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A generic library for structured real-time computations GPU implementation applied to retinal and cortical vision processes

Most graphics cards in standard personal computers are now equipped with several pixel pipelines running shader programs. Taking advantage of this technology by transferring parallel computations from the CPU side to the GPU side increases the overall computational power even in non graphical applications by freeing the main processor from an heavy work. A generic library is presented to show how anyone can benefit from modern hardware by combining various techniques with little hardware specific programming skills. Its shader implementation is applied to retinal and cortical simulation. The purpose of this sample application is not to provide a correct approximation of real center surround ganglion or middle temporal cells, but to illustrate how easily intertwined spatiotemporal filters can be applied on raw input pictures in real-time. Requirements and interconnec-

Introduction

Whether one tries to implement biological or artificial vision systems, low-level processes are massively parallel. Visual perception is considered active in frameworks such as interactivism, enaction or ecological vision. Such approaches introduce temporal patterns of local anticipations in the retinal field resulting from eye saccades, body movements or environment dynamics. To some extend, top-bottom modulations provide a way to reduce computations, concentrate on specific features and cope with environmental/perceptual noise. Yet unanticipated motion, rapid changes in brightness or any striking event relative to current activity attract perception and must be processed to be taken into account.

When high resolution frames are fully filtered, segmented and analyzed, for example when using computer vision algorithms such as edge/feature point detectors or motion estimators, the high computational load required is obvious. Modeling retinal/cortical processes reproducing center surround ganglion cells or middle temporal (MT) cells behavior on wide receptive fields also introduces large-scale computations due to the variability of parameters such as speed, direction or receptor field size. This article does not introduce a new technology nor algorithm, but combines different techniques and interfaces different programming languages to produce a portable generic library which can be used and extended by anyone without any knowledge in the optimization and graphics card programming fields. Though this li-brary might be used as is, source code is provided not only to show how the wrapping of hardware specific functions is done, but also to convince the reader that good performance can be achieved at low cost and with little effort.

The library architecture consists of several layers manipulating filters. Filters not already implemented can be defined by the user in a standard language, then called from a script or a graphical user interface. The library then structures, orders and applies the filters on the fly depending on temporal and spatial dependencies.

The lowest level layer can target central processing units (CPU) or graphics processing units (GPU) depending on available hardware. The library has been partly ported to support the Cell Broadband Engine and take advantage of its synergistic processing elements. The huge benefit from using vector instructions and such parallel ar-chitectures is now affordable as the Cell BE is at the core of the Playstation 3 (installing Linux and the IBM SDK is however required). But since PCs with powerful graphics cards are widespread today, the shader implementation will be detailed.

Recent changes and extensions on graphics cards now allow us to implement parallel algorithms and use the GPU rather than the CPU for real-time applications and higher performances. Many companies and laboratories are investigating graphics hardware capabilities for general purpose computations but this article concentrates on how to easily make the most of it in a generic way for vision processes which share similarities with the original aim of graphics card pipelines. Though several libraries exist for general purpose computations using graphics hardware (GPGPU) such as RapidMind (previously known as Lib Sh) [START_REF] Co | A unified development platform for Cell, GPU, and multi-core CPUs[END_REF], Brook [START_REF] Buck | Brook for GPUs: stream computing on graphics hardware[END_REF] or CUDA [START_REF]CUDA Zone on NVidia website[END_REF], they deal with data streams rather than pictures, integrate complex optimizations and include abstraction layers to be effective on any application. On the other hand, high level image processing frameworks such as CoreImage [START_REF]CoreImage on Apple website[END_REF] or OpenVIDIA [START_REF] Fung | OpenVIDIA: parallel GPU computer vision[END_REF], neither generally provide access to intermediate results, handle time dependencies by default nor support arbitrary hardware. Of course many task specific GPU enabled applications have also been developed across the world [START_REF] Fung | OpenVIDIA: parallel GPU computer vision[END_REF][START_REF] Kim | Gain adaptive real-time stereo streaming[END_REF][START_REF] Sinha | Feature tracking and matching video using programmable graphics hardware[END_REF], but this paper is an attempt to find a golden mean between generality and task dependence in the field of vision.

The portable implementation presented here is coded in Java 1.6 using JOGL (Java bindings for OpenGL API), runs on low cost computers, allowing anyone to implement and apply spatial and temporal filters on any input source (computer generated or captured). Any intermediate output is stored as a texture and can be further processed or extracted on request. As long as the user does not ask for a transfer to the computer main memory, all computations are performed on the graphics card for speed improvement. Even if the hardware is in constant evolution (render-to-texture for instance is now widespread), the reader inclined to know the specificities and limitations of a GPU compared to a standard CPU might read the paper of Michael Shantzis on the subject [START_REF] Shantzis | A model for efficient and flexible image computing[END_REF]. An example of application in the field of retinal and cortical processes is detailed throughout this article. Although its purpose is neither to give an accurate description of biological processes nor to give a full account of how to model and optimize such processes, it illustrates the main capabilities of the library.

Theoretical framework integration

Fast visual processes can be useful in any framework and a generic library needs to be compatible with all.

The variability in vision theories is illustrated by the interactivist framework [START_REF] Bickhard | The emergence of representation in autonomous embodied agents[END_REF][START_REF] Buisson | A rhythm recognition computer program to advocate interactivist perception[END_REF], implying a radical shift in the requirements for a vision library.

Considering this approach, concepts and objects emerge from a network of interactions, each continuously an-
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Shader source code Output texture ticipating events resulting from taken actions. What is called events can be the activity of other internal processes or direct perceptions from various modalities. It is quite similar to Jean Piaget's sensori-motor theory [START_REF]The Origins of Intelligence in Children[END_REF] or Gibson's affordance theory [START_REF] Gibson | Perception of the Visual World[END_REF][START_REF] Gibson | The ecological approach to visual perception[END_REF]. More specifically when applied to vision, it shares many aspects of O'Regan's conclusions [START_REF] O'regan | Solving the "real" mysteries of visual perception : the world as outside memory[END_REF][START_REF] O'regan | A sensorimotor account of vision and visual consciousness[END_REF]. Local signals coming out of the optical nerve as well as higher-level features can be anticipated when eye saccades are performed. Though saccades might be considered as hindering the already uneven visual perception, several studies focus on the usefulness and intentionality of saccades [START_REF] Wilkie | Eye-movements aid the control of locomotion[END_REF][START_REF] Mackay | Visual stability and voluntary eye movements[END_REF]. For example when being exposed to a visual scenery, a human will recognize objects corresponding to correctly regulated interactions with mostly satisfied anticipations. This kind of perception is normative : validity evaluation is relative within the set of learned concepts and does not require any homonculus to tell whether the matching is correct. If the context is unambiguous enough, there is no need for further exploration as soon as the activity in a highly connected part of the network, corresponding to a concept, starts to rise above the others. Moreover due to regulation and relative comparison, such processes are highly resistant to noise and easily adapt to variations in the environment. The resulting behavior also allows reducing the evoked potentialities space, concentrating on specific features which are contextually relevant [START_REF] Kuhn | Last but not least -magic and fixations : Now you don't see it, now you do[END_REF]. For instance when walking in a crowd or driving in a dense traffic, human beings do not try to analyze the incredible amount of information that is available to them just by gazing around. A goaloriented adapted behavior might consist in anticipating trajectories, avoiding obstacles, speeding up or slowing down, but certainly not in counting the number of persons dressed in white or reading every car plate, what might nevertheless be feasible [START_REF] Wann | How do we control high speed steering? Optic flow and beyond book contents[END_REF].

Even if many recent theories [START_REF] Engel | Dynamic predictions: Oscillations and synchrony in top-down processing[END_REF][START_REF] Vaina | Functional neuroanatomy of biological motion perception in humans[END_REF] imply top-down modulations and avoid combinatory explosion when decomposing and evaluating the entire field of view, bottomup processes are still needed to learn from and react to salient features in the environment. Additionally, lowlevel perceptive patterns are fast paced and less stable compared to abstract constructions of the mind [START_REF] Hawkins | On Intelligence[END_REF]. Because of the high number of concurrent processes that might pick up information and match anticipations in the field of view, taking advantage of hardware optimizations to rapidly process parts of the sensors input should therefore be efficient.

In a neurobiological modeling perspective, though the visual cortex cells organization has been studied for a long time [START_REF] Hubel | Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[END_REF], reproducing vision processes on computer in real-time with a large input flow has a lot of advantages [START_REF] Bálya | Retina model with real time implementation[END_REF]. For instance, simulating MT-cells behavior may help to understand their origins and interactions with other layers of the cortex. More specifically, these are oriented speed detectors, only responding to a given range of directions and speeds. Their behavior can be interpreted as proto-anticipatory in that the spikes of each input cell are anticipated at different times, based on the MT-cell connections to lower cortex areas (figure 1). It is quite robust to noise and allows the perception of speed even in complex motion [START_REF] Clifford | The perception and discrimination of speed in complex motion[END_REF]. Going on predicting blob movements relatively to actions rather than falling back to standard segmentation methods for higher abstraction levels might help to cope with prob-lems encountered in real-time complex applications [START_REF] Basille | Interactivist navigation[END_REF][START_REF] Díaz | Optical flow for cars overtaking monitor : the rear mirror blind spot problem[END_REF].

Whatever may be a correct account of biological vi- Another example displaying additional capabilities of shader programs can be found in the annex. Though the understanding of given source code is not at all required to grasp the interest of combining high level languages (such as Java or C++) with shaders, it might be relevant for those who want to investigate deeper in the subject or generate their own shader programs on the fly at runtime.

Multiple processes

All features concerning effects sequences and temporal aspects will now be developed on a retinal/cortical pro-texture Reentering Shader for level 2 blur Shader for level 1 blur ... cesses set. As seen in previous section, every effect can be defined by its source code and the mapping of its input textures. Yet when applying several effects, their dependencies are to be taken into account. Though the source code is not included and some operations should be performed differently for optimization purpose, the set presented here has been chosen to show the possible interactions between effects.
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PERT ordering

The ordering of the shaders execution is obtained using a specialized PERT algorithm. The dependency graph is obtained using a single rule once all the effects have been configured independently. A dependency is introduced if an input texture is the output of another effect computed at current time (i.e. frame). Dependencies are represented as arrows on figure 7, the effect at the end of the arrow depending on the source. The cost for every dependency is set to 1, the goal being only to order the computations to avoid facing undefined input textures and to detect user graph conception mistakes.

When building the PERT graph, all dependencies with textures computed during previous execution cycles are excluded. For example on figure 7, MT only depends on On-off because of the use of its output at current time t, whereas there is no self-dependency for Retina, the persistence coming from the Retina output at time t -1.

Once the algorithm terminates without returning an error, the shaders are guaranteed to run correctly on well defined and updated textures. The number present next to an effect on the figure indicates how many effect layers are to be executed for it to perform successfully. Then for each update cycle, all shaders are therefore executed by following the ascending order on layers. The ordering within each layer is not relevant. modifications. Therefore using graphics card native assembly language or any non portable low level language might only benefit to the expert programmer, but would not serve the purpose of any portable high level library. 

Complexity

The first diagram on figure 10 displays results from computations on the same picture sequences and an increasing number of processes. The other one runs the same shader processes on larger and larger textures. The curves give the overall evolution and display the limitations relatively to the graphics card (memory and pixel pipelines).

In the case of extreme values for parameters, the high standard deviation results from recurrent and sudden huge variations around a relatively low mean value, due to memory transfers and reallocations. Still when limiting the number of effects to the graphics card capabilities and inputting DVD video resolution, the evolution is almost linear.

Moreover when keeping parameters so as to avoid performance drop on some frames, the overall time cost of updating all the processes remains below 10 milliseconds. It allows the graphics card to perform additional computations to generate pictures or manipulate 3D models for example. Meanwhile the main processor is avail-able for other tasks, turning this option into a good choice whenever an application requires massive parallel computations, even when they are not graphical.

Conclusion

Even if shaders are quite widespread today and the cur- int //--------------------------------------------------------------//-----------------------Effect class (fragments) --------------------------//------------------shader program configuration and execution -------------------- 
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 1 Fig. 1 Simplified one dimensional representation of anticipations performed by a Middle Temporal cortical cell (MT). (a) Inputs cells (1 and 2) get activated when an object moves in the field of view. The higher the input cell index (from 1 to 5), the lower the propagation time to the MT cell. (b) An assimilated movement will lead to the activation of the MT cell resulting from the synchrony of the signals. (c) Any movement that is either too fast, too slow or inverse will not lead to recognition.
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 2 Fig. 2 Textures combination by a GPU pixel shader.
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 12 sion, easily testing hypotheses and adjusting parameters is of prime importance. By taking advantage of graphics cards computational power, one gets the opportunity to compare the results for different parameters values in real time. Moreover the library described in the next sections can also compile and reorganize filters on the fly, making it flexible enough to interactively and totally change filters source code and structure, avoiding the painful process of rebuilding an entire project. Finally, approaches based on perception dynamics or anticipation might benefit from a software framework where time dependencies are intrinsically managed. 3 Implementation 3.1 Single filter/process All filters have the same generic structure allowing them to handle several input textures and produce a single output texture with arbitrary components. Consecutive computed output textures are stored in a cyclic buffer to avoid memory and time consuming copies, which size is computed based on filter dependencies. Figure 2 represents how textures are combined by a single GPU pixel shader program. The configuration of the graphics card and all OpenGL operations are hidden to the end user which only has to implement the shader program (us-ing for instance GLSL = GL Shading Language) and to specify the input/output texture mappings. For example on the diagram, a differentiation is applied between the textures given as input. These input textures might be successive output frames from any filter, therefore also stored in a cyclic buffer. The associated shader source code could be : uniform sampler2D tex0,tex1; void main(void) { vec2 coords = gl TexCoord[0].st; vec4 a = texture2D(tex0,coords); vec4 b = texture2D(tex1,coords); gl FragColor = a-b; } Differenciation pixel shader source code. All shader programs are written in GLSL. The so-called uniform variables are constant parameters for the shader that can be manipulated between executions, either by the card or the programmer. In the associated Java program controlling the execution of the filter, the shader is loaded on the graphics card and the textures are mapped to tex0 and tex1 using an Effect object. The texture mapping and source code can be easily modified during the execution of the Java program, giving a high flexibility for tests. new Effect(n,w,h) creates an effect that memorize n consecutive frames with dimensions (w,h). The difference effect in listing 2 uses the camera effect output textures as input. This camera effect just stores raw input data in textures, allowing prefetching and optimal memory allocation. The last line maps the camera texture at current time t to tex0 and the camera texture at discrete time t-1 to tex1. Effect camera = new Effect(2,w,h); camera.setName("Input"); Effect difference = new Effect(1,w,h); difference .setName("Differenciation"); difference .setShader("uniform [...] a-b; }"); difference .setTextures( new Effect[]{camera,camera}, new int []{0,1}); Differenciation at Java level.
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 3 Fig. 3 Blur computation using either a single or 2-pass algorithm.
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 6 Fig. 6 On center off surround ganglion cells extracting dynamical contrasts.

Fig. 8

 8 Fig. 8 Retina input simulation.
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 7 Fig. 7 Effects network to PERT graph conversion for shaders execution ordering. The red figures on the lower part correspond

  The tests have been performed on a laptop running Windows XP SP2 with an Intel Pentium M 735, 512Mo of DDR333 and a Mobility Radeon 9700. The 128Mo graphics card has been developed on a M11 architecture therefore possessing 4 pixel pipelines achieving 12 pixel shaders operation per clock cycle. Though this card is far less powerful than the graphics boards released in early 2008, the results using shaders are still impressive.Using shaders, there are limitations on the number of operations in source code or textures used as input (texture unit mapping). Nevertheless they tend to vanish as the generations evolve or can be avoided by fractionating the shader program. The render-to-texture feature now available on most of the graphics cards has not been used to produce the following tables, hence limiting the theoretical performance.

4. 1 Fig. 10

 110 Fig. 10 Time performances depending on the number of effects to process for every frame and the size of the textures. The mean values and standard deviations have been integrated over a large number of frame ( 1000).
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 11 Fig. 11 Performance comparison between OpenGL implementations, using CPU or GPU Shaders for effects. Bars corresponds to mean times to update all the processes; error bars represent standard deviation.
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 34 rent paper focuses on this implementation of the library, similar development can be made on any multi-threaded or parallel architecture. Since such architectures are invading the personal computer market, this paper just tried to convince the reader that they can be transparent on specific tasks particularly well adapted to parallelism.Hardware/software co-design or direct implementation on FPGA may be more and more flexible and provide cheap solutions for heavy computations, they still required more knowledge than just standard programming skills. All the work done in the field of automatic parallelization and hardware abstraction is simply amazing but still not intuitive or mature enough to be widespread. Though the presented library is neither a general solution nor an optimal one, it has been used since November 2006 in our laboratory for low-level vision processes simulation. This narrow and task specific approach however allows the user to easily manipulate high level objects such as picture sequences, transform them and combine them in real time through a complex but intuitive relation based graph structure. The library therefore efficiently combines existing techniques, namely general purpose computations on GPU, code and context swapping on the GPU, cyclic buffering and PERT ordering. Annex In this section are gathered pieces of code which can greatly help in understanding or developing a similar library. For simplicity and explanatory reasons, the graph generation and process ordering algorithms are not detailed. For the same reasons, all interactive graphical user interfaces to add, modify or remove filters on the fly are not apparent. Additional functions are of course necessary to generate or capture the original input frames as well as to display the results, but these aspects are out of the scope of this paper. The first Java source fragments provided on listings 3 and 4 define functions to produce shader source strings. This way, effects can be parameterized from the Java source code without any intervention on external files (external files may still be imported if provided by third party developers). Such parameters range from the direction and speed for the MT simulation to the range for the blurring. These samples do not take advantage of the shaders capability to handle additional uniform variables, making it possible to modify the process without reloading the program (see listing 1 for a definition). Nevertheless the fast generation and upload of the program using Java allows to totally change the sequence of instructions and test more complex variations. The generated filters are simplified compared to more biologically realistic processes. They for example do not take into account the integration of neuron inputs over a time window. public String sourceRetinaBlur(float dist , int radius) { String s = "uniform sampler2D tex0;\n" + "void main(void) {\n" + " vec2 texCoord = gl TexCoord[0].xy;\n" + " const vec2 center = vec2(0.5,0.5);\n" + " float dist = length(texCoord-center);\n" + " const float offset = 1.0 / 512.0;\n" + " vec4 color = texture2D(tex0, texCoord);\n" + " if ( dist>" + dist + ") {\n"; for ( int i=-1; i<=1; i++) { for ( int j=-1; j<=1; j++) { if ( i!=0 || j!=0) s += " color += texture2D(tex0, " + "texCoord + vec2(" + radius * i + ". * offset , " + radius * j + ". * offset ));\ n"; } } return s + " color /= 9.;\n" + " }\n" + " gl FragColor = color;\n" + "}"; Java code to return the shader code for "blurred pictures". public String sourceMT(int dx, int dy) { return "uniform sampler2D tex0, tex1;\n" + "void main(void) {\n" + " const float offset = 1.0 / 512.0;\n" + " vec2 texCoords = gl TexCoord[0].st;\n" + " vec4 a = texture2D(tex0, texCoords);\n" + " vec4 b = texture2D(tex1, texCoords + vec2(" + ( float )dx + " * offset, " + (float )dy + " * offset ));\ n" + " if (length(a)>0.1 && length(b)>0.1)\n" + " gl FragColor = vec4(1.0-10.0 * clamp( length(a-b ),0.0,0.1));\ n" + " else \n" + " gl FragColor = vec4(0.0);\n" + "}"; Java code to return the shader program for "MTcell pictures" as a string. The previous functions can be called to generate shader source code on-the-fly but it needs to be compiled and executed by an Effect object to be effective. The Java fragment of listing 5 defines several filters and their relations. By updating the effects in the right order (in this case, the ascending order on the array index), all filters can be applied for each incoming frame. Using the library via the Effect object, the user only needs to define the various bindings between the textures and which programs need to be applied. Any change in this code will be reflected by different intermediate and output textures. Displaying arbitrary generated textures can be performed by rendering them on an arbitrary OpenGL primitive. Although they are not reproduced in this paper, the library also provides abstractions for this aspect, facilitated by the recent integration of JOGL with the standard Java2D graphics package.

Finally, though the

  above lines are all the user must be concerned with when configuring filters and combining them, the listing 6 is provided to show how the computations are made on the graphics card and the textures organized. The detailed and commented functions are the central part of the library, demonstrating that a few lines of code are enough to parallelize complex operations on 2D discrete streams.The full library will be distributed as open source. A package as well as a detailed technical tutorial should be available on the author's research webpage (http://quinton.perso.enseeiht. fr). Do not hesitate to contact the author in case of unavailability.

  [] in texs ; // input source effects (dynrather than directly referencing the textures ) int [] in times ; // relative time to processed "frame" for each input texture (0,-1,...) out texs = new int[time window]; // cyclic buffer of indexes to access the textures gl .glGenTextures(time window,out texs,0); // allocate texture indexes on the graphics card for ( int o : out texs) { // configure the texture OpenGL object (color, size , transformations ...) gl .glBindTexture(GL.GL TEXTURE 2D,o); // define the current texture index gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MIN FILTER, GL.GL NEAREST); gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE MAG FILTER, GL.GL NEAREST); Set the associated shader program * / public void setShader(String source) { // the input string is the GLSL source code shader = gl.glCreateProgramObjectARB(); // allocate a new program index // Create the fragment program (through the pixel pipeline ) int fshader = gl.glCreateShaderObjectARB(GL.GL FRAGMENT SHADER ARB); // index for compilation gl .glShaderSourceARB(fshader,1,new String[]{source},null,0); // define the source code gl .glCompileShaderARB(fshader); // compile the source code int [] compiled = new int[1]; // array needed to store the compilation status with OpenGL bindings gl .glGetObjectParameterivARB(fshader, GL.GL OBJECT COMPILE STATUS ARB, compiled, 0); // status? System.out.println("GLSL Validation >> " + new String(info log)); // display info to the user } shader = -1; // the shader was not correctly loaded and no functionel shader index is defined } else { gl .glAttachObjectARB(shader,fshader); // attach the shader object to the program gl .glLinkProgramARB(shader); // link the shader on the graphics card

	}
	}
	/ * *

int [] out texs ; // array of generated output texture (length = time window required) int out current = 0; // current time index (frame in the cyclic buffer ) int width, height; // dimensions of the output texture int shader = -1; // no associated shader at initialization ( referenced by a program index on the card) / * * Constructor * / public Effect ( int time window, int width , int height ) { width = width ; // width of the output texture height = height ; // height of the output texture // Generate the new textures ( effect output)

gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE WRAP S, GL.GL CLAMP); gl .glTexParameteri(GL.GL TEXTURE 2D, GL.GL TEXTURE WRAP T, GL.GL CLAMP); gl .glTexImage2D(GL.GL TEXTURE 2D,0,GL.GL RGBA8,width,height,0,GL.GL RGB,GL.GL FLOAT,null); if (compiled[0]==GL.GL FALSE) { // could not compile System.out.println("Shader '"+ name + "' could not be compiled\n"); // notice the user int [] length = new int

[START_REF]CoreImage on Apple website[END_REF]

; // array to get the log length gl .glGetObjectParameterivARB(fshader, GL.GL OBJECT INFO LOG LENGTH ARB, length, 0); if (length[0]>1) { // additional information is available byte [] info log = new byte[length [0]]; // buffer to store the text int [] info length = new int

[START_REF]CoreImage on Apple website[END_REF]

; // array to store the effective length read gl .glGetInfoLogARB(fshader, length[0], info length, 0, info log , 0); // read info int [] progLinkSuccess = new int

[START_REF]CoreImage on Apple website[END_REF]

; // array to store the linking status gl .glGetObjectParameterivARB(shader,GL.GL OBJECT LINK STATUS ARB,progLinkSuccess,0);
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if (progLinkSuccess[0]==GL.GL FALSE) { // could not link System.out.println("Shader '"+ name + "' could not be linked\n"); // notice the user shader = -1; // the linking was not succesful , no functionel shader index is defined if (! error) { // all inputs could be bound correctly gl .glBegin(GL.GL QUADS); // draw a "screen quad" to go through the pipeline and apply the effect gl .glTexCoord2f(0, 0); gl . glVertex3f(-1, -1, -0.5f); gl .glTexCoord2f(1, 0); gl . glVertex3f( 1, -1, -0.5f); gl .glTexCoord2f(1, 1); gl . glVertex3f( 1, 1, -0.5f); gl .glTexCoord2f(0, 1); gl . glVertex3f(-1, 1, -0.5f); gl .glEnd(); } // disable the shader program (so other operations using the pipeline can be performed normally) gl .glUseProgramObjectARB(0); } // finally copy the generated frame buffer into the "current time" output texture // ( if the textures were not correctly bound, we initialize the output with a black picture ) gl .glActiveTexture(GL.GL TEXTURE0); // activate the output texture gl .glBindTexture(GL.GL TEXTURE 2D, getTexture(0)); // bind the output with the texture gl .glCopyTexSubImage2D(GL.GL TEXTURE 2D,0, 0, 0, 0, 0,width,height); // copy data // (the cost of the copy can be avoided with the render-to-texture option of recent cards) } Listing 6 Effect java class source code fragments handling the shader program configuration and execution in java.