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Cooperative Visual-Inertial Sensor Fusion: the
Analytic Solution

Agostino Martinelli1, Alexander Oliva1, and Bernard Mourrain2

Abstract—This paper analyzes the visual-inertial sensor fusion
problem in the cooperative case of two agents. The paper
proves that, this sensor fusion problem, is equivalent to a
simple polynomial equations system that consists of several linear
equations and three polynomial equations of second degree. The
analytic solution of this polynomial equations system is easily
obtained by using an algebraic method. In other words, the paper
provides the analytic solution to the visual-inertial sensor fusion
problem in the case of two agents. The power of the analytic
solution is twofold. From one side, it allows us to determine the
relative state between the agents (i.e., relative position, speed and
orientation) without the need of an initialization. From another
side, it provides fundamental insights into all the theoretical
aspects of the problem. This paper mainly focuses on the first
issue. However, the analytic solution is also exploited to obtain
basic structural properties of the problem that characterize the
observability of the absolute scale and the relative orientation.
Extensive simulations and real experiments show that the solution
is successful in terms of precision and robustness.

Index Terms—Sensor Fusion; Visual-Based Navigation; Multi-
Robot Systems; Aerial Systems: Perception and Autonomy.

I. INTRODUCTION

THE problem of fusing visual and inertial data has been
extensively investigated in the past (e.g., [1], [2], [3], [4],

[5]). In this context, methods to obtain the absolute scale in
challenging conditions, have been proposed (e.g., [6], [7], [8]).
Recently, this sensor fusion problem has been successfully
addressed by enforcing observability constraints [9], [10], and
by using optimization-based approaches [11], [12], [13], [14],
[15], [16], [17]. These optimization methods outperform filter-
based algorithms in terms of accuracy due to their capability
of relinearizing past states. On the other hand, the optimization
process can be affected by the presence of local minima.
Deterministic solutions able to automatically determine the
state without initialization have also been introduced [7], [18],
and they can overcome this obstacle. Even more importantly,
the solution provided in [7] is not simply a closed-form
solution of the problem that does not need to be initialized.
The analysis in [7] established that the visual-inertial sensor
fusion problem is equivalent to a very simple Polynomial
Equation System (PES). In particular, this PES consists of
a single polynomial equation of second degree and several
linear equations. This PES can be easily solved in closed-form
and, this solution, is the analytic solution of the visual-inertial
sensor fusion problem in the case of a single agent. This
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analytic solution contains all the structural properties of the
problem. In particular, by studying this solution, the author of
[7] obtained a detailed analysis of the problem by providing all
the system singularities and minimal cases depending on the
trajectory, on the number of camera images and on the features
layout. The problem can have up to two distinct solutions in
its minimal cases.

Visual and inertial sensors have also been used in a co-
operative scenario (e.g., for cooperative mapping in [19]).
Very recently, the visual-inertial sensor fusion problem, in the
cooperative case of two agents, has been studied by focusing
on the following two theoretical issues ([20], [21], [22]):

1) Investigating its observability properties in order to
obtain the observable state in several conditions;

2) Obtaining a closed-form solution able to express the
relative state at a given time in terms of the visual and
inertial measurements acquired in a short time interval.

The first issue has fully been answered. The observable
state only consists of relative states between the agents, i.e.,
the relative position, speed and orientation. This result, first
obtained in [20], tells us that, starting from the measurements
delivered by the two IMUs and the two cameras during a
given time interval, we can reconstruct the above quantities.
Estimating other physical quantities (e.g., the absolute roll
and pitch angles of the first agent or of the second agent)
is not possible. In [21], [22] it was also proved that, the same
observable state, characterizes the case when only one of the
agents is equipped with a camera. Namely, the presence of
two cameras does not change the observability properties with
respect to the case of a single camera mounted on one of the
two agents1. Additionally, the observable state remains the
same even when the camera is a linear camera, i.e., it only
provides the azimuth of the other agent in its local frame.
Finally, this result is independent of the presence of a bias in
the inertial sensors.

The second issue was dealt with in [21], [22]. In particular,
[21], [22] provided a linear system where the unknowns are the
components of the relative state and the coefficients (i.e., the
matrix and the vector with the constant terms) only depend
on the visual and inertial measurements delivered during a
given time interval. By simply inverting this linear system, it
is immediate to obtain a closed-form solution of our problem.
This solution has the considerable advantage that it does
not need to be initialized. However, this is not the analytic

1Obviously, this does not mean that having an additional camera is useless
(e.g., it improves the precision on the estimated state, it makes more likely
that at least one agent observes the other, etc.)
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solution of the problem because the unknowns that satisfy the
aforementioned linear system are not independent.

The main goal of this paper is precisely to account for this
issue. In section II we define our system. This consists of two
agents equipped with an Inertial Measurement Unit (IMU) and
a monocular camera. We relax the assumption that one or more
features are available from the environment: we investigate the
extreme case where no point features are available. In section
III, we provide the main paper contribution. We prove that, by
characterizing the relative state with independent elements, the
vector of unknowns satisfies a PES instead of a linear system.
In particular, we obtain that the cooperative visual-inertial
sensor fusion problem, in the case of two agents, is equivalent
to a PES that consists of several linear equations and three
polynomial equations of second degree. This PES is solved
by using the method based on the Macaulay resultant matrices
[23] and can have up to eight distinct solutions in the minimal
case. This is the analytic solution of our problem. Therefore, it
allows us to obtain all the structural properties of the problem
(e.g., how the minimal cases, singularities and degeneracies
depend on the trajectories and on the number of camera
images). In section IV we perform a preliminary analysis
of the aforementioned PES by obtaining two basic structural
properties of the problem. Note that this analysis allows us to
investigate how the observability properties depend on the tra-
jectories. This is fundamental in many applications and, so far,
it has been discussed in the only-vision case [24]. Finally, we
also obtain that the analytic solution outperforms the closed-
form solution provided in [21], [22] in terms of precision and
robustness. This is shown in section V through simulations.
Finally, in section V we also evaluate the performance of the
analytic solution by using real data.

II. THE SYSTEM

We consider two rigid bodies that move in a 3D−environment.
We denote them by B1 and B2. Each rigid body is equipped
with an Inertial Measurement Unit (IMU), which consists of
three orthogonal accelerometers and three orthogonal gyro-
scopes. Additionally, both B1 and B2 are equipped with a
monocular camera. We assume that, for each rigid body, all
the sensors share the same frame. Without loss of generality,
we define the body local frame as this common frame. The
accelerometer sensors perceive both the gravity and the inertial
acceleration in the local frame. The gyroscopes provide the
angular speed in the local frame. Finally, the camera mounted
on B1 (or B2) provides the bearing of B2 (or B1) in its local
frame.
We adopt the following notations:
• P is the position of B2 in the local frame of B1;
• V is the relative velocity of B2 with respect to B1,

expressed in the frame of B1 (note that this velocity is not
simply the time derivative of P because of the rotations
accomplished by B1);

• R is the rotation matrix that characterizes the rotation
between the two local frames; specifically, for a vector
with given coordinates in the local frame of B2, we obtain
its coordinates in the local frame of B1 by pre multiplying
by R.

Additionally, we denote by A1, A2, Ω1 and Ω2 the accelera-
tions and the angular speeds perceived by ideal (noiseless and
unbiased) IMUs mounted on B1 and B2, respectively. Regard-
ing the acceleration, it includes both the inertial acceleration
and the gravity.
The first camera provides the vector P , up to a scale. The
scale is precisely the distance between B1 and B2 at the time
of the camera measurement. The second camera provides the
vector −RTP , up to a scale. Note that, in the special case
when the two cameras are synchronized, the scale coincides.
By using basic results on rigid body dynamics we obtain the
time derivative of the previous physical quantities (a complete
derivation is available in [21], [22]). They are:

Ṗ =
[
Ω1
]
× P + V

V̇ =
[
Ω1
]
× V +RA2 −A1

Ṙ =
[
Ω1
]T
×R+R

[
Ω2
]
×

(1)

where
[
Ω1
]
× and

[
Ω2
]
× are the skew-symmetric matrices

associated to Ω1 and Ω2, respectively.
The cooperative visual-inertial sensor fusion problem (from
now on CoVISF) is fully characterized by the dynamics
equations given in (1) and the two observation functions given
by the two vectors P and −RTP , up to a scale.

III. THE ANALYTIC SOLUTION

This section provides the main paper contribution. We show
that the problem described in section II is equivalent to a very
simple PES whose analytic solution can be easily obtained.

Let us consider a given time interval (tA, tB). Let us
denote by PA, VA and RA, the values of P , V and R
at time tA. These will be precisely the unknowns of the
aforementioned equations system. The fundamental feature of
this PES is that all its parameters (i.e., the coefficients of the
system, and the constant terms) only depend on the visual and
inertial measurements delivered in the time interval (tA, tB).
As a result, by solving this PES, we obtain the analytic
expression of PA, VA and RA in terms of the visual and
inertial measurements delivered in the time interval (tA, tB).
Note that, for a practical application, it is in general more
convenient to compute the state at tB (instead of tA). Since
all the equations are reversible in time, by using the unknowns
PB , VB and RB , i.e., the values of P , V and R at time tB , we
would obtain a comparable PES. On the other hand, we believe
that it is easier to follow the analytic derivation to obtain the
PES in the unknowns PA, VA and RA. Once obtained this
PES, we easily obtain the PES in PB , VB and RB (see section
III-C).

We start our derivation by introducing a new local frame
for each rigid body (i.e., one new frame for B1 and one new
frame for B2). Each new frame is defined as follows. It shares
the same origin with the original local frame. Additionally,
it does not rotate and its orientation coincides with the one
of the original frame at the time tA. From now on, we
will refer to this frame as to the new frame. Additionally,
we will refer to the original local frame, namely the one
defined at the beginning of section II, as to the original
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frame. Figure 1 displays the original and the new frame of
Bi (i = 1, 2). Specifically, in this figure, the considered rigid
body accomplishes a translation and rotation between time tA
and t. The original frame is in black. The new frame is in red
dashed line. The two frames coincide at time tA.

Fig. 1. Original and new local frame of Bi (i = 1, 2). The original frame
is attached to the rigid body and rotates with it. At time tA the two frames
coincide. The new frame does not rotate and its origin coincides with the
origin of the original frame at any time.

Let us introduce the following notation:
• ξ is the position of B2 in the new local frame of B1;
• η is the relative velocity of B2 with respect to B1,

expressed in the new local frame of B1;
• M1(t) is the orthonormal matrix that characterizes the

rotation made by B1 between tA and t ∈ (tA, tB);
in other words, it describes the difference in orientation
between the original and the new frame of B1 at a given
time t ∈ (tA, tB);

• M2(t) is defined as M1(t), but for B2.
By construction we have:

ξA ≡ ξ(tA) = PA ηA ≡ η(tA) = VA (2)

Additionally, M1(t) and M2(t) can be computed by integrat-
ing the following first order differential equations:

Ṁ1 =
[
Ω1
]T
×M1 Ṁ2 =

[
Ω2
]T
×M2 (3)

with initial conditions: M1(tA) = M2(tA) = I3, where I3 is
the 3 × 3 identity matrix (note that these two matrices can
be easily obtained from the measurements delivered by the
gyroscopes in the considered time interval).

From (1) we obtain the following dynamics: ξ̇ = η

η̇ = RAA2 −A1

ṘA = 0

(4)

where:
• A1 is the acceleration (gravitational and inertial) of B1

expressed in the first new local frame (i.e., A1 = M1A1);
• similarly, A2 = M2A2 .

Let us introduce the following notation (i = 1, 2):

βi(t) = [βi
x(t), βi

y(t), βi
z(t)]T =

∫ t

tA

∫ t′

tA

Ai(τ)dτdt′ (5)

Note that these quantities are directly provided by the IMU
measurements delivered in the interval (tA, t).

By integrating the second equation in (4) between tA and
a given t′ ∈ [tA, tB ] and by substituting in the first equation
in (4) and integrating again, we obtain:

ξ(t) = ξA + ηA(t− tA) +RAβ
2(t)− β1(t) (6)

Note that this equation provides ξ(t) as a linear expression of
15 unknowns, which are the components of ξA, ηA and the
matrix RA. These unknowns are not independent because the
matrix RA is orthonormal (i.e., it is characterized by only three
parameters instead of nine). We obtain the analytic solution of
CoVISF in two separate steps. In the former, we build a linear
system in these unknowns together with the unknown distances
when the cameras perform the measurements (section III-A).
We will call this linear system, the linear system associated
to CoVISF. It will be denoted by ΣLin. In the latter step,
we exploit the fact that RA is orthonormal and we end up
with a polynomial equation system that consists of three
polynomial equations of second degree and several linear
equations (section III-B). This PES will be denoted by P .

A. Linear system (ΣLin)

We distinguish the case when only B1 is equipped with a
camera, from the case when both B1 and B2 are equipped
with a camera. In this latter case we further distinguish the case
when the observations from the two cameras are synchronized
from the case where they are not.

1) Single camera: The camera on B1 provides the vector
P (t) = M1(t)ξ(t), up to a scale. We denote by λ(t) this scale
(this is the distance between B1 and B2 at the time t). We
have ξ(t) = λ(t)µ(t), where µ(t) is the unit vector with the
same direction of ξ(t). Note that our sensors (specifically, the
camera together with the gyroscope on B1) provide precisely
the unit vector µ(t). Indeed, the camera provides the unit
vector along P (t); then, to obtain µ(t), it suffices to pre
multiply this unit vector by [M1(t)]T .

We assume that the camera performs n observations at the
times tj , (j = 1, · · · , n), with t1 = tA and tn = tB . For
notation brevity, for a given time dependent quantity (e.g.,
λ(t)), we will denote its value at the time tj by the subscript
j (e.g., λj = λ(tj)). In this notation, equation (6) becomes:

λjµj = ξA + ηA(tj − tA) +RAβ
2
j − β1

j (7)

This is a vector equation, providing 3 scalar equations. Since
this holds for each j = 1, · · · , n, we obtain a linear system
of 3n equations in 15 + n unknowns. The unknowns are: (i)
The distances λ1, · · · , λn; (ii) The three components of ξA;
(iii) The three components of ηA; (iv) The nine entries of
the matrix RA. The linear system given in (7) is precisely
ΣLin when only B1 is equipped by a camera.

2) Two cameras: Let us consider now the case when also
B2 is equipped with a camera and, the measurements made
by this camera, occur at the times tj′ (j′ = 1, · · · , n′).

By proceeding as in III-A1 we obtain the following addi-
tional set of linear equations
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λj′νj′ = ξ′A′ + η′A′(tj′ − tA′) +R′A′β1
j′ − β2

j′ (8)

where the quantities ν, ξ′, η′, R′ are defined as µ, ξ, η, R
but by changing B1 with B2. In this case the solution consists
of the solutions of two independent problems. The only in-
teresting case occurs when the two cameras are synchronized.
In this case λjνj = −RT

Aξj . By substituting in this equation
ξj = λjµj we obtain:

RAνj = −µj (9)

Hence, in this case ΣLin is characterized by the linear
equations in (7) and (9).
We conclude this section by providing ΣLin in matrix form.
We have Mx = b with:

x = [ξTA, η
T
A, λ1, · · · , λn, (E1)T , (E2)T , (E3)T ]T ,

b = [0T3 , (β1
2)T , · · · , (β1

n)T , − µT
1 , · · · , − µT

n ]T

M =



I3 03×3 −µ1 03 · · · 03 03×9

I3 ∆2I3 03 −µ2 · · · 03 Γ2

· · · · · · · · · · · · · · · · · · · · ·
I3 ∆nI3 03 03 · · · −µn Γn

03×3 03×3 03 03 · · · 03 V1
· · · · · · · · · · · · · · · · · · · · ·

03×3 03×3 03 03 · · · 03 Vn


(10)

where 03 is the zero 3× 1 vector, 03×3 the zero 3× 3 matrix,
E1, E2, E3 are the three columns of RA, ∆j = tj − tA, Γj

is the 3×9 matrix block Γj ,
[
β2
xjI3 β2

yjI3 β2
zjI3

]
and

Vj is the 3× 9 matrix block Vj ,
[
νxjI3 νyjI3 νzjI3

]
.

In the case when only B1 is equipped by a camera, M and b
only include the first 3n lines.

B. Polynomial equation system (P) and its solution

So far, we have obtained a system of linear equations in 15+n
unknowns. In the case of a single camera, the equations are the
3n scalar equations given in (7). In the case of two cameras
synchronized we also have the 3n equations given in (9). On
the other hand, the unknowns are not independent since the
matrix RA is orthonormal. As a result, it is defined by three
parameters instead of nine. To account for this, we proceed
with the following three steps:

1) Elimination of ξA, ηA and λ1, · · · , λn from the linear
system by using part of its equations.

2) Quaternion parametrization of RA.
3) Reduction to a quadratic system in three unknowns.

First step: We start by eliminating ξA, ηA and λ1, · · · , λn.
This can be done by following several approaches. Basically,
we need to use 6 + n independent equations of the linear
system to express ξA, ηA and λ1, · · · , λn in terms of the
entries of RA and then substitute these expressions in the
remaining equations of the linear system. As a result, we
obtain a linear system in nine unknowns, which are the entries
of RA. We obtain this elimination, by using a QR factorization
of our linear system. Then, we use the last 6 + n equations
to obtain the components of ξA, ηA and λ1, · · · , λn in terms
of the nine entries of RA. In the case of a single camera,

the resulting system in the nine entries of RA consists of
3n− (6 +n) = 2n− 6 equations. In the case of two cameras,
it consists of 5n− 6 equations.
Second step: We use the following parametrization: RA =

 a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)i
2(ad+ bc) a2 − b2 + c2 − d2 2(cd− ab)i
2(bd− ac) 2(ab+ cd) a2 − b2 − c2 + d2


with a2 + b2 + c2 + d2 = 1.
Third step: By using this expression for the nine entries of
RA in the linear system obtained at the first step, we would
obtain a system of polynomial equations of second degree
in the four unknowns a, b, c, d. However, it is much more
preferable to eliminate one of the unknowns by proceeding as
follows. We set d = 1 and we obtain a system of polynomial
equations of second degree in the three unknowns a, b, c. By
doing this, the resulting matrix RA remains orthogonal, but not
orthonormal. We enforce this last condition by normalizing
the columns of the matrix at the end. Hence, we need to
solve a system of 2n − 6 (or 5n − 6 in the case of two
cameras) polynomial equations of second degree in the three
unknowns a, b, c. For that, we proceed into 2 separate steps.
In the first we extract three equations. We solve the system of
three polynomial in three unknowns by using the method in
[23] (see also [25]), which is based on the Macaulay resultant
matrices. Obviously, we discard all the solutions which are not
real. The number of real solutions are up to 8. Then, it suffices
to use a further equation (independent from the three extracted
at the beginning) to obtain a unique solution. In the second
step, we use this unique solution to initialize the minimization
of a cost function that is the square of the residual of the
entire equations system. Once a, b, c have been determined,
we obtain an orthogonal matrix with the expression given
above (where d = 1). We obtain the matrix RA by normalizing
the columns of this matrix. By substituting its entries in the
expressions obtained in the first (elimination) step, we finally
obtain also ξA, ηA and λ1, · · · , λn.

C. Polynomial equations system in PB , VB and RB

In order to obtain the PES in PB , VB and RB , we can proceed
exactly as above with the following two changes:

1) All the time integrals must be computed from tB instead
of tA. As a result, they are computed in the reversal time
direction.

2) The new frame on each body coincides with the local
frame at the final time tB instead of tA (and, conse-
quently, ξB = PB and ηB = VB).

In practice, instead of equation (7) we have:

λjµj = ξB + ηB(tj − tB) +RBβ
2
j − β1

j (11)

where β1
j and β2

j are given in (5) but with tB instead of tA and
the matrices M1(t) and M2(t) (t ∈ (tA, tB)) are obtained by
integrating (3) from tB to t. Finally, equation (9) remains the
same (with RB instead of RA) and the procedure in section
III-B remains the same.
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IV. BASIC STRUCTURAL PROPERTIES

On the basis of the analytic results derived in the previous
section it is possible to obtain all the structural properties of
CoVISF. In particular, it is possible to study how the number of
solutions of CoVISF depends on the relative motion between
the agents and on the number of camera images. Specifically,
this is obtained by studying the analytic properties of P .
Note that, for this analysis, we do not need to optimally
solve P . Indeed, the structural properties of CoVISF are
independent of the measurements’ noise. In this section, we
provide two fundamental structural properties. The former is
a necessary condition that characterizes the observability of
the absolute scale. The latter regards the observability of the
relative orientation. This latter property only holds in the case
of two synchronized cameras and it enormously simplifies the
analysis of the structural properties of CoVISF. In particular,
it allows us to simply refer to ΣLin(instead of P), in the case
of two synchronized cameras.

Property 1 (Scale invariance) If the relative inertial accel-
eration between the two bodies is null, the CoVISF is scale
invariant (i.e., the absolute scale cannot be determined).

Proof: When the relative inertial acceleration is null, the
relative motion is characterized by a constant velocity, which
is the velocity at the initial time. Hence, we have:

ξj = ξA + ηA(tj − tA), j = 2, · · · , n

Hence, the following vector is a killing vector of ΣLin (i.e.,
it belongs to the null space of the matrix in (10)):

n = [ξTA, η
T
A, λ1, λ2, λ3, · · · , λn, 0T3 , 0T3 , 0T3 ]T (12)

The existence of this killing vector reveals the scale invariance
of CoVISF. Indeed, if x0 solves P , any x = x0 + γn solves
P , for any scalar γ. In other words, the solutions of P are
invariant under the transform ξA → (1 + γ)ξA, ηA → (1 +
γ)ηA, λj → (1 + γ)λj , j = 1, · · · , n.
To obtain the second property, we need to introduce the con-
cept of collinear relative motion. Specifically, with collinear
relative motion, we mean that µ1 = µ2 = · · · = µn. This
condition is equivalent to the condition ν1 = ν2 = · · · = νn.
In the case of two synchronized cameras, the following fun-
damental property holds:

Property 2 (Separation) In the case of two synchronized
cameras, if the relative motion is not collinear, RA is fully
observable and its determination can be separated from the
determination of the remaining unknowns.

Proof: This is a trivial consequence of the fact that, by using
equation (9) with two distinct unit vectors (νi and νj) we can
uniquely determine RA.
This property is very important. It allows us to obtain all the
singularities and minimal cases of CoVISF in the case of two
synchronized cameras by simply studying the rank of a linear
system. Indeed, once RA is known, the remaining unknowns
are only conditioned by the linear system that is characterized

by the matrix that is the upper left 3n× (6 + n) block of the
matrix M in (10). By studying how the rank of this matrix
depends on the relative trajectory and the number of camera
images, we obtain all the structural properties of CoVISF. This
will be the matter of a future work together with the study
of the more difficult case that occurs when only one agent
is equipped by a camera (or when the two cameras are not
synchronized).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the analytic
solution of CoVISF in presence of noise. In particular,
we compare its performance with the one of the closed-
form solution introduced in [21], [22]. From now on, we
denote this latter solution by C and the analytic solution of
CoVISF by A. We evaluate the performance of C and A for
changing lengths of the time interval (tA, tB). Additionally,
we evaluate their robustness against noisy measurements and
also against a non perfect synchronization between the two
cameras. Finally, we evaluate their performance also against
the trajectories accomplished by the agents. In particular, on
the basis of the theoretical result stated by Property 1, we
consider trajectories characterized by different accelerations.
This analysis is carried out by using synthetic measurements
(section V-A). In section V-B we also provide the results
obtained with real measurements.

A. Simulations

1) Simulated trajectories and sensors: The trajectories are
simulated as follows. First, we characterize the configuration
of each agent with its position (p) its speed (v) and its
orientation in a global frame. The orientation is characterized
by a unit quaternion q. In this notation, the dynamics of each
agent satisfy the following 3 differential equations: ṗ = v,
v̇ = qAq∗ − gk and q̇ = 1

2qΩ, where g is the magnitude
of the gravity, k is the fourth fundamental quaternion unit
(k = 0+0 i+0 j+1 k), A is the acceleration in the local frame
(which includes the gravity) and Ω is the angular speed in the
local frame. These equations are discretized with a time step
of 0.002 s. For each trial, the initial position of the first agent
is set always equal to [0, 0, 0]m while the initial position
of the second agent is randomly generated, with a normal
distribution, centered at the origin, and with covariance matrix
1 m2I3. The initial velocities of both the agents are randomly
generated. Specifically, their values are normally distributed,
with zero mean, and covariance matrix 1 (m/s)2I3. Finally,
the initial orientations are characterized by the roll, pitch and
yaw angles. These are also randomly generated, with zero
mean and covariance matrix (50 deg)2I3. The trajectories of
both the agents are also randomly generated. The angular
speeds are Gaussian. Specifically, their values at each step
follow a zero-mean Gaussian distribution with covariance
matrix equal to (1 deg)2I3. At each time step, the agents’
speeds are incremented by setting the inertial acceleration
a random vector with zero-mean Gaussian distribution. In
particular, the covariance matrix of this distribution is set equal
to σ2I3, with σ = 1 ms−2, unless otherwise indicated.
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Fig. 2. Relative error of the analytic solution in determining the absolute scale
(solid blue), the relative speed (dotted red) and the relative orientation (dashed
black). The upper two plots show the results obtained with C, while the lower
two plots the results obtained with A. All the values are obtained by running
1000 trials (mean value of the relative error on the left and standard deviation
on the right). The two agents observe one each other over a variable duration
of integration (tB − tA). σAccel = 0.03 ms−2 and σGyro = 0.1 deg s−1.

Fig. 3. As in Fig. 2 but for a variable noise on the inertial measurements
(σAccel = (N · 0.03) ms−2 and σGyro = (N · 0.1) deg s−1). The two
agents observe one each other over 3 seconds.

The agents are equipped with inertial sensors able to
measure at each time step the acceleration (the sum of the
gravity and the inertial acceleration) and the angular speed.
These measurements are affected by errors. Specifically, each
measurement is generated at every time step of 0.002 s by
adding to the true value a random error that follows a Gaussian
distribution. The mean value of this error is zero. The standard
deviation will be denoted by σAccel for the accelerometer and
σGyro for the gyroscope (these values will be specified for
each result). Regarding the camera measurements, they are
generated at a lower frequency. Specifically, the measurements
are generated each 0.2 s. Also these measurements are affected
by errors. Specifically, each measurement is generated by
adding to the true value a random error that follows a zero-
mean Gaussian distribution, with variance 1 deg2.

2) Estimation results: We provide the precision of C and
A in estimating the absolute scale the relative speed and the
relative orientation. For these three quantities, we provide
the relative error (in %), which is obtained by performing
1000 trials. We provide both the mean value and the standard

Fig. 4. As in Fig. 2 but for a variable synchronization error (∆t, in seconds).
The two agents observe one each other over 3 seconds

Fig. 5. As in Fig. 2 but for a variable σ, i.e., the standard deviation adopted
to randomly generate the acceleration of the two agents’ trajectories.

deviation. Figure 2 provides this relative error for a variable
duration of the considered interval (tA, tB). In other words,
we provide the relative error vs the length tB − tA. In this
case, we set σAccel = 0.03 ms−2 and σGyro = 0.1 deg s−1.
The upper two plots show the results obtained with C, while
the lower two plots the results obtained with A. Note how the
evaluations get better as we increase the integration time. The
relative orientation is determined with a final error of 0.047%
for A and 0.42% for C, the relative speed with a final error of
0.67% for A and 0.83% for C and the relative position with
a final error of 0.41% for A and 0.54% for C. In the case
of A, a time interval of 1.5 seconds is sufficient to achieve
the aforementioned precision. Regarding C, it is necessary a
longer interval (about 3 seconds). A always outperforms C.
The improvement is very significant for the relative orientation
(one order of magnitude). For the relative position and speed,
the improvement is of about 20%.

Regarding the computational complexity, both A and C are
very efficient. For tB − tA = 4s, the time of computation on
MATLAB r2011a, 3.1 GHz Intel Core i7, 8GB RAM, OS X
El Capitan is 1.1 10−3 s for A and 0.46 10−3 s for C.

Fig 3 displays the relative error for the same quantities
showed in Fig. 2 but for a variable noise on the inertial
measurements. Specifically, σAccel = (N · 0.03) ms−2 and
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σGyro = (N ·0.1) deg s−1. In this case, the two agents observe
one each other over 3 seconds. The general behaviour remains
the same. Note that the noise is very large (standard sensors are
characterized by N ' 1). The performance remains very good
also for very large noise. We remark that A outperforms C and
the improvement is significant for the relative orientation.

Fig 4 displays the relative error for the same quantities
showed in Fig. 2 but for a variable synchronization error
between the two cameras. Specifically, the measurements of
the second camera are generated with a delay of ∆t seconds.
A is much more robust than C. Its performance on the
relative orientation remains very good, in contrast with the
one of C. Regarding the absolute scale, the relative error is
smaller than 5% for ∆t ≤ 0.02 s, in the case of A and
smaller than 10% in the case of C. Fig 5 displays the relative
error for the same quantities showed in Fig. 2 but for a
variable σ, i.e., the standard deviation adopted to randomly
generate the acceleration of the two agents’ trajectories. As
expected, the precision on the absolute scale and on the speed
improves by increasing σ, while the precision on the relative
orientation is unaffected by the acceleration (see Property
1). On the other hand, in the case of C, also the relative
orientation is strongly affected by the acceleration. Note that
the solution in [21], [22] is a generic closed-form solution,
i.e., it is a heuristic procedure that does not meet necessarily
the structural properties of the problems.

B. Real Experiments
We used a real dataset containing IMU and camera measure-
ments. Specifically, we used two Intel aero RTF drones.

Fig. 6. One of the two drones adopted in our experiment. On the left it is
equipped with the pattern that allows the motion capture system to detect
the drones. On the right it is equipped with the two red tags that allows the
detection of the drone by the camera of the other drone.

1) Experimental setup: The experiments were performed in
a room equipped with a motion-capture system. This allowed
us to compare the estimations of the relative position between
the two drones, relative speed and relative orientation against
ground truth. The drones moved indoor at low altitude (0:2m).
The orientation of each drone was kept almost constant in
order to allow them to observe each other during the entire
experiment. The two drones moved along loops of radius
' 1 m. Their acceleration was centripetal and with almost
constant magnitude (' 1 ms−2). The relative acceleration
significantly changed, depending on the position of each drone
in the loop. Fig 6 shows one of the two drones. In particular, on
the left it is equipped with the pattern that allows the motion
capture system its detection. On the right, it is equipped with
the two red tags that allows its detection from the on-board
camera of the other drone.

Fig. 7. Real experiment. From the bottom to the top the precision on the
relative orientation, on the absolute scale and the magnitude of the relative
acceleration (averaged on the corresponding time interval).

2) Results: The experiment lasted about one minute. We
selected 10 intervals of 3 seconds.

Figure 7 shows the precision of the analytic solution. Specif-
ically, the plot on the bottom displays the error on the relative
orientation, the plot on the middle the error on the scale. The
upper plot displays the magnitude of the relative acceleration
obtained from the ground truth. The precision is excellent for
the relative orientation. In particular, it never exceeds 2.3 deg
and in few cases it is smaller than 1 deg. Regarding the
absolute scale, the performance is worse. The relative error is
always smaller than 15% with the exception of one case (16%).
In two cases it is smaller than 2% (7th and 10th interval). From
Figure 7, we remark that the error on the scale is correlated
with the magnitude of the relative acceleration (where the error
on the scale is high, the magnitude of the relative acceleration
is small). This is consistent with the result stated by Property
1 and with the experiments performed with a single agent,
which evidence how the precision on the scale needs a strong
excitation [26]. On the other hand, both for the scale and
for the relative orientation, the precision is definitely worse
than the one obtained with simulations. Possible sources of
the error could be: (i) Time delay between camera and IMU
measurements; (ii) Time delay between the two drones (see
Fig 4); (iii) Inaccurate camera-IMU extrinsic calibration.

VI. CONCLUSION

This paper analyzed the problem of visual inertial sensor
fusion in the cooperative case. Specifically, the case of two
agents was investigated. For this problem the paper provided
the analytic solution. In particular, the problem was trans-
formed in a simple Polynomial Equations System (PES). The
main paper contribution was precisely the establishment of
the equivalence between the cooperative visual inertial sensor
fusion in the case of two agents (as defined in section II)
and the aforementioned PES. This is the extension of the PES
derived in [7] to the cooperative case. In that case (single
agent), the PES contains only a single polynomial of second
degree and the minimal cases have up to two solutions. In the
case analyzed in this paper (two agents), the minimal cases
contain three polynomials of second degree and the number
of distinct solutions is up to eight.
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The power of the analytic solution is twofold. From one
side, it allows us to determine the state without the need of
an initialization. From another side, it provides fundamental
insights into all the theoretical aspects of the problem.

In this paper we mainly focused on the first issue. The
PES was solved by using the method based on the Macaulay
resultant matrices [23]. The PES has the following feature.
The unknowns are the components of the relative state while
the coefficients of the system and the vector with the constant
terms only depend on the measurements from the two cameras
and the inertial sensors delivered during a short time interval.
As a result, the determination of the relative position (which
includes the absolute scale), the relative speed and the relative
orientation does not need any prior knowledge (initialization)
and it is drift-free. Extensive simulations and real experiments
clearly showed that the analytic solution is very powerful.
In particular, we tested its robustness with respect to noisy
measurements and with respect to a synchronization error
between the cameras. We also tested the performance for
various trajectories, in particular, characterized by different
accelerations. We compared the performance of the analytic
solution with the one of the closed-form solution introduced
in [21], [22]. The analytic solution significantly outperforms
the latter. The improvement is very significant for the relative
orientation. The error on the relative position and speed is 20%
smaller when estimated by the analytic solution while the error
on the relative orientation is one order of magnitude smaller.
In addition, the analytic solution is much more robust with
respect to the noise, to an erroneous synchronization between
the two cameras and with respect to the magnitude of the
acceleration that characterizes the trajectories.

Regarding the second investigation, we provided two ba-
sic structural properties. These properties establish how the
observability of the absolute scale and the relative orienta-
tion depend on the trajectories. Additionally, they provide
fundamental tools to obtain an exhaustive analysis of all the
problem singularities, degeneracies and minimal cases. This
exhaustive analysis is currently under investigation. So far, we
have obtained that the minimal case that provides 8 distinct
solutions, can only occur in the case of a single camera and
n = 4 camera images. With two synchronized cameras, we
have at most two distinct solutions in the minimal case and,
in general, a unique solution.

In this paper we did not present the results obtained by
considering a bias in the inertial measurements. We obtained
results very similar to the ones presented in [21], [22], where
we analyzed the effect of a bias on the performance of the
closed-form solution introduced in [21], [22].
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