

which will reduce their interest rates.

3.2 Model calibration

The model is solved for each year between 1960 and 2400 and is calibrated assuming that the

German economy is on its balanced growth path. This assumption requires that all parameters

are constant and the population is stable.

In particular, we use the following parameters. The productivity growth rate g is 1.5%;

the parameter α in the production function is 1/3; the depreciation rate is 3%; the tax rate is
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22.5%. Consumption represents 70% of GDP, investment 15% of GDP and public expenditures

15% of GDP. The employment rate z, which also represents the fraction of old people that earn

pension benefits, is fixed at 70% for each age group. The earning profile by age is fixed using

the following expression ηa,t = (1 + g)t−1 · e0.07·(a−20)−0.001·(a−20)2
.25

The fertility rate n is fixed at the level computed as the average percentage increase in the

working-age population (i.e. population aged between 20 and 64 years old) between 1960 and

2050. Using German data coming from the Eurostat demographic projections, n is equal to

0.01%. The survival probabilities, differentiated by age, are fixed at the level observed in 1960

using the Eurostat demographic data. Given these hypotheses, the population is stable. In

particular, the old-age dependency ratio, computed as the ratio between the number of people

aged 65 and more and the number of people aged 20-64, remains constant over time and is equal

to 0.25.

Concerning the pension system, we assume that the pension contribution rate is equal to

15% and that, at the aggregate level, both pensions and social contributions represent 10% of

GDP. Considering that the average fertility rate is equal to 0.01%, the notional rate of interest,

R = (1 + n) · (1 + g) − 1, is equal to 1.51% while the (implicit) replacement ratio is 55.8%.

3.3 Scenarios

The simulation OLG model presented before is used to evaluate the effects, for Germany, of a

realistic demographic shock. In particular, concerning the survival rates, we use those (observed

and predicted) presented by Eurostat between 1960 and 2050. After 2050, we assume that they

remain constant. Concerning the fertility rates, we determine the values between 1960 and

2050 in order to closely reproduce the old-age dependency ratio (ratio between people aged 65

and more and people aged between 20 and 64) and the total population aged 20 and more.

After 2050, we assume that the fertility rate remains constant at the level corresponding to

the average fertility rate, which is 0.01%. Figure 1 shows the level of the fertility rates used

in the simulations. Figures 2 and 3 show the goodness of the calibration procedure. Note that

the old-age dependency ratio and the total population cannot be perfectly reproduced since

migration flows are not considered in the model.

25This implies that the individual productivity increases over time thanks to the technological progress and to
the increase in experience, according to a quadratic form.
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We simulate six scenarios. In the first four scenarios, as in the theoretical part of the article,

we assume that the economy is open and the notional rate of interest is fixed to 1.51% (which

equals the average growth rate of the wage bill). The difference between these scenarios concerns

the way in which future shocks are modelled. In scenario S1, we assume that the demographic

shock is perfectly anticipated in 1960; thus, the survival rates used in the computation of the

first pension are those predicted by the demographic projections, and pensions are computed

according to correct actuarial principles. Scenario S2 assumes that the future changes in survival

rates are not anticipated in 1960; however they are taken into account when they are observed.

Scenario S3 assumes that the shock is partially anticipated 1960 and that is taken into account

when it is observed. In particular, the fraction of the shock that is anticipated in 1960 is

computed such that the value of pension reserves is equal to zero in the long run. Scenario S4

assumes that the shock is not anticipated 1960 and is not taken into account when observed.

This implies that the level of replacement ratio never changes.

Note that only in scenario 1, where the change in future survival rates is perfectly anticipated

and taken into account in the computation of pension benefits, the implicit rate of return on

contributions always coincides with the notional interest rate R. In contrast, in scenarios 2, 3

and 4, the implicit rate of return on contributions is necessarily higher than the rate notional

interest rate R since pensions are not computed according to correct actuarial principles.

Clearly, the hypothesis that the demographic shock was perfectly anticipated or even par-

tially anticipated in 1960 can be considered as unrealistic. However, the existence of a population

ageing problem was known at least in 1974, as documented by the World Population Conference

organized by the United Nations in August 1974. This is why, in scenario 5, we assume that

the demographic shock was unanticipated until 1980 and that, starting from 1980, the shock

can only be partially anticipated. In particular, assuming that the evolution of the fertility

rate is initially unknown, the notional rate of interest used to compute pension benefits is fixed

to 2% until 1979 and then to 1.51%. In addition to the hypothesis made in scenario 5, we

assume in scenario 6 (i) that the economy is closed (implying that the interest rate is endoge-

nously determined in order to clear the domestic capital market) and (ii) that the interest rate

used to compute the interest on pension reserves is equal to the average between the marginal

productivity of capital (net of depreciation) and the notional interest rate.

A brief description of the six scenarios is summarized in table 2.
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3.4 Simulation results

In this section, we present the simulation results of the demographic shock by focusing on four

measures: the ratio of pension surpluses to GDP, the ratio of pension reserves to GDP, the

replacement ratio (i.e. the ratio between the first pension and the last wage) and the implicit

rate of return on contributions. First of all, we present the results concerning the first four

scenarios in which the economy is assumed to be open.

Table 3 shows the effect on pension surpluses (or deficits). In the first three scenarios, where

the the notional rate of interest is equal to 1.51% and the survival probabilities are updated at

least when the change in survival probabilities is observed, the pension system has surpluses

during the baby boom and deficits between 2030 and 2070 when the population ageing problem

is more severe. Then, after a period of low surpluses, the pension system become perfectly

balanced starting from 2120. In scenario 4, where the survival probabilities are never updated,

the pension system has important deficits in particular starting from 2030.

Table 4 shows the effect on the value of pension reserves. In the first scenario, where the

shock on the survival probabilities is perfectly anticipated, the pension system accumulates

pension reserves which will be used to cover the pension deficits obtained between 2030 and

2070. In the long run, the value of pension reserves is positive and represents 46% of GDP.

Thus, as shown in the theoretical part of the article, the pension system is sustainable and

perfectly able to face the population ageing problem. In scenario 2, where the future shock on

the survival probabilities is not anticipated in 1960 but the change is taken into account when

observed, the pension system accumulates reserves until 2030. However, starting from 2030,

pension reserves start to decrease and become negative starting from 2060. In the long run

pension reserves represent -5.9% of GDP implying that the pension system is not sustainable.

Thus, updating the survival rates when the shock is observed is not sufficient to guarantee the

pension sustainability. The pension system is sustainable only if the future shock on survival

rates is (at least partially) anticipated in 1960. In scenario 3, the fraction of the future shock

that is anticipated is computed such that pension reserves are equal to zero in the long run. We

find that this fraction is equal to 47% implying that the pension system is sustainable if half of

the future increase in survival probabilities is anticipated in 1960.

Tables 5 and 6 show the effect on the generosity of the pension system, respectively in

terms of the replacement ratio and of the implicit rate of return on contributions. In the first
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scenario, the replacement ratio gradually decreases from 55.8% (the initial steady-state level)

to 30.4% (the final stationary level). Even though the replacement ratio significantly decreases

over time, this does not mean that the system is less generous for the future generations. In

fact, given that the shock on the survival probabilities is perfectly anticipated, the implicit rate

of return on contributions coincides with the notional rate of interest. Thus, all generations

obtain exactly the same rate of return, which is 1.51%. In scenarios 2 and 3, where the shock on

the survival probabilities is unanticipated or partially anticipated, the generations that retire

between 1960 and 2030 receive a higher replacement ratio and a higher implicit rate of return

on contributions with respect to scenario 1 and with respect to future generations. Concerning

scenario 4, the fact that survival probabilities are never updated in the computation of pension

benefits implies that the replacement ratio remains constant. In addition, table 6 clearly shows

the reason why the pension system is unsustainable: the implicit rate of return on contributions

is always higher than the sustainable level.

The previous numerical results confirm the theoretical result presented in this article: if

the demographic shock is perfectly anticipated or at least partially anticipated, then the PAYG

system is sustainable. In the last two scenarios, we assume that the demographic shock was

unanticipated until 1980 and only partially anticipated starting from 1980. In scenario 5 we

find that the pension system is sustainable if 93% of the increase in survival probabilities is

anticipated starting from 1980. Thus, the pension system is sustainable if almost the entire

shock is anticipated starting from 1980, which may be considered as unrealistic. However, in

scenario 6, where we consider two more realistic assumptions (i.e. that the economy is closed and

that the interest rate used to compute the interest on pension reserves is equal to the average

between the marginal productivity of capital (net of depreciation) and the notional interest

rate), the pension system is sustainable if 26% of the future shock is anticipated starting from

1980. This last simulation, which can be considered as the most appropriate to analyze the

effect of a realistic demographic shock, shows that the PAYG system is sustainable and thus

is able to face the population ageing problem if, starting from 1980, one quarter of the future

shock is anticipated.
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4 Conclusions

This article shows that the non-sustainability of the PAYG systems and the necessity to im-

plement drastic reforms that will considerably reduce the well-being of current and future gen-

erations are explained by the fact that pension benefits have not been computed according to

actuarial principles and, consequently, these countries did not create sufficient pension reserves

during the baby boom. It is important to highlight, first, that the creation of pension reserves

does not mean that the pension system is funded. In fact, in this article, current pensions

are still paid using current contributions, implying that the pension system is still a PAYG

system. Only if current contributions are not sufficient to finance pensions, as during the baby

boost, then pension reserves can be used to cover pension deficits. Second, even if in a PAYG

system current contributions are used to pay current pensions, this does not mean that the

entire amount of current contributions has to be used to pay current pensions. The idea of the

article is that a fundamental objective of the pension system, in addition to other objectives

like consumption smoothing, income security for the elderly and poverty relief of the elderly,

is to be actuarially fair in order to treat each generation in the same way without penalizing

future generations. In practice, the implicit rate of return on contributions must be the same for

all individuals and determined such that the pension system is sustainable. This implies that

during the baby boom PAYG systems should have created pension reserves instead of using the

entire amount of contributions to pay pensions.

It is thus possible to conclude that the problem of PAYG systems in most European countries

is explained by the fact that, during the previous decades, the pension policies were inappropri-

ate. In particular, the political decision to not create (or to create insufficient) pension reserves

and to give excessively high implicit rate of return on contributions to previous generations

and to generations that are currently retired are responsible of the non-sustainability of PAYG

systems. Thus, it is legitimate to ask whether it is fair that future generations will have to pay

for this political mistake.
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Level1,2 % of GDP

Australia 59 624 4.7%
Canada 108 917 6.6%
France 77 131 3.9%
Ireland 16 142 8.6%
Japan 117 628 568 22.6%
Korea 235 424 700 21.3%
New Zealand 14 178 7.5%
Norway 89 765 3.4%
Poland 4 445 0.3%
Portugal 8 339 4.7%
Spain 57 223 5.1%
Sweden 735 204 21.7%
United States 2 418 658 16.4%

Source: OECD (https://stats.oecd.org/Index.aspx?DataSetCode=PPRF#)

1 Data in millions of national currency
2 Data include sovereign pension reserve fund and social security reserve fund

Table 1: Public pension reserves in 2008
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Appendix 1a.

In absence of shocks the pension surplus in time t− 1 is given by:

St−1 = τ · wt−1 ·
(
Ng1,t−1 +

Ng1,t−1

1 + n
· Ωg2

)
− wt−2 ·

τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg3

− wt−3 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)3
· Ωg4

= τ · wt−1 ·
(
Ng1,t−1 +

Ng1,t−1

1 + n
· Ωg2

)
− wt−1

1 + g
· τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg3

− wt−1

(1 + g)2
· τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)3
· Ωg4

= τ · wt−1 ·
Ng1,t−1

1 + n
·
(
1 + n+ Ωg2

)
− τ · wt−1 ·

(1 + g) · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

·Ng1,t−1 · Ωg3

− τ · wt−1 ·
(1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

1 + n
· Ωg4

= τ · wt−1 ·
Ng1,t−1

1 + n
·
(
1 + n+ Ωg2

)
·
[
1 − (1 + n) · (1 + g) · Ωg3 + Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]

= 0
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Appendix 1b.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

the pension surplus in time t is given by:

St = τ · wt · (Ng1,t +Ng2,t) − (Pg3,t ·Ng3,t + Pg4,t ·Ng4,t)

= τ · wt · (Ng1,t−1 · (1 + nt) +Ng1,t−1 · Ωg2)

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

1 + n
· Ωg3

− wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg4

= τ · wt ·Ng1,t−1 · (1 + nt + Ωg2)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

Ωg4 + Ωg3 · (1 + n) · (1 + g) + Ωg4

= τ · wt ·Ng1,t−1 · (1 + nt + Ωg2) − τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

= τ · wt ·Ng1,t−1 · (nt − n) > 0
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Appendix 1c.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

the pension surplus in time t+ 1 is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1)

= τ · wt+1 · [Ng1,t−1 · (1 + n)2 +Ng1,t−1 · (1 + nt) · Ωg2]

− wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

·Ng1,t−1 · Ωg3

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

1 + n
· Ωg4

= τ · wt+1 ·Ng1,t−1 · [(1 + n)2 + (1 + nt) · Ωg2]

− τ · wt+1 ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n)2 · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4

− τ · wt+1 ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+1 ·Ng1,t−1 · [(1 + n)2 + (1 + nt) · Ωg2]

− τ · wt+1 ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · (1 + n) · (1 + g) · Ωg3 + Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+1 ·Ng1,t−1 · [(1 + n)2 + (1 + nt) · Ωg2 − (1 + n)2 − (1 + n) · Ωg2]

= τ · wt+1 ·Ng1,t−1 · (nt − n) · Ωg2 > 0
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Appendix 1d.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

the pension surplus in time t+ 2 is given by:

St+2 = τ · wt+2 · (Ng1,t+2 +Ng2,t+2) − (Pg3,t+2 ·Ng3,t+2 + Pg4,t+2 ·Ng4,t+2)

= τ · wt+2 · [Ng1,t−1 · (1 + n)3 +Ng1,t−1 · (1 + n)2 · Ωg2]

− wt+1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

·Ng1,t−1 · (1 + nt) · Ωg3

− wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

·Ng1,t−1 · Ωg4

= τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2)

− τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · (1 + nt) · (1 + g) · Ωg3 + Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) ·
[
1 − (1 + nt) · (1 + g) · Ωg3 + Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]

= τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · (1 + g) · Ωg3 ·
n− nt

(1 + n) · (1 + g) · Ωg3 + Ωg4
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Appendix 1e.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

the pension surplus in time t+ 3 is given by:

St+3 = τ · wt+3 · (Ng1,t+3 +Ng2,t+3) − (Pg3,t+3 ·Ng3,t+3 + Pg4,t+3 ·Ng4,t+3)

= τ · wt+3 ·
[
Ng1,t−1 · (1 + n)4 +Ng1,t−1 · (1 + n)3 · Ωg2

]
− wt+2 ·

τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

·Ng1,t−1 · (1 + n)2 · Ωg3

− wt+1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

·Ng1,t−1 · (1 + nt) · Ωg4

= τ · wt+3 ·Ng1,t−1 · (1 + n)3 · (1 + n+ Ωg2)

− τ · wt+3 ·Ng1,t−1 ·
(1 + n)4 · (1 + g) · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

Ωg3

− τ · wt+3 ·Ng1,t−1 ·
(1 + n)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· (1 + nt) · Ωg4

= τ · wt+3 ·Ng1,t−1 · (1 + n)3 · (1 + n+ Ωg2)

− τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · (1 + n)2 · (1 + g) · Ωg3 + (1 + nt) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) ·
[
(1 + n) − (1 + n)2 · (1 + g) · Ωg3 + (1 + nt) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]

= τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2)

· (1 + n)2 · (1 + g) · Ωg3 + (1 + n) · Ωg4 − (1 + n)2 · (1 + g) · Ωg3 − (1 + nt) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · Ωg4 ·
n− nt

(1 + n) · (1 + g) · Ωg3 + Ωg4

< 0
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Appendix 1f.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

pension reserves in time t+ 2 are given by:

Rest+2 = Rest+1 · (1 +R) + St+1

= τ · wt ·Ng1,t−1 · (nt − n) · (1 +R) + τ · wt+1 ·Ng1,t−1 · (nt − n) · Ωg2

= τ · wt+1 ·Ng1,t−1 · (nt − n) · (1 + n) + τ · wt+1 ·Ng1,t−1 · (nt − n) · Ωg2

= τ · wt+1 ·Ng1,t−1 · (1 + n+ Ωg2) · (nt − n) > 0
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Appendix 1g.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

pension reserves in time t+ 3 are given by:

Rest+3 = Rest+2 · (1 +R) + St+2

= τ · wt+1 ·Ng1,t−1 · (1 + n+ Ωg2) · (nt − n) · (1 +R)

+ τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · (1 + g) · Ωg3 ·
n− nt

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+2 ·Ng1,t−1 · (1 + n+ Ωg2) · (nt − n) · (1 + n)

− τ · wt+2 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · (1 + g) · Ωg3 ·
nt − n

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+2 ·Ng1,t−1 · (1 + n+ Ωg2) · (nt − n) · (1 + n) ·
[
1 − (1 + n) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4

]

= τ · wt+2 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 ·
nt − n

(1 + n) · (1 + g) · Ωg3 + Ωg4

> 0
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Appendix 1h.

In the case of an increase in the fertility rate in t and a decrease in the fertility rate in t+ 1,

pension reserves in time t+ 4 are given by:

Rest+4 = Rest+3 · (1 +R) + St+3

= τ · wt+2 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 ·
nt − n

(1 + n) · (1 + g) · Ωg3 + Ωg4

· (1 +R)

+ τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · Ωg4 ·
n− nt

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · Ωg4 ·
nt − n

(1 + n) · (1 + g) · Ωg3 + Ωg4

+ τ · wt+3 ·Ng1,t−1 · (1 + n)2 · (1 + n+ Ωg2) · Ωg4 ·
n− nt

(1 + n) · (1 + g) · Ωg3 + Ωg4

= 0
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Appendix 2a.

In the case of a permanent increase, starting from time t, in the conditional probability to

be alive at age g3 (ωg3,t) and if this shock is taken into account in the computation of pension

benefits according to equation 7, then the pension surplus in time t is given by:

St = τ · wt · (Ng1,t +Ng2,t) − (Pg3,t ·Ng3,t + Pg4,t ·Ng4,t)

= τ · wt · [Ng1,t−1 · (1 + n) +Ng1,t−1 · Ωg2]

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3
· Ng1,t−1

(1 + n)
· Ωg3 · (1 + ∆ωg3)

− wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= 0
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Appendix 2b.

In the case of a permanent increase, starting from time t, in the conditional probability to

be alive at age g3 (ωg3,t) and if this shock is taken into account in the computation of pension

benefits according to equation 7, then the pension surplus in time t+ 1 is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1)

= τ · wt+1 · [Ng1,t · (1 + n) +Ng1,t · Ωg2]

− wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3
· Ng1,t

(1 + n)
· Ωg3 · (1 + ∆ωg3)

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· 1

1 + ∆ωg3
· Ng1,t

(1 + n)2
· Ωg4 · (1 + ∆ωg3)

= τ · wt+1 ·Ng1,t · (1 + n+ Ωg2)

− τ · wt+1 ·Ng1,t · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4

− τ · wt+1 ·Ng1,t · (1 + n+ Ωg2) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= 0
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Appendix 3a.

In the case of a permanent increase, starting from time t+ 1, in the conditional probability

to be alive at age g4 (ωg4) and if this shock is anticipated in t and taken into account in the

computation of pension benefits according to equation 7, then the pension surplus in time t is

given by:

St = τ · wt · [Ng1,t−1 · (1 + n) +Ng1,t−1 · Ωg2]

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
· Ng1,t−1

1 + n
· Ωg3

− wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

·
[

Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
− Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]
> 0
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Appendix 3b.

In the case of a permanent increase, starting from time t+ 1, in the conditional probability

to be alive at age g4 (ωg4) and if this shock is anticipated in t and taken into account in the

computation of pension benefits according to equation 7, then the pension surplus in time t+ 1

is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1)

= τ · wt+1 ·
[
Ng1,t−1 · (1 + n)2 +Ng1,t−1 · (1 + n) · Ωg2

]
− wt ·

τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
·Ng1,t−1 · Ωg3

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
· Ng1,t−1

1 + n
· Ωg4 · (1 + ∆ωg4)

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
·

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

= 0
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Appendix 4a.

In the case of a permanent increase, starting from time t+ 1, in the conditional probability

to be alive at age g4 (ωg4) and if this shock is not anticipated in t, then the pension surplus in

time t+ 1 is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1)

= τ · wt+1 · [Ng1,t−1 · (1 + n)2 +Ng1,t−1 · (1 + n) · Ωg2]

− wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
·Ng1,t−1 · Ωg3

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

· Ng1,t−1

1 + n
· Ωg4 · (1 + ∆ωg4)

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2]

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2] · Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

·
[

Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
− Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4

]
< 0
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Appendix 5a.

Consider a permanent increase, starting from time t + 1, in the conditional probability to

be alive at age g4 (ωg4) and assume that a fraction χ of the shock is anticipated in t, where χ

is computed such that pension reserves are equal to zero in the long run.

The pension surplus in time t is given by:

St = τ · wt · (Ng1,t +Ng2,t) − (Pg3,t ·Ng3,t + Pg4,t ·Ng4,t)

where:

Ng1,t = Ng1,t−1 · (1 + n)

Ng2,t = Ng1,t−1 · Ωg2

Ng3,t =
Ng1,t−1

1 + n
· Ωg3

Ng4,t =
Ng1,t−1

(1 + n)2
· Ωg4

and:

Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + χ · ∆ωg4)

Pg4,t = Pg3,t−1 = wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4

In what follows, we define β = (1 + n) · (1 + g) · Ωg3.
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Thus, the pension surplus in time t is given by:

St = τ · wt · [Ng1,t−1 · (1 + n) +Ng1,t−1 · Ωg2]

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

β + Ωg4 · (1 + χ · ∆ωg4)
· Ng1,t−1

1 + n
· Ωg3

− wt−2 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

β + Ωg4

· Ng1,t−1

(1 + n)2
· Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · β

β + Ωg4 · (1 + χ · ∆ωg4)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4

β + Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4 · (1 + χ · ∆ωg4)

β + Ωg4 · (1 + χ · ∆ωg4)

− τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · Ωg4

β + Ωg4

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

·
[

Ωg4 · (1 + χ · ∆ωg4)

β + Ωg4 · (1 + χ · ∆ωg4)
− Ωg4

β + Ωg4

]
> 0

The pension surplus in time t+ 1 is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1)

where:

Ng1,t+1 = Ng1,t−1 · (1 + n)2

Ng2,t+1 = Ng1,t−1 · (1 + n) · Ωg2

Ng3,t+1 = Ng1,t−1 · Ωg3

Ng4,t+1 =
Ng1,t−1

1 + n
· Ωg4 · (1 + ∆ωg4)

and:

Pg3,t+1 = wt ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)

Pg4,t+1 = Pg3,t = wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + χ · ∆ωg4)
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Starting from time t + 1, given that the increase in the conditional probability to be alive

at age g4 is assumed to be permanent, the old-age dependency ratio remains constant even if

at a level that is higher with respect to the situation without the shock.

Thus, the pension surplus in time t+ 1 is given by:

St+1 = τ · wt+1 · (Ng1,t+1 +Ng2,t+1) − (Pg3,t+1 ·Ng3,t+1 + Pg4,t+1 ·Ng4,t+1)

= τ · wt+1 ·
[
Ng1,t−1 · (1 + n)2 +Ng1,t−1 · (1 + n) · Ωg2

]
− wt ·

τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

β + Ωg4 · (1 + ∆ωg4)
·Ng1,t−1 · Ωg3

− wt−1 ·
τ · (1 + n)2 · (1 + g)2 · (1 + n+ Ωg2)

β + Ωg4 · (1 + χ · ∆ωg4)
· Ng1,t−1

1 + n
· Ωg4 · (1 + ∆ωg4)

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · (1 + n) · (1 + g) · Ωg3

β + Ωg4 · (1 + ∆ωg4)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + χ · ∆ωg4)

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + ∆ωg4)

− τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2) · Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + χ · ∆ωg4)

= τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

·
[

Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + ∆ωg4)
− Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + χ · ∆ωg4)

]
< 0

Pension reserves are equal to zero until time t, since all the previous surpluses were nil. In

time t+ 1, pension reserves are given by:

Rest+1 = St

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2)

·
[

Ωg4 · (1 + χ · ∆ωg4)

β + Ωg4 · (1 + χ · ∆ωg4)
− Ωg4

β + Ωg4

]
> 0
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In t+ 2, pension reserves are:

Rest+2 = Rest+1 · (1 +R) + St+1

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · (1 + g)

·
[

Ωg4 · (1 + χ · ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + χ · ∆ωg4)
− Ωg4

(1 + n) · (1 + g) · Ωg3 + Ωg4

]
+ τ · wt+1 ·Ng1,t−1 · (1 + n) · (1 + n+ Ωg2)

·
[

Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + ∆ωg4)
− Ωg4 · (1 + ∆ωg4)

(1 + n) · (1 + g) · Ωg3 + Ωg4 · (1 + χ · ∆ωg4)

]

= τ · wt ·Ng1,t−1 · (1 + n+ Ωg2) · (1 + n) · (1 + g)

·
[

Ωg4 · (χ− 1) · ∆ωg4

β + Ωg4 · (1 + χ · ∆ωg4)
− Ωg4

β + Ωg4

+
Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + ∆ωg4)

]

Rest+2 = 0 if:

Ωg4 · (1 − χ) · ∆ωg4

β + Ωg4 · (1 + χ · ∆ωg4)
=

Ωg4 · (1 + ∆ωg4)

β + Ωg4 · (1 + ∆ωg4)
− Ωg4

β + Ωg4

Ωg4 · (1 − χ) · ∆ωg4

β + Ωg4 · (1 + χ · ∆ωg4)
=

β · Ωg4 · (1 + ∆ωg4) + Ω
2
g4 · (1 + ∆ωg4) − β · Ωg4 − Ω

2
g4 · (1 + ∆ωg4)

[β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4)

Ωg4 · (1 − χ) · ∆ωg4

β + Ωg4 · (1 + χ · ∆ωg4)
=

β · Ωg4 · (1 + ∆ωg4) − β · Ωg4

[β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4)

Ωg4 · (1 − χ) · ∆ωg4

β + Ωg4 · (1 + χ · ∆ωg4)
=

β · Ωg4 · ∆ωg4

[β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4)

(1 − χ)

β + Ωg4 · (1 + χ · ∆ωg4)
=

β

[β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4)

Thus:

(1 − χ) · [β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4) = β · [β + Ωg4 · (1 + χ · ∆ωg4)]
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Thus:

[β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4) − χ · [β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4)

= β · (β + Ωg4) + χ · β · Ωg4 · ∆ωg4

χ ·
{
β · Ωg4 · ∆ωg4 + [β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4)

}
= [β + Ωg4 · (1 + ∆ωg4)] · (β + Ωg4) − β · (β + Ωg4)

χ ·
{
β · Ωg4 · ∆ωg4 + β · (β + Ωg4) + Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

}
= Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

χ ·
{
β · [Ωg4 · ∆ωg4 + β + Ωg4] + Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

}
= Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

The value of χ such that the pension system is sustainable is:

χ =
Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

β · [β + Ωg4 · (1 + ∆ωg4)] + Ωg4 · (1 + ∆ωg4) · (β + Ωg4)
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Appendix 5b.

Considering that χ =
Ωg4·(1+∆ωg4)·(β+Ωg4)

β·[β+Ωg4·(1+∆ωg4)]+Ωg4·(1+∆ωg4)·(β+Ωg4)
, the value of χ is lower than 1/2

if:

β · [β + Ωg4 · (1 + ∆ωg4)] > Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

This implies:

β2 + β · Ωg4 · (1 + ∆ωg4) > Ωg4 · (1 + ∆ωg4) · (β + Ωg4)

β2 > Ωg4 · (1 + ∆ωg4) · Ωg4

(1 + n)2 · (1 + g)2 · Ω
2
g3 > Ω

2
g4 · (1 + ∆ωg4)

(1 +R)2 > ω2
g4 · (1 + ∆ωg4)

which is true because ωg4 · (1 + ∆ωg4) (that represents the probability to be alive at age g4

after the shock) cannot be higher than one.
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