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Abstract Most graphics cards in standard personal

computers are now equipped with several pixel pipelines

running shader programs. Taking advantage of this tech-

nology by transferring parallel computations from the

CPU side to the GPU side increases the overall com-

putational power even in non graphical applications by

freeing the main processor from an heavy work. A generic

library is presented to show how anyone can bene-

fit from modern hardware by combining various

techniques with little hardware specific program-

ming skills. Its shader implementation is applied

to retinal and cortical simulation. The purpose of

this sample application is not to provide a correct ap-

proximation of real center surround ganglion or mid-

dle temporal cells, but to illustrate how easily inter-

twined spatiotemporal filters can be applied on raw in-

put pictures in real-time. Requirements and interconnec-
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tion complexity really depend on the vision framework

adopted, therefore various hypothesis that may benefit

from such a library are introduced.

1 Introduction

Whether one tries to implement biological or artificial

vision systems, low-level processes are massively paral-

lel. Visual perception is considered active in frameworks

such as interactivism, enaction or ecological vision. Such

approaches introduce temporal patterns of local antici-

pations in the retinal field resulting from eye saccades,

body movements or environment dynamics. To some ex-

tend, top-bottom modulations provide a way to reduce

computations, concentrate on specific features and cope

with environmental/perceptual noise. Yet unanticipated

motion, rapid changes in brightness or any striking event
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Fig. 1 Simplified one dimensional representation of anticipations performed by a Middle Temporal cortical

cell (MT). (a) Inputs cells (1 and 2) get activated when an object moves in the field of view. The higher the

input cell index (from 1 to 5), the lower the propagation time to the MT cell. (b) An assimilated movement

will lead to the activation of the MT cell resulting from the synchrony of the signals. (c) Any movement that

is either too fast, too slow or inverse will not lead to recognition.

relative to current activity attract perception and must

be processed to be taken into account.

When high resolution frames are fully filtered, seg-

mented and analyzed, for example when using computer

vision algorithms such as edge/feature point detectors or

motion estimators, the high computational load required

is obvious. Modeling retinal/cortical processes reproduc-

ing center surround ganglion cells or middle temporal

(MT) cells behavior on wide receptive fields also intro-

duces large-scale computations due to the variability of

parameters such as speed, direction or receptor field size.

This article does not introduce a new technology

nor algorithm, but combines different techniques and in-

terfaces different programming languages to produce a

portable generic library which can be used and extended

by anyone without any knowledge in the optimization

and graphics card programming fields. Though this li-

brary might be used as is, source code is provided not

only to show how the wrapping of hardware specific func-

tions is done, but also to convince the reader that good

performance can be achieved at low cost and with little

effort.

The library architecture consists of several layers ma-

nipulating filters. Filters not already implemented can

be defined by the user in a standard language, then

called from a script or a graphical user interface. The

library then structures, orders and applies the filters on

the fly depending on temporal and spatial dependencies.

The lowest level layer can target central processing units

(CPU) or graphics processing units (GPU) depending on

available hardware. The library has been partly ported

to support the Cell Broadband Engine and take advan-

tage of its synergistic processing elements. The huge ben-

efit from using vector instructions and such parallel ar-
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chitectures is now affordable as the Cell BE is at the

core of the Playstationr3 (installing Linux and the IBM

SDK is however required). But since PCs with powerful

graphics cards are widespread today, the shader imple-

mentation will be detailed.

Recent changes and extensions on graphics cards now

allow us to implement parallel algorithms and use the

GPU rather than the CPU for real-time applications

and higher performances. Many companies and laborato-

ries are investigating graphics hardware capabilities for

general purpose computations but this article concen-

trates on how to easily make the most of it in a generic

way for vision processes which share similarities with the

original aim of graphics card pipelines. Though several

libraries exist for general purpose computations using

graphics hardware (GPGPU) such as RapidMind (pre-

viously known as Lib Sh)[9], Brook[6] or CUDA[2], they

deal with data streams rather than pictures, integrate

complex optimizations and include abstraction layers to

be effective on any application. On the other hand, high

level image processing frameworks such as CoreImage[1]

or OpenVIDIA[12], neither generally provide access to

intermediate results, handle time dependencies by de-

fault nor support arbitrary hardware. Of course many

task specific GPU enabled applications have also been

developed across the world [12,17,24], but this paper is

an attempt to find a golden mean between generality

and task dependence in the field of vision.

The portable implementation presented here is coded

in Java 1.6 using JOGL (Java bindings for OpenGL

API), runs on low cost computers, allowing anyone to

implement and apply spatial and temporal filters on any

input source (computer generated or captured). Any in-

termediate output is stored as a texture and can be fur-

ther processed or extracted on request. As long as the

user does not ask for a transfer to the computer main

memory, all computations are performed on the graphics

card for speed improvement. Even if the hardware is in

constant evolution (render-to-texture for instance is

now widespread), the reader inclined to know the speci-

ficities and limitations of a GPU compared to a standard

CPU might read the paper of Michael Shantzis on the

subject[23]. An example of application in the field of

retinal and cortical processes is detailed throughout this

article. Although its purpose is neither to give an accu-

rate description of biological processes nor to give a full

account of how to model and optimize such processes, it

illustrates the main capabilities of the library.

2 Theoretical framework integration

Fast visual processes can be useful in any framework and

a generic library needs to be compatible with all.

The variability in vision theories is illustrated by

the interactivist framework [5,7], implying a rad-

ical shift in the requirements for a vision library.

Considering this approach, concepts and objects emerge

from a network of interactions, each continuously an-
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Fig. 2 Textures combination by a GPU pixel shader.

ticipating events resulting from taken actions. What is

called events can be the activity of other internal pro-

cesses or direct perceptions from various modalities. It

is quite similar to Jean Piaget’s sensori-motor theory

[22] or Gibson’s affordance theory [13,14]. More specifi-

cally when applied to vision, it shares many aspects of

O’Regan’s conclusions [20,21]. Local signals coming out

of the optical nerve as well as higher-level features can be

anticipated when eye saccades are performed. Though

saccades might be considered as hindering the already

uneven visual perception, several studies focus on the

usefulness and intentionality of saccades [27,19]. For ex-

ample when being exposed to a visual scenery, a human

will recognize objects corresponding to correctly regu-

lated interactions with mostly satisfied anticipations.

This kind of perception is normative : validity eval-

uation is relative within the set of learned concepts and

does not require any homonculus to tell whether the

matching is correct. If the context is unambiguous enough,

there is no need for further exploration as soon as the

activity in a highly connected part of the network, cor-

responding to a concept, starts to rise above the oth-

ers. Moreover due to regulation and relative comparison,

such processes are highly resistant to noise and easily

adapt to variations in the environment. The resulting

behavior also allows reducing the evoked potentialities

space, concentrating on specific features which are con-

textually relevant [18]. For instance when walking in a

crowd or driving in a dense traffic, human beings do

not try to analyze the incredible amount of information

that is available to them just by gazing around. A goal-

oriented adapted behavior might consist in anticipating

trajectories, avoiding obstacles, speeding up or slowing

down, but certainly not in counting the number of per-

sons dressed in white or reading every car plate, what

might nevertheless be feasible [26].
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Even if many recent theories [11,25] imply top-down

modulations and avoid combinatory explosion when de-

composing and evaluating the entire field of view, bottom-

up processes are still needed to learn from and react to

salient features in the environment. Additionally, low-

level perceptive patterns are fast paced and less stable

compared to abstract constructions of the mind[15]. Be-

cause of the high number of concurrent processes that

might pick up information and match anticipations in

the field of view, taking advantage of hardware optimiza-

tions to rapidly process parts of the sensors input should

therefore be efficient.

In a neurobiological modeling perspective, though

the visual cortex cells organization has been studied for

a long time [16], reproducing vision processes on com-

puter in real-time with a large input flow has a lot of

advantages [3]. For instance, simulating MT-cells behav-

ior may help to understand their origins and interactions

with other layers of the cortex. More specifically, these

are oriented speed detectors, only responding to a given

range of directions and speeds. Their behavior can be

interpreted as proto-anticipatory in that the spikes of

each input cell are anticipated at different times, based

on the MT-cell connections to lower cortex areas (fig-

ure 1). It is quite robust to noise and allows the per-

ception of speed even in complex motion [8]. Going on

predicting blob movements relatively to actions rather

than falling back to standard segmentation methods for

higher abstraction levels might help to cope with prob-

lems encountered in real-time complex applications [4,

10].

Whatever may be a correct account of biological vi-

sion, easily testing hypotheses and adjusting parameters

is of prime importance. By taking advantage of graph-

ics cards computational power, one gets the opportunity

to compare the results for different parameters values

in real time. Moreover the library described in the next

sections can also compile and reorganize filters on the

fly, making it flexible enough to interactively and totally

change filters source code and structure, avoiding the

painful process of rebuilding an entire project. Finally,

approaches based on perception dynamics or anticipa-

tion might benefit from a software framework where time

dependencies are intrinsically managed.

3 Implementation

3.1 Single filter/process

All filters have the same generic structure allowing them

to handle several input textures and produce a single

output texture with arbitrary components. Consecutive

computed output textures are stored in a cyclic buffer to

avoid memory and time consuming copies, which size is

computed based on filter dependencies. Figure 2 repre-

sents how textures are combined by a single GPU pixel

shader program. The configuration of the graphics card

and all OpenGL operations are hidden to the end user

which only has to implement the shader program (us-
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ing for instance GLSL = GL Shading Language) and to

specify the input/output texture mappings. For example

on the diagram, a differentiation is applied between the

textures given as input. These input textures might be

successive output frames from any filter, therefore also

stored in a cyclic buffer. The associated shader source

code could be :

uniform sampler2D tex0,tex1;

void main(void) {

vec2 coords = gl TexCoord[0].st;

vec4 a = texture2D(tex0,coords);

vec4 b = texture2D(tex1,coords);

gl FragColor = a−b;

}

Listing 1 Differenciation pixel shader source code. All

shader programs are written in GLSL. The so-called

uniform variables are constant parameters for the

shader that can be manipulated between executions,

either by the card or the programmer.

In the associated Java program controlling the

execution of the filter, the shader is loaded on the

graphics card and the textures are mapped to tex0 and

tex1 using an Effect object. The texture mapping and

source code can be easily modified during the execu-

tion of the Java program, giving a high flexibility for

tests. new Effect(n,w,h) creates an effect that mem-

orize n consecutive frames with dimensions (w,h). The

difference effect in listing 2 uses the camera effect

output textures as input. This camera effect just stores

raw input data in textures, allowing prefetching and op-

timal memory allocation. The last line maps the camera

texture at current time t to tex0 and the camera texture

at discrete time t-1 to tex1.

Effect camera = new Effect(2,w,h);

camera.setName(”Input”);

Effect difference = new Effect(1,w,h);

difference .setName(”Differenciation”);

difference .setShader(”uniform [...] a−b; }”);

difference .setTextures(

new Effect[]{camera,camera},

new int []{0,1}

);

Listing 2 Differenciation at Java level.

Another example displaying additional capabilities of

shader programs can be found in the annex. Though the

understanding of given source code is not at all required

to grasp the interest of combining high level languages

(such as Java or C++) with shaders, it might be rel-

evant for those who want to investigate deeper in the

subject or generate their own shader programs on the

fly at runtime.

3.2 Multiple processes

All features concerning effects sequences and temporal

aspects will now be developed on a retinal/cortical pro-
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Fig. 3 Blur computation using either a single or 2-pass algorithm.

cesses set. As seen in previous section, every effect can

be defined by its source code and the mapping of its

input textures. Yet when applying several effects, their

dependencies are to be taken into account. Though the

source code is not included and some operations should

be performed differently for optimization purpose, the

set presented here has been chosen to show the possible

interactions between effects.

Rods

Fig. 4 Rods signal extraction from a ”camera” input.

Blur level n+1level n

Fig. 5 Recursive additional blur.

On-off

Fig. 6 On center off surround ganglion cells extracting dy-

namical contrasts.

The above figures as well as figures 8 and 9

represent effects. The name of the effect is writ-

ten in the center and black arrows represent de-

pendencies, linking standard input textures to

the output texture produced by the effect. Most of

the effects take only one texture as input as do the Rods

(simulating retina rod cells, sensitive to a wide range of

light wavelengths), On-off (reproducing on center off sur-

round cells behavior based on contrasts) or Blur effects

(figures 4, 5, 6). The implementation of the Blur effect

allows it to be recursively applied to change the blurring

level either on all the retina for multi-resolution by in-

creasing the size of the receptor fields, or on extra-foveal
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areas to reproduce the increasing spacing between rods

and cones.

Performing the blurring using a multiple pass algo-

rithm allows not only to fasten the resulting texture gen-

eration by not repeating local computations, but also to

provide a nice and easy way to obtain multi-resolution

textures involved later in different scale object detection.

A predictive dynamical system can for instance antici-

pate the movement or position of small features in the

visual field as well as large objects occluding most of the

scene.

Each pass is applied using a shader whose complex-

ity is constant. As represented on figure 3, for every

pixel in the texture, a mean value is computed on 9 pix-

els whether it is the first or second pass. By neglecting

the texture borders, not causing any trouble on modern

GPUs, we can approximate the complexity for a n-pass

blurring on a w×h texture to n×w×h×32. This includes

the generation of the n levels of blurring textures.

This can be compared to a straightforward approach

computing the mean value on large receptor fields as

shown on the right of figure 3 (9 × 9 pixel wide field

equivalent to the result from the 2-pass algorithm). For

the same parameters as in previous paragraph, the num-

ber of computation required would be w×h× (3n)2 (not

even getting the intermediate resolutions).

To conclude with the different kinds of possibilities,

textures from various effects can be merged into a single

texture. The Retina effect represented on figure

8 reproduces the loss of resolution and color on the pe-

riphery from the Rods and Blur effects outputs (without

any distortion however). The last generated texture is

also redirected as an input to simulate the retina per-

sistence. Similarly, the MT effect computes local move-

ments from a single input effect at different times (fig-

ure 9). Though only 2 effects are involved, several tex-

tures are mapped to the inputs.

persistance
(time t-1)

blind spot

fovea

Retina

Fig. 8 Retina input simulation.

MT

time t

t-2

t-1

Fig. 9 MT cells sensitive to a given direction and speed.
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MT

MTMTInput

Blur #1 Blur #2

Rods Retina MT

MT MT

10

1

2

3 4

5 5

5
On-offPERT graph

Equivalent

On-off

Fig. 7 Effects network to PERT graph conversion for shaders execution ordering. The red figures on the lower part correspond

to the order of the computations. The lower the number, the earlier the process is run.

3.3 PERT ordering

The ordering of the shaders execution is obtained using

a specialized PERT algorithm. The dependency graph

is obtained using a single rule once all the effects have

been configured independently. A dependency is intro-

duced if an input texture is the output of another effect

computed at current time (i.e. frame). Dependencies are

represented as arrows on figure 7, the effect at the end

of the arrow depending on the source. The cost for every

dependency is set to 1, the goal being only to order the

computations to avoid facing undefined input textures

and to detect user graph conception mistakes.

When building the PERT graph, all depen-

dencies with textures computed during previous

execution cycles are excluded. For example on

figure 7, MT only depends on On-off because of

the use of its output at current time t, whereas

there is no self-dependency for Retina, the persistence

coming from the Retina output at time t − 1.

Once the algorithm terminates without returning an

error, the shaders are guaranteed to run correctly on well

defined and updated textures. The number present next

to an effect on the figure indicates how many effect layers

are to be executed for it to perform successfully. Then

for each update cycle, all shaders are therefore executed

by following the ascending order on layers. The ordering

within each layer is not relevant.
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4 Performances

The tests have been performed on a laptop running Win-

dows XP SP2 with an Intel Pentium M 735, 512Mo

of DDR333 and a Mobility Radeon 9700. The 128Mo

graphics card has been developed on a M11 architecture

therefore possessing 4 pixel pipelines achieving 12 pixel

shaders operation per clock cycle. Though this card is

far less powerful than the graphics boards released in

early 2008, the results using shaders are still impressive.

Using shaders, there are limitations on the number of

operations in source code or textures used as input (tex-

ture unit mapping). Nevertheless they tend to vanish as

the generations evolve or can be avoided by fraction-

ating the shader program. The render-to-texture feature

now available on most of the graphics cards has not been

used to produce the following tables, hence limiting the

theoretical performance.

4.1 Implementations comparison

On figure 11, performances are compared depending on

the implementation. All programs, either implemented

in C/C++ or Java, use the same architecture and filter

graph composed of 10 effects computed on every frame.

OpenGL computer generated 24 bit and 512x512 wide

textures were set as inputs. The complexity or details

present on the pictures do not impact on the perfor-

mance since all pixels are processed the same way and

the OpenGL frame generation is the same for the 3 im-

plementations. Execution time is used for performance

evaluation. The quite high standard deviations results

from statistics computations and the chaotic calls to the

garbage collector when the application is monitored. The

C/C++ version has been developed to take into account

possible differences with Java JOGL wrappers and eval-

uate the overhead and slowdown introduced by the Java

language. Though there is a slight difference, it is not

significative and cannot compete with the outstanding

more than 100 times speed up of the shaders version.

Such a speed up is a bit extreme but comes from the

fact that all computations in the given example are eas-

ily made parallel in their integrality, even if they are rep-

resentative of standard vision application needs. In case

of hardware incompatibility, the CPU version might still

be useful as a fallback for development purpose and later

be swapped with a better implementation.

The comparison is not only provided to show the

GPU version efficiency, but also to justify that the lan-

guage choice for the filter source code has little impact on

the overall performance, even when considering the pos-

sible transformations performed on it. Indeed, though a

CPU overhead is introduced when generating, parsing

or compiling the source file, the shader programs run-

ning on the GPU are not affected until the very last

step, when loading the compiled program on the graph-

ics card. This transfer might only happen once as long

as the shader program source code remains unchanged,

since it will not be uploaded again for simple parameter
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time
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time
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Fig. 10 Time performances depending on the number of effects to process for every frame and the size of the textures. The

mean values and standard deviations have been integrated over a large number of frame ('1000).

modifications. Therefore using graphics card native as-

sembly language or any non portable low level language

might only benefit to the expert programmer, but would

not serve the purpose of any portable high level library.

= 48
t = 520

= 1
t = 2
σ

0

500

t = 551
= 56σ σ

(ms)

JavaC/C++

time

Java

CPU Shaders

Fig. 11 Performance comparison between OpenGL imple-

mentations, using CPU or GPU Shaders for effects. Bars

corresponds to mean times to update all the processes; er-

ror bars represent standard deviation.

4.2 Complexity

The first diagram on figure 10 displays results from com-

putations on the same picture sequences and an increas-

ing number of processes. The other one runs the same

shader processes on larger and larger textures. The curves

give the overall evolution and display the limitations rel-

atively to the graphics card (memory and pixel pipelines).

In the case of extreme values for parameters,

the high standard deviation results from recur-

rent and sudden huge variations around a rela-

tively low mean value, due to memory transfers

and reallocations. Still when limiting the number of

effects to the graphics card capabilities and inputting

DVD video resolution, the evolution is almost linear.

Moreover when keeping parameters so as to avoid

performance drop on some frames, the overall time cost

of updating all the processes remains below 10 millisec-

onds. It allows the graphics card to perform additional

computations to generate pictures or manipulate 3D mod-

els for example. Meanwhile the main processor is avail-
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able for other tasks, turning this option into a good

choice whenever an application requires massive parallel

computations, even when they are not graphical.

5 Conclusion

Even if shaders are quite widespread today and the cur-

rent paper focuses on this implementation of the library,

similar development can be made on any multi-threaded

or parallel architecture. Since such architectures are in-

vading the personal computer market, this paper just

tried to convince the reader that they can be transparent

on specific tasks particularly well adapted to parallelism.

Hardware/software co-design or direct implementa-

tion on FPGA may be more and more flexible and pro-

vide cheap solutions for heavy computations, but they

still required more knowledge than just standard pro-

gramming skills. All the work done in the field of auto-

matic parallelization and hardware abstraction is simply

amazing but still not intuitive or mature enough to be

widespread. Though the presented library is neither a

general solution nor an optimal one, it has been used

since November 2006 in our laboratory for low-level vi-

sion processes simulation. This narrow and task specific

approach however allows the user to easily manipulate

high level objects such as picture sequences, transform

them and combine them in real time through a com-

plex but intuitive relation based graph structure. The li-

brary therefore efficiently combines existing techniques,

namely general purpose computations on GPU, code

and context swapping on the GPU, cyclic buffering and

PERT ordering.

Annex

In this section are gathered pieces of code which can

greatly help in understanding or developing a similar li-

brary. For simplicity and explanatory reasons, the graph

generation and process ordering algorithms are not de-

tailed. For the same reasons, all interactive graphical

user interfaces to add, modify or remove filters on the fly

are not apparent. Additional functions are of course nec-

essary to generate or capture the original input frames

as well as to display the results, but these aspects are

out of the scope of this paper.

The first Java source fragments provided on

listings 3 and 4 define functions to produce shader

source strings. This way, effects can be parame-

terized from the Java source code without any

intervention on external files (external files may

still be imported if provided by third party de-

velopers). Such parameters range from the di-

rection and speed for the MT simulation to the

range for the blurring. These samples do not take

advantage of the shaders capability to handle ad-

ditional uniform variables, making it possible to

modify the process without reloading the pro-

gram (see listing 1 for a definition). Nevertheless
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the fast generation and upload of the program using Java

allows to totally change the sequence of instructions and

test more complex variations. The generated filters are

simplified compared to more biologically realistic pro-

cesses. They for example do not take into account the

integration of neuron inputs over a time window.

public String sourceRetinaBlur(float dist , int radius) {

String s =

”uniform sampler2D tex0;\n” +

”void main(void) {\n” +

” vec2 texCoord = gl TexCoord[0].xy;\n” +

” const vec2 center = vec2(0.5,0.5);\n” +

” float dist = length(texCoord−center);\n” +

” const float offset = 1.0 / 512.0;\n” +

” vec4 color = texture2D(tex0, texCoord);\n” +

” if (dist>” + dist + ”) {\n”;

for ( int i=−1; i<=1; i++) {

for ( int j=−1; j<=1; j++) {

if ( i!=0 || j!=0)

s +=

” color += texture2D(tex0, ” +

”texCoord + vec2(” + radius∗i +

”.∗ offset , ” + radius∗j + ”.∗offset ));\n”;

}

}

return s +

” color /= 9.;\n” +

” }\n” +

” gl FragColor = color;\n” +

”}”;

}

Listing 3 Java code to return the shader code for ”blurred

pictures”.

public String sourceMT(int dx, int dy) {

return

”uniform sampler2D tex0, tex1;\n” +

”void main(void) {\n” +

” const float offset = 1.0 / 512.0;\n” +

” vec2 texCoords = gl TexCoord[0].st;\n” +

” vec4 a = texture2D(tex0, texCoords);\n” +

” vec4 b = texture2D(tex1, texCoords + vec2(” +

( float )dx + ”∗offset, ” + (float)dy +

”∗offset ));\n” +

” if (length(a)>0.1 && length(b)>0.1)\n” +

” gl FragColor = vec4(1.0−10.0∗clamp(

length(a−b ),0.0,0.1));\n” +

” else\n” +

” gl FragColor = vec4(0.0);\n” +

”}”;

}

Listing 4 Java code to return the shader program for ”MT-

cell pictures” as a string.

The previous functions can be called to gen-

erate shader source code on-the-fly but it needs

to be compiled and executed by an Effect object
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to be effective. The Java fragment of listing 5

defines several filters and their relations. By up-

dating the effects in the right order (in this case, the

ascending order on the array index), all filters can be

applied for each incoming frame. Using the library

via the Effect object, the user only needs to de-

fine the various bindings between the textures

and which programs need to be applied. Any

change in this code will be reflected by different

intermediate and output textures. Displaying ar-

bitrary generated textures can be performed by

rendering them on an arbitrary OpenGL prim-

itive. Although they are not reproduced in this

paper, the library also provides abstractions for

this aspect, facilitated by the recent integration

of JOGL with the standard Java2D graphics pack-

age.

int [][] speed = new int [][]{

{ 2, 2},{−2, 0},{ 2, 0},{ 0,−2},

{ 0, 2},{−1, 0},{ 1, 1},{ 0, 1}

};

float [] blur = new float[]{0.1 f , 0.2f , 0.3f};

Effect .setGL(gl);

effects = new Effect[2+blur.length+speed.length];

effects [0] = new Effect(1,width, height);

effects [0]. setName(”Input”);

int off = 1;

for ( int i=0; i<blur.length ; i++) {

int index = off+i;

effects [index] = new Effect(1,width, height);

effects [index ]. setName(”Retina blur ” + index);

source = sourceRetinaBlur(blur[i ], i+1);

effects [index ]. setShader(source);

effects [index ]. setTextures(new Effect[]{

effects [index−1]},new int[]{0});

}

off += blur.length;

effects [ off ] = new Effect(2,width, height);

effects [ off ]. setName(”On−off cells”);

source = sourceOnOff();

effects [ off ]. setShader(source);

effects [ off ]. setTextures(new Effect[]{

effects [ off−1]},new int []{0});

off++;

for ( int i=0; i<speed.length; i++) {

int index = off+i;

effects [index] = new Effect(1,width, height);

effects [index ]. setName(”MT cells”);

source = sourceMT(speed[i][0],speed[i ][1]);

effects [index ]. setShader(source);

effects [index ]. setTextures(new Effect[]{

effects [ off−1], effects [ off−1]},new int[]{0,−1});

}
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Listing 5 Main java source code configuring the effect

pipeline.

Finally, though the above lines are all the user must

be concerned with when configuring filters and combin-

ing them, the listing 6 is provided to show how the

computations are made on the graphics card and the tex-

tures organized. The detailed and commented func-

tions are the central part of the library, demon-

strating that a few lines of code are enough to

parallelize complex operations on 2D discrete streams.

The full library will be distributed as open

source. A package as well as a detailed technical

tutorial should be available on the author’s re-

search webpage (http://quinton.perso.enseeiht.

fr). Do not hesitate to contact the author in case

of unavailability.
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

//−−−−−−−−−−−−−−−−−−−−−−− Effect class (fragments) −−−−−−−−−−−−−−−−−−−−−−−−−−

//−−−−−−−−−−−−−−−−−− shader program configuration and execution −−−−−−−−−−−−−−−−−−−−

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Effect [] in texs ; // input source effects (dynrather than directly referencing the textures )

int [] in times ; // relative time to processed ”frame” for each input texture (0,−1,...)

int [] out texs; // array of generated output texture (length = time window required)

int out current = 0; // current time index (frame in the cyclic buffer)

int width, height; // dimensions of the output texture

int shader = −1; // no associated shader at initialization (referenced by a program index on the card)

/∗∗ Constructor ∗/

public Effect( int time window, int width , int height ) {

width = width ; // width of the output texture

height = height ; // height of the output texture

// Generate the new textures ( effect output)

out texs = new int[time window]; // cyclic buffer of indexes to access the textures

gl .glGenTextures(time window,out texs,0); // allocate texture indexes on the graphics card

for ( int o : out texs) { // configure the texture OpenGL object (color, size , transformations ...)

gl .glBindTexture(GL.GL TEXTURE 2D,o); // define the current texture index

gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MIN FILTER, GL.GL NEAREST);

gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MAG FILTER, GL.GL NEAREST);

gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE WRAP S, GL.GL CLAMP);

gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE WRAP T, GL.GL CLAMP);

gl .glTexImage2D(GL.GL TEXTURE 2D,0,GL.GL RGBA8,width,height,0,GL.GL RGB,GL.GL FLOAT,null);
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}

}

/∗∗ Set the associated shader program ∗/

public void setShader(String source) { // the input string is the GLSL source code

shader = gl.glCreateProgramObjectARB(); // allocate a new program index

// Create the fragment program (through the pixel pipeline )

int fshader = gl.glCreateShaderObjectARB(GL.GL FRAGMENT SHADER ARB); // index for compilation

gl .glShaderSourceARB(fshader,1,new String[]{source},null,0); // define the source code

gl .glCompileShaderARB(fshader); // compile the source code

int [] compiled = new int[1]; // array needed to store the compilation status with OpenGL bindings

gl .glGetObjectParameterivARB(fshader, GL.GL OBJECT COMPILE STATUS ARB, compiled, 0); // status?

if (compiled[0]==GL.GL FALSE) { // could not compile

System.out.println(”Shader ’”+ name + ”’ could not be compiled\n”); // notice the user

int [] length = new int[1]; // array to get the log length

gl .glGetObjectParameterivARB(fshader, GL.GL OBJECT INFO LOG LENGTH ARB, length, 0);

if (length[0]>1) { // additional information is available

byte [] info log = new byte[length[0]]; // buffer to store the text

int [] info length = new int[1]; // array to store the effective length read

gl .glGetInfoLogARB(fshader, length[0], info length, 0, info log , 0); // read info

System.out.println(”GLSL Validation >> ” + new String(info log)); // display info to the user

}

shader = −1; // the shader was not correctly loaded and no functionel shader index is defined

} else {

gl .glAttachObjectARB(shader,fshader); // attach the shader object to the program

gl .glLinkProgramARB(shader); // link the shader on the graphics card

int [] progLinkSuccess = new int[1]; // array to store the linking status

gl .glGetObjectParameterivARB(shader,GL.GL OBJECT LINK STATUS ARB,progLinkSuccess,0);
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if (progLinkSuccess[0]==GL.GL FALSE) { // could not link

System.out.println(”Shader ’”+ name + ”’ could not be linked\n”); // notice the user

shader = −1; // the linking was not succesful , no functionel shader index is defined

}

}

}

/∗∗ Switch the texture to next time/frame within the cyclic buffer ∗/

public void switchTexture() {

out current = (out current+1)%out texs.length; // only changing the index avoids memory transfers

}

/∗∗ Execute the shader program and stores the result in graphics memory ∗/

public void execute() {

// switch to next frame for this effect (another reason why the ordonancing is necessary)

switchTexture();

// try to execute the shader to produce a new frame

if (shader!=−1 && in texs!=null) { // are the inputs and the shader correctly defined?

gl .glUseProgramObjectARB(shader); // activate the shader program

boolean error = false ; // boolean to store if binding errors happen with the input textures

for ( int i=0; i<in texs.length; i++) { // run through all input textures

int shader in tex = gl.glGetUniformLocationARB(shader, ”tex” + i); // get the sampler uniform variable

if (shader in tex==−1) { // an error occured, it is impossible to bind the texture

System.out.println(”Can not get the parameter : tex” + i + ”\n”); // notice the user

error = true; // we may stop without executing the program (inputs are incorrect )

} else { // we can set the input texture

gl .glActiveTexture(GL.GL TEXTURE0+1+i); // activate the correct texture in graphics memory

gl .glBindTexture(GL.GL TEXTURE 2D, in texs[i].getTexture(in times[i])); // bind texture & input
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gl .glUniform1iARB(shader in tex,1+i); // bind input & variable

}

}

if (! error) { // all inputs could be bound correctly

gl .glBegin(GL.GL QUADS); // draw a ”screen quad” to go through the pipeline and apply the effect

gl .glTexCoord2f(0, 0); gl .glVertex3f(−1, −1, −0.5f);

gl .glTexCoord2f(1, 0); gl .glVertex3f( 1, −1, −0.5f);

gl .glTexCoord2f(1, 1); gl .glVertex3f( 1, 1, −0.5f);

gl .glTexCoord2f(0, 1); gl .glVertex3f(−1, 1, −0.5f);

gl .glEnd();

}

// disable the shader program (so other operations using the pipeline can be performed normally)

gl .glUseProgramObjectARB(0);

}

// finally copy the generated frame buffer into the ”current time” output texture

// ( if the textures were not correctly bound, we initialize the output with a black picture)

gl .glActiveTexture(GL.GL TEXTURE0); // activate the output texture

gl .glBindTexture(GL.GL TEXTURE 2D, getTexture(0)); // bind the output with the texture

gl .glCopyTexSubImage2D(GL.GL TEXTURE 2D,0, 0, 0, 0, 0,width,height); // copy data

// (the cost of the copy can be avoided with the render−to−texture option of recent cards)

}

Listing 6 Effect java class source code fragments handling the shader program configuration and execution in java.
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