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Let 𝕂 be a fixed effective field. The most straightforward approach to compute with
an element in the algebraic closure of𝕂 is to compute modulo its minimal polynomial.
The determination of a minimal polynomial from an arbitrary annihilator requires an
algorithm for polynomial factorization over𝕂. Unfortunately, such algorithms do not
exist over generic effective fields. They do exist over fields that are explicitly gener-
ated over their prime sub-field, but they are often expensive. The dynamic evaluation
paradigm, introduced by Duval and collaborators in the eighties, offers an alternative
algorithmic solution for computations in the algebraic closure of 𝕂. This approach
does not require an algorithm for polynomial factorization, but it still suffers from
a non-trivial overhead due to suboptimal recomputations. For the first time, we design
another paradigm, called directed evaluation, which combines the conceptual advan-
tages of dynamic evaluation with a good worst case complexity bound.

KEYWORDS: complexity, algorithm, computer algebra, algebraic extension, algebraic
tower, triangular set, dynamic evaluation, directed evaluation, accelerated tower.

1. INTRODUCTION

Let𝕂 be an effective field. Here, effective means that elements of𝕂 can be represented by
concrete data structures and that algorithms for the field operations are at our disposal,
including a zero-test. Effective rings are defined in a similar way.

1.1. Statement of the problems

The aim of the present paper is the fast computation with algebraic numbers. We start
by recalling various known strategies, including the most prominent one: dynamic eval-
uation. Our first main problem will be to develop a more efficient variant of dynamic
evaluation. We next recall how to represent algebraic numbers using towers of algebraic
extensions. Our second main problem is to develop efficient algorithms for computa-
tions in such towers.

∗. This paper is part of a project that has received funding from the French “Agence de l'Innovation de Défense”.
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Dynamic evaluation Let 𝜇 be a monic separable polynomial of degree d in 𝕂[x], not
necessarily irreducible, and let 𝜁 represent a root of 𝜇 in the algebraic closure �̄� of 𝕂.
Given an algorithm T that runs over a generic effective field, consider the question of
running T efficiently over 𝕂[𝜁].

A natural first approach begins with the computation of the defining polynomial
of 𝜁 over 𝕂: this essentially corresponds to factoring 𝜇 into irreducible polynomials.
Unfortunately this task is not feasible over a generic field [19, 20]. Of course, when 𝕂
is explicitly finitely generated over its prime sub-field, such factorizations can be com-
puted. However, no general efficient algorithms (i.e. running in softly linear time) are
currently known for this task; see [21].

Another approach consists in computing in 𝕂[𝛼] while regarding 𝛼 as a parameter
constrained by 𝜇(𝛼) = 0. So any element a in 𝕂[𝛼] is represented by a polynomial A
in 𝕂[x] of degree <d, such that a=A(𝛼). With this representation, additions, subtrac-
tions and products can easily be performed in𝕂[x]/(𝜇(x)), with 𝛼 seen as the class of x.
On the other hand, testing whether A(𝛼) is zero or not requires us to distinguish the
following cases:
• If A is the zero polynomial, then A(𝜁) is zero for any root 𝜁 of 𝜇, so the result of the

test is “true”;
• If the resultant Res(A,𝜇) is non-zero, then A(𝜁) is non-zero for any root 𝜁 of 𝜇, so the

result of the test is “false”;
• Otherwise, g≔gcd(A, 𝜇) is not a constant polynomial and has degree <d. A proper

decomposition of 𝜇 is thus discovered: 𝜇=g(𝜇/g). We split the current computation,
into the two following ones:
∘ In the first branch, 𝛼 is subjected to the constraint g(𝛼)=0; in this branch, the result

of the zero-test A(𝛼)=0 becomes “true”.
∘ In the second branch, 𝛼 is subjected to the constraint (𝜇/g)(𝛼)=0 and the result

of the zero-test A(𝛼)=0 becomes “false”.
If the inverse of A(𝛼) is requested, then we first test if A(𝛼) is zero or not. If A is identi-
cally zero (in the resulting branch), then an exception is raised; if Res(A, 𝜇) is non-zero,
then the inverse can be computed from the Bézout relation for A and 𝜇, which can itself
be computed using the extended gcd algorithm.

This manner of evaluating a program is called dynamic evaluation. It finishes after a
necessarily finite number of splittings. At the end of all the computations, we obtain a
factorization of 𝜇=𝜇1 ⋅ ⋅ ⋅ 𝜇s, not necessarily into irreducible polynomials, along with one
output value for each of the s cases when 𝜇i(𝛼)=0 for i=1, . . . , s. In other words, instead
of working with a specific root of 𝜇, the program is evaluated for a generic root of 𝜇. For
this reason, 𝛼 is sometimes called an algebraic parameter: the program is executed as if
𝕂[𝛼] were a field, and cases are distinguished only when inconsistencies actually occur
during the execution. After a zero test a=A(𝛼)=0 or an inversion a−1 that gives rise to
a splitting, the element a is enforced to be identically zero or invertible in each branch.
Notice that the separability assumption on 𝜇 is important, since it ensures that g and 𝜇/g
are coprime in the above decomposition 𝜇=g (𝜇/g).

Example 1.1. Let 𝛼 be a parameter with 𝜇(𝛼)=0 for 𝜇(x)≔ x (x − 1) (x − 2)∈ℚ[x], and
consider the computation of the gcd of

f (y)≔y2− (𝛼+𝛼2)y+3𝛼2−2𝛼, and g(y)≔(𝛼−1)y2−3(𝛼−1)y+2(𝛼−1).
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Using dynamic evaluation, this gives rise to three branches, and the result

gcd( f ,g)={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
1 if 𝛼=0
0 if 𝛼−1=0
y−2 if 𝛼−2=0.

Dynamic evaluation is very attractive from a conceptual point of view, but rather
tricky to implement: splittings correspond to non-deterministic control structures that
are typically implemented using continuations [41]. Dynamic evaluation is also difficult
to analyze from the complexity perspective. In particular, it is hard to determine the
amount of computation that can be shared between several branches. At any rate, the
worst case complexity of dynamic evaluation is much higher than the number of steps
of the program multiplied by the cost of operations in 𝕂[x]/(𝜇(x)).

The first aim of this paper is to design an alternative, so-called directed evaluation
strategy, with the same abstract specification, but with a quasi-linear computational com-
plexity in d. The key idea is to run the entire program, while systematically opting for
the “principal” branch in case of splittings. This principal branch is the one for which the
defining polynomial of 𝛼 is maximal. At every splitting, we also store the defining poly-
nomial for the other “residual” branch. Once the computation for the principal branch
has been completed, we recursively apply the same algorithm for each residual branch,
on the reduced input data modulo the corresponding defining polynomial. The required
reductions are computed simultaneously for all residual branches, using a fast divide-
and-conquer algorithm for multi-modular reduction.

Algebraic towers We have outlined above how to compute with a single algebraic para-
meter 𝛼 using the dynamic evaluation strategy. More generally, one may wish to compute
with a finite number of parameters 𝛼1, . . . , 𝛼t that are introduced successively as follows:
𝛼1 is subjected to the constraint 𝜇1(𝛼1)=0 for some monic polynomial 𝜇1∈𝕂[x1], then
𝛼2 is subjected to 𝜇2(𝛼2)=0 with 𝜇2 monic in 𝕂[𝛼1][x2], then 𝛼3 is subjected to 𝜇3(𝛼3)=
0 with 𝜇3 monic in 𝕂[𝛼1, 𝛼2][x3], and so on. The second aim of the present paper is
the design of fast algorithms for computing dynamically in 𝕂[𝛼1, . . . , 𝛼t] as if it were
a field. The main difficulties arise when t is allowed to be arbitrarily large.

The parameters 𝛼1, . . . , 𝛼t naturally induce a tower of effective algebraic extensions

𝕂=𝔸0⊆𝔸1⊆𝔸2⊆ ⋅ ⋅ ⋅ ⊆𝔸t,
where

𝔸0 ≔ 𝕂
𝔸i ≔ 𝔸i−1[xi]/(𝜇i(xi)), for i=1, . . . , t.

The parameter 𝛼i corresponds to the class of xi in 𝔸i for i=1, . . . , t. A tower of this type
is written (𝔸i)i⩽t and we call t its height. Throughout this paper, we write di≔deg 𝜇i
and d≔ d1 ⋅ ⋅ ⋅ dt. The 𝜇i are called the defining polynomials of the tower, and d its degree.
Elements in 𝔸i are naturally represented by univariate polynomials in 𝛼i over 𝔸i−1 of
degree <di.

In order to reduce computational costs, it will be convenient to assume that the tower
is explicitly separable in the sense that gcd (𝜇i′, 𝜇i)= 1 and that we have explicit Bézout
cofactors 𝜃i, 𝜉i∈𝔸i−1[xi] with 𝜃i𝜇i′+𝜉i𝜇i=1 for i=1, . . . , t. In particular, each �̄�⊗𝔸i is
reduced. This means that �̄�⊗𝔸t contains no non-zero nilpotent elements or, equiva-
lently, that 𝔸i is a product of separable field extensions of 𝕂.
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Towers of algebraic extensions are related to “triangular sets”. In fact, we may see
the preimage of 𝜇i over 𝕂 as a multivariate polynomial Ti in 𝕂[x1, . . . , xi] such that Ti
has degree di in xi, degrees <dj in xj for j=1, . . . , i−1, and 𝜇i(xi)=Ti(𝛼1, . . . , 𝛼i−1,xi). The
sequence (Ti)i⩽t then forms a special regular case of a triangular set. The separability
of 𝜇i translates into the requirement that Ti(𝜁1, . . . , 𝜁i−1,xi) is separable for all roots 𝜁j of
Tj(𝜁1, . . . , 𝜁j−1,xj) for j=1, . . . , i−1.

The second main aim of this paper is to generalize the directed evaluation strategy
from the univariate case, while ensuring that the complexity remains bounded by the
number of steps in our algorithm multiplied by d1+o(1) (which corresponds roughly
speaking to the cost of arithmetic operations in the tower [29]). Intuitively speaking,
we use the univariate strategy in a recursive fashion, but the analysis becomes far more
technical due to the fact that splittings can occur at any level of the tower. This dif-
ficulty will be countered through the development of suitable data structures.

Further notations Before we discuss complexity issues of dynamic evaluation and tower
computations in more detail, it is useful to introduce various standard notations. We
often use the soft-Oh notation: f (n)∈ Õ(g(n)) means that f (n)=g(n) logO(1)(g(n)+3);
see [21, chapter 25, section 7] for technical details. The notation f =Ω(g) means that
there exist c>0 such that f (n)⩾ c g(n) for n sufficiently large. The least integer larger
or equal to x is written ⌈x⌉; the largest one smaller or equal to x is written ⌊x⌋.

Given an effective ring𝔸, we use M𝔸(d) as a notation for the cost of multiplying two
polynomials of degree<d, in terms of the number of operations in𝔸. It is known [6] that
M𝔸(d)=O(d log d log log d). We will also denote

𝔸[x]<d≔{P∈𝔸[x] :deg P<d}.

In particular, given 𝔹=𝔸[x]/(𝜇(x)) for some monic polynomial 𝜇∈𝔸[x] of degree d,
elements in 𝔹 may be represented as classes of polynomials in 𝔸[x]<d modulo 𝜇, addi-
tions in 𝔹 require d additions in 𝔸, whereas multiplications in 𝔹 can be done using
O(M𝔸(d)) ring operations in 𝔸.

We let 𝜔⩽3 denote an exponent such that two n×n matrices over a commutative
ring𝔸 can be multiplied with O(n𝜔) operations in𝔸. The constant𝜛⩽2 denotes another
exponent such that a rectangular n× n√ matrix over a commutative ring 𝔸 can be mul-
tiplied with a square n√ × n√ matrix with O(n𝜛) operations in 𝔸. Le Gall has shown
in [34] that one may take𝜔<2.373; Huang and Pan have shown in [31] that one may take
𝜛<1.667. Throughout this paper, in order to simplify complexity analyses, we assume
that 𝜔>2 and 𝜛> /3 2.

1.2. Previous work

Recall that an element 𝛽∈𝔸t is said to be primitive if 𝔸t≅𝕂[𝛽]. If �̄�⊗𝔸t is a reduced
�̄�-algebra, then it is well known that a sufficiently generic 𝕂-linear combination of
𝛼1, . . . , 𝛼t is a primitive element of 𝔸t. It may thus seem odd, at first sight, to manip-
ulate towers (𝔸i)i⩽t of height t⩾2 whenever an isomorphic algebra 𝕂[𝛽] exists. The
problem is that both the computations of primitive elements and conversions between
representations are usually expensive.

Over a general field 𝕂, no efficient algorithm is currently known for finding a primi-
tive element together with its minimal polynomial 𝜈, and polynomials 𝜑i∈𝕂[x]<d such
that 𝛼i=𝜑i(𝛽) for i=1, . . . , t. It is known that this problem can efficiently be reduced to
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a multivariate version of the problem of modular composition using a randomized Las
Vegas algorithm. The corresponding conversions between tower and primitive element
representations can also be done using modular composition. All this is a consequence
of the transposition principle and Le Verrier's method; we refer to [29, 30, 33, 38, 39] for
more details. Unfortunately, no softly linear algorithm is known for modular composi-
tion over a generic field, although efficient algorithms have recently been designed for
specific cases [9, 27, 28]. If 𝕂 is a finite field, then Kedlaya–Umans and followers have
established almost optimal theoretical bit complexity bounds [30, 33, 38].

Without primitive elements, using a naive induction on t, the multiplication in𝔸t can
be performed in time O(d (K log d log log d)t) for some constant K>1. It is well known
that, for a sufficiently large constant C>1, such products can actually be carried out in
time O(Ctd log d log log d) using Kronecker substitution; see for instance [21, chapter 8].
If many of the individual degrees di are small, then t can become as large as log d/log 2,
which leads to an overall complexity bound of the form d1+logC/log2+o(1). Unfortunately,
this bound is far from linear if C is much larger than 1. Lebreton has shown that one may
take C=3; see [35] and [29, Proposition 2.4].

Substantial improvements for the value of C seem difficult to achieve, and it might not
even be possible to reach values that are arbitrarily close to 1. An alternative approach for
efficient computations in a given tower is to produce an equivalent, so-called accelerated
tower of small height, such that conversions between both towers are reasonably cheap.
This approach was first proposed in [29]: when the 𝜇i are all irreducible, we have shown
how to multiply elements in 𝔸t with O(d1+𝜀) operations in 𝕂, for any fixed real 𝜀>0.

Dynamic evaluation has been developed by Della Dora, Dicrescenzo and Duval [10,
13, 14, 15] as a way to compute with algebraic parameters without irreducible factor-
izations. The approach is sometimes called the “D5 principle”, after the initials of the
authors of [10]. One may regard dynamic evaluation as a computer algebra counterpart
of the concept of non-deterministic evaluation from theoretical computer science. The
strategy of dynamic evaluation has been extended to transcendental parameters [17, 22],
real algebraic numbers in [16], and more general algebraic structures [25, chapter 8].

Several implementations have been proposed for parameters that are constrained by
triangular sets. Early implementations simply handled splittings by redoing the entire
computation under stricter constraints [13]. Unnecessary recomputations can be avoided
through the use of high-level control structures such as continuations [4]. Unfortunately,
efficient implementations of such control structures are rarely available for common pro-
gramming languages. In this paper, we mostly leave implementation issues aside and
focus on the complexity of computations with parameters.

In his PhD thesis, Dellière has investigated the relationship between dynamic eval-
uation and decompositions of constructible sets into triangular sets [11, 12]: the central
operation is the computation of gcds with coefficients in products of fields, such as𝔸t. Let
us further mention that dynamic evaluation has influenced several polynomial system
solvers relying on triangular sets [3], and is now involved in various other algorithms
in computer algebra; see for instance [7, 26, 36].

Dedicated algorithms over dynamic fields such as 𝔸t have been proposed by Dahan
et al. [8]. Without appealing to the general dynamic evaluation paradigm, they designed
efficient algorithms for quasi-inversion in 𝔸t, as well as gcd computations and coprime
factorization in 𝔸t[x]. Recomputations induced by splittings are handled using fast
ad hoc techniques.
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In the worst case, it is known that dynamic evaluation over 𝔸t suffers from an over-
head of the order d≔dim𝕂𝔸t: see Examples 4.4 and 4.6. To our knowledge, this paper
is first to propose a general strategy for removing this overhead.

1.3. Our contributions
The main contribution of the present paper is a new evaluation paradigm to compute
with algebraic parameters in an asymptotically fast manner. In section 2, we recall the
concept of computation trees as a formalization for the cost of algebraic algorithms. In
section 3, we introduce the concepts of unpermissive, panoramic, and directed evalua-
tion. This provides us with precise terminology for analyzing subtle differences between
the complexities of various evaluation strategies.

Informally speaking, the unpermissive evaluation of a computation tree simply aborts
the usual evaluation whenever a zero-divisor needs to be inverted or tested to zero.
If a zero-divisor is discovered in this way, then a proper factorization 𝜇i=𝜇

˘
i �̆�i of one

of the defining polynomials can be deduced. This leads to a decomposition of 𝔸t into
the direct sum of two proper subalgebras, defined by the towers 𝔸0⊆ ⋅ ⋅ ⋅ ⊆𝔸i−1⊆
𝔸i−1[xi]/(𝜇

˘
i(xi))⊆ ⋅ ⋅ ⋅ and 𝔸0⊆ ⋅ ⋅ ⋅ ⊆𝔸i−1⊆𝔸i−1[xi]/(�̆�i(xi))⊆ ⋅ ⋅ ⋅.

A panoramic evaluation of a computation tree returns all possible results when con-
sidering 𝛼1,...,𝛼t as algebraic parameters, and thereby constitutes our main objective. The
unpermissive evaluation model gives rise to the following naive panoramic evaluation
strategy: whenever the unpermissive evaluation produces a proper splitting of 𝔸t, we
restart the evaluation over each of the two subalgebras of𝔸t. The problem with this rather
naive approach is that the evaluation may need to be restarted as many as d=dim𝕂𝔸t
times, which turns out to be suboptimal from a complexity point of view: see Example 4.4.

The directed evaluation is meant to remedy this situation by ensuring a sharp decrease
of d every time that we need to restart the evaluation. More precisely, we will show
that the reevaluation depth remains bounded by O(log d).

Section 4.2 contains our main complexity result in the case of a single parameter, i.e.
t=1. We prove a softly linear complexity bound for panoramic evaluation and provide
a detailed comparison with various implementations of dynamic evaluation.

In section 5, we turn to the case of an arbitrary number of parameters t⩾2. With
respect to the univariate case, the main difference is that 𝔸t−1 is not necessarily a field,
although we still conduct our computation as if it were (e.g. during gcds computations
in 𝔸t−1[x]). Consequently, zero-tests and inversions of elements in 𝔸t∖𝔸t−1 may lead
to additional case distinctions according to the possible values of 𝛼1, . . . , 𝛼t−1. Despite
these technical complications, we again prove a quasi-linear complexity bound for the
cost of panoramic evaluation, under the assumption that t is fixed (this means that t is
not allowed to grow with d).

For arbitrary, not necessarily bounded heights t, the complexity analysis becomes
tedious. We need to revisit the construction of accelerated towers of fields, introduced
in [29], in the context of directed evaluation. The key idea is as follows: before the directed
evaluation of a given computation tree, we perform the directed computation of an accel-
erated version of the current tower, so the computation tree can subsequently benefit
from accelerated arithmetic. Overall, in section 7, we achieve an overhead of the form d𝜖
for the panoramic evaluation, where 𝜖 represents any fixed positive real number.

Our techniques are more general than those of [8]: they turn out to be applicable in
all contexts that involve dynamic evaluation with algebraic numbers. In addition, thanks
to our accelerated tower arithmetic, we improve the complexity bounds for the specific
tasks studied in [8], whenever t is allowed to be arbitrarily large.
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Section 7.4 contains two important additional examples. We first show that products
in a separable tower can be done in time O(d1+o(1)), which extends [29]. We next present
a less straightforward application of fast panoramic evaluation to matrix multiplication
with entries in 𝔸t.

2. PREREQUISITES

This section gathers known definitions and results about elementary operations in com-
puter algebra, to be used in this paper.

2.1. Computation trees
Let us recall the notion of a computation tree; we essentially follow the presentation
from [5, chapter 4, section 4]. In the present paper, all computation trees manipulate data
in 𝕂-algebras over an effective field 𝕂, and only the following operations are allowed:
• The binary arithmetic operations +,−, × in the algebra.
• The unary operation invert of inversion, which is partially defined in the algebra.
• The unary zero-test, written zero?.
• For each constant c∈𝕂, the nullary constant function ()↦ c and the unary function

x↦ c x of scalar multiplication by c. We denote the corresponding sets of constant
functions and scalar multiplications by 𝕂0 and 𝕂1.

We write 𝒜≔𝕂0∪𝕂1∪{+,−, ×, invert} for the set of all arithmetic operations.

Definition Consider a binary tree whose set of nodes is a disjoint union ℐ⨿𝒞⨿ℬ⨿𝒪
of the sets ℐ , 𝒞 , ℬ , and 𝒪 of input nodes, computation nodes, branching nodes and output
nodes. We assume that the input nodes form an initial segment of unary nodes starting
at the root, that the output nodes are leafs (of arity zero), that computation nodes admit
arity one, and that branching nodes admit arity two. A computation tree T over𝕂 is such
a binary tree, together with an instruction function that
• assigns an instruction of the form

(op;u1, . . . ,um)

to every computation node v, where op∈𝒜 has arity m, and u1, . . . , um are nodes
in ℐ ∪𝒞 that are predecessors of v (i.e. nodes in the path ascending from v to the root
of the tree);

• assigns an instruction of form
(zero?;u),

to every branching node v, where u is a predecessor of v in ℐ∪𝒞 ;
• assigns a return value (u1, . . . ,um) to every output node v, where u1, . . . ,um are prede-

cessors of v in ℐ∪𝒞 , and m=m(v) may depend on v.

Evaluation Let T be a computation tree as above with |ℐ | input nodes. Let 𝔸 be
a 𝕂-algebra and let us show how T gives rise to an evaluation function

ℰ(T; .):𝔸|ℐ | → {undefined}∪ �
v∈𝒪

𝔸m(v),

a ↦ ℰ(T;a).
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The value undefined is a new symbol that is returned whenever an arithmetic operation
cannot be executed. In the present framework this can only happen for inversions.

Given an input value a=(a1, . . . ,a|ℐ |)∈𝔸|ℐ |, the evaluation of T at a proceeds by con-
structing a path P(T;a) from the root of the tree, along with the function

ℰ:P(T;a)→𝔸∪{false, true,undefined}∪ �
v∈𝒪

𝔸m(v)

that associates a value to each node of the path, as follows:

• The path P(T;a) begins with the input nodes u1, . . . ,u|ℐ | of ℐ , and we set ℰ(ui; a)≔ ai
for i=1, . . . , |ℐ|. The next node of the path is set to the successor of u|ℐ |.

• If the current node of the path is a computation node v of the form (op;u1,...,um) then
we set ℰ(v; a)≔op(ℰ(u1; a), . . . , ℰ(um; a)). If this calculation is well defined, then the
next node of the path is set to the successor of v. Otherwise, the evaluation path ends
at v, we say that the computation tree is undefined at a, and we set ℰ(T;a)≔ℰ(v;a)≔
undefined.

• If the current node of the path is a branching node v of the form (zero?;u), then we
set ℰ(v;a)≔zero?(ℰ(u;a)). If ℰ(v;a) is false then the next node of the path is set to the
left successor of v, otherwise the next node is the right successor of v.

• If the current node of the path is an output node v with return value (u1, . . . ,um), then
we set ℰ(v;a)≔(ℰ(u1;a), . . . ,ℰ(um;a)). The path ends at v and we set ℰ(T;a)≔ℰ(v;a).

Example 2.1. This example illustrates the def-
inition of a computation tree with 𝕂=ℚ and
a single input node. Let pi represent the i-th
prime number, let 𝜅 be a positive integer, and
let T be the computation tree that takes x as
input and performs the following computa-
tion:

for i from 1 to 𝜅 do
if (x2−pi)𝜅=0 then return i

return 0

The computation tree for 𝜅=2 is shown on
the right-hand side. The input node is a circle,
computation nodes are long rectangles, output
nodes are shorter rectangles, and branching
nodes are diamond-shaped.

If 𝜅 = 2, then T evaluates to 1 at a when
a2=2, to 2 when a2=3, and to 0 in all other
cases.

We notice that

(x2−pi)𝜅=0⇔x2=pi,

which makes the example slightly artificial.

zero? y4

(y9)y6≔y1−y5

y7≔y6×y6

y4≔y3×y3

y3≔y1−y2

truefalse

x

y1≔x×x

y2≔2

y5≔3

(y8)

false

zero? y7

y9≔1

y8≔0 (y2)

true
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Cost functions One may associate cost functions to a computation tree T. Given a path
of length l with leaf v∈𝒪 in T, we define l+m(v) to be its cost. The maximal cost of
a path is called the operational cost of T and we denote it by 𝜏op. We may use 𝜏op as a
bound for the number of operations in𝔸 that are required for the evaluation of T over𝔸.

Since additions, multiplications and inversions typically admit different costs, it is
convenient to introduce the following more detailed quantities:
• 𝜏in stands for the number of input nodes, i.e. 𝜏in≔|ℐ|.
• 𝜏out stands for the maximal arity of a return value, i.e. 𝜏out≔maxv∈𝒪 m(v).
• 𝜏add stands for the maximal number of operations in𝕂0∪𝕂1∪{+,−} for a path in T.
• 𝜏mul stands for the maximal number of multiplications for a path in T.
• 𝜏div stands for the maximal number of inversions or zero-tests for a path in T.

We will call (𝜏in, 𝜏out, 𝜏add, 𝜏mul, 𝜏div) the detailed cost of T and notice that 𝜏op⩽𝜏in+
𝜏out+𝜏add+𝜏mul+𝜏div. Taking 𝜅=2 in Example 2.1, we have 𝜏in=1, 𝜏out=1, 𝜏add=5,
𝜏mul=3, 𝜏div=2.

Usually, we are really interested in the maximal number 𝜏𝔸 of scalar operations in𝕂
that are needed to evaluate T over𝔸. If𝕂 and𝔸 are clear from the context, this is simply
called the cost of T or the time needed to evaluate T. It will be useful to introduce the
following additional quantities:
• s𝔸 stands for the maximal number of elements in 𝕂 that are needed to represent an

element in𝔸. Throughout this paper, we assume that operations in𝕂0∪𝕂1∪{+,−}
can all be computed using O(s𝔸) operations in 𝕂.

• m𝔸 stands for the number of operations in 𝕂 that are needed to multiply two ele-
ments in 𝔸.

• d𝔸 stands for the maximal number of operations in 𝕂 that are needed to perform
a zero-test or inversion in 𝔸.

We clearly have

𝜏𝔸 ⩽ O((𝜏in+𝜏out+𝜏add)s𝔸)+𝜏mulm𝔸+𝜏divd𝔸.

Remark 2.2. In a natural programming language, negations, divisions and equality tests
are allowed, but for the sake of the presentation, we assume that
• negations −a are implemented as 0− a;
• divisions a/b are implemented as a× invert(b);
• equality tests a=b are implemented as zero?(a−b).

These restrictions are harmless, in the sense that they only affect the constants hidden in
the “O” of complexity estimates.

Remark 2.3. For actual implementations of zero-tests that we will encounter in this
paper, it is usually possible to compute the actual inverses of non-zero elements with
little extra cost. We will allow ourselves to store such inverses “for future use”. In gcd
computations, this helps us to keep the number of zero tests and inversions sufficiently
low. An alternative, more rigorous, but less pedagogic approach would be to system-
atically work with a hybrid instruction that both performs a zero-test and an inversion
in the case when the zero-test fails.
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Remark 2.4. The “BSS model” [2, 18] provides an alternative approach for computa-
tions over an abstract field 𝕂. Roughly speaking, it is a natural extension of the Turing
machine model for which the tapes are allowed to contain elements in𝕂. The BSS model
is more powerful than the computation tree model in the sense that it allows for loops,
subroutines, lookup tables, etc. Nevertheless, an arbitrary program in the BSS model
that admits a finite number of execution flows may be emulated by a computation tree.
This amounts to “unrolling” all possible executions as in Example 2.1 above.

Remark 2.5. We will also use the notion of a straight-line program. In the present context it
is convenient to define a straight-line program as a computation tree without branching
nodes or inversions, so it encodes a polynomial expression. This definition is a bit dif-
ferent but equivalent to the standard one [5, chapter 4, section 1].

2.2. Univariate polynomials
A polynomial in𝔸[x] of degree <d is represented by the vector of its d coefficients from
degree 0 to d − 1. Polynomial additions (resp. subtractions) in 𝔸[x]<d take at most d
additions (resp. subtractions) in 𝔸. Determining the degree of a polynomial in 𝔸[x]<d
requires at most d zero-tests.
Product Let 𝔸 be an effective commutative ring with unity. We denote by M𝔸(d) a cost
function for multiplying two polynomials f ,g∈𝔸[x]<d by a straight-line program over𝔸.
We make the following assumptions:
• M𝔸(d)/d is a nondecreasing function in d—this assumption is customary;
• M𝔸 is sufficiently close to linear, in the sense that

M𝔸(md)
md =O((((((((((M𝔸(d)

d )))))))))) (2.1)

holds whenever m⩽ d. This assumption is less common, but it is only used within
Propositions 2.6 and 7.7. Notice that (2.1) is equivalent to M𝕂(md)=O(mM𝕂(d)).

For general 𝔸, it has been shown in [6] that one may take

M𝔸(d)=O(d log d log log d)= Õ(d).

If 𝔸 has positive characteristic, then it was shown in [23, 24] that one may even take

M𝔸(d) = O�d log d4log
∗d�,

where log∗ d≔min �k∈ℕ: log∘ . . .k× ∘ log d⩽1�.
Division Let f ∈𝔸[x] be of degree d1 and let g∈𝔸[x] be monic of degree d2⩽d1. The
quotient of the Euclidean division of f by g can be computed by a straight-line program
in time O(M𝔸(d1−d2+1)). Given this quotient q, the remainder r≔ f −qg∈𝔸[x]<d2 can
be computed using O(M𝔸(d2)) additional operations. If necessary, the degree of r can be
determined using at most d2 further zero-tests.
Gcd It is well known that the gcd of two polynomials F and G in 𝕂[x]⩽d can be com-
puted in time O(M𝕂(d) log d); see [21, chapter 11]. But we will need to be more precise
in section 5.3 in order to analyze the complexity of “directed inversions in towers”. Fol-
lowing the notation of [37], let R0=F and R1=G be in 𝕂[x] of respective degrees n0≔
d⩾1 and n1⩽n0−1, and consider the extended Euclidean sequence defined as follows:
• C0≔1, D0≔0, C1≔0, D1≔1;
• Ri+1≔Ri−1− Ei Ri, Ci+1≔Ci−1− Ei Ci, Di+1≔Di−1− Ei Di, where Ei≔Ri−1 quoRi is the

quotient of Ri−1 by Ri.
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Consequently we have Ri+1=Ri−1 rem Ri, that is the remainder in the division of Ri−1
by Ri, and Ri=Ci F+Di G for all i⩾0. The sequence ends after w−1 division steps with
Ri≠0 for i=0, . . . ,w, and Rw+1=0. The last non-zero polynomial Rw is gcd(F,G) and the
Bézout relation is Rw=CwF+Dw G.

The fast extended Euclidean algorithm applied to R0 and R1 does not compute the
complete Euclidean sequence, but only the sequence of the quotients E1,...,Ew in a divide
and conquer fashion. This is enough to permit the efficient recovery of the Bézout rela-
tion Rw=CwF+DwG. For i=0,...,w+1, let ni≔degRi. We claim that the number of zero-
tests in the fast extended Euclidean algorithm is exactly n0. This claim is a consequence
of the two following observations about the fast extended Euclidean algorithm (see for
instance [37, Algorithm 18]):
• Computing the quotients Ei does not involve any zero-tests or inversions. On the

other hand the determination of ni+1 requires testing the coefficients of Ri+1 from
degree ni −1 to ni+1, which involves ni −ni+1 zero-tests. This totalizes n0 zero-tests.

• The degrees of the cofactors Ci and Di, but also of all the entries of the “transition
matrices” are explicitly determined from the ni; see [37, Lemma 10]. So the computa-
tion of the transition matrices also does not involve any zero-tests or inversions.

In order to perform polynomial divisions, the inverses of the leading coefficients of the Ri
are needed. This requires at most n0=deg F inversions.

To summarize the discussion, the extended gcd of F and G of degree ⩽d takes
O(M𝕂(d) log d) additions, subtractions and products in 𝕂, plus ⩽d zero-tests and ⩽d
inversions. In addition, every inversion of an element is preceded by an unsuccessful
zero-test for that element.

2.3. Towers
Elements of a tower (𝔸i)i⩽t are in fine represented by vectors of coordinates in 𝕂d. So
additions, subtractions, and products by scalars in 𝕂 can be done by straight-line pro-
grams with linear costs. We recall the following result, where m𝔸t represents the cost of
one product in 𝔸t.

PROPOSITION 2.6. Under the assumptions of section 2.2, there exists a constant 1<C⩽3 such
that one product in 𝔸t can be computed by a straight-line program in time

m𝔸t=O(CtM𝕂(d)).

In addition, the product of two polynomials in 𝔸t[x]<n can be computed by a straight-line pro-
gram in time

M𝔸t(n)=O(CtM𝕂(dn)).

Proof. This result is essentially due to Lebreton [35]; see also [29, Proposition 2.4]. □

3. EVALUATION MODELS

In the introduction, we have informally discussed computations with parameters and
various strategies for automating case distinctions. In this section, we formalize these
ideas in the specific situation of algebraic parameters.
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3.1. Parametric frameworks
Let 𝕂 be an effective field and let I be an ideal of 𝕂[x1, . . . ,xt] such that:
• 𝔸≔𝕂[x1, . . . ,xt]/I is a 𝕂-algebra of finite dimension d≔dim𝕂𝔸,
• I is absolutely radical, which means radical over the algebraic closure �̄� of 𝕂.

In the context of the present paper, it will be convenient to call 𝔸 a parametric algebra
over 𝕂 with t parameters, and I is said to be its defining ideal, written I𝔸. The respec-
tive images of x1, . . . , xt in 𝔸 are denoted by 𝛼1, . . . , 𝛼t; they are regarded as parameters
over 𝕂, subject to the relations in I. Geometrically speaking, the tuple (𝛼1, . . . , 𝛼t) repre-
sents a generic point in the set Z𝔸 of the d zeros of I in �̄�t. This setting is more general
than the one of the introduction, but it is intended to be applied later to ideals I generated
by triangular sets.

Let 𝔹 be a second parametric algebra over 𝕂 with t parameters. As a shorthand, we
write𝔹⩽𝔸whenever𝔹 is a quotient algebra of𝔸. This is the case if, and only if, I𝔹⊇I𝔸,
or, equivalently, if Z𝔹⊆Z𝔸. If 𝔹⩽𝔸, then we write 𝜋𝔸→𝔹 for the canonical projection
𝔸→𝔹, and notice that (𝜋𝔸→𝔹(𝛼1), . . . ,𝜋𝔸→𝔹(𝛼t)) represents a generic point in the set Z𝔹
of the zeros of I𝔹 in �̄�t. With a slight abuse of notation, 𝜋𝔸→𝔹 is extended in a coefficient-
wise manner to 𝔸[x]→𝔹[x].

Two parametric algebras𝔹1⩽𝕂[x1, . . . ,xt] and𝔹2⩽𝕂[x1, . . . ,xt] are said to be disjoint
if Z𝔹1∩Z𝔹2=∅. In that case, we have

𝕂[x1, . . . ,xt]/(I𝔹1∩ I𝔹2)≅𝔹1⊕𝔹2.

More generally, given pairwise disjoint 𝔹1, . . . ,𝔹s⩽𝕂[x1, . . . ,xt], we have

𝔸≔𝕂[x1, . . . ,xt]/(I𝔹1∩ ⋅ ⋅ ⋅ ∩ I𝔹s)≅𝔹1⊕ ⋅ ⋅ ⋅ ⊕𝔹s.

We will call such a decomposition a splitting of 𝔸.
Now consider the prime decomposition

I=𝔓1∩ ⋅ ⋅ ⋅ ∩𝔓s

of the defining ideal I of 𝔸, and define 𝔼i≔𝕂[x1, . . . ,xt]/𝔓i for i=1, . . . , s. Then we have
𝔼i⩽𝔸 and there exists a natural isomorphism

𝔸≅𝔼1⊕ ⋅ ⋅ ⋅ ⊕𝔼s. (3.1)

It is convenient to call this relation the total splitting of𝔸. The corresponding zero-set Z𝔸
is a disjoint union:

Z𝔸=Z𝔼1⨿ . . . ⨿Z𝔼s.

Given a zero-divisor b∈𝔸, we have

I= I1∩ I2, where I1≔ I+(b) and I2≔ I :(b).

Indeed, we clearly have I⊆I1∩ I2. Conversely, given f =u+bv∈I :(b)with u∈I, we have
b2v∈ I, whence bv∈ I since I is radical, and f ∈ I. Setting

𝔹1 ≔ 𝕂[x1, . . . ,xt]/I1 ≅ 𝔸/(b)
𝔹2 ≔ 𝕂[x1, . . . ,xt]/I2 ≅ 𝔸[b−1],

we obtain a natural isomorphism
𝔸≅𝔹1⊕𝔹2.
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Such a decomposition is called an atomic splitting of 𝔸. We have

Z𝔸=Z𝔹1⨿Z𝔹2.

From an effective point of view, the computation of total splittings requires an algorithm
for polynomial factorization, whereas atomic splittings can be computed using standard
techniques from effective polynomial algebra, such as Gröbner bases, triangular sets, or
geometric resolutions.

Let us now describe an abstract way to formalize computations in parametric alge-
bras modulo splittings. Consider a set ℱ of parametric algebras over 𝕂. We say that ℱ
is a parametric framework if the following conditions are satisfied:
• Each 𝔸∈ℱ is an effective 𝕂-algebra.
• Given a∈𝔸∈ℱ , we can test whether a is invertible and compute a−1 if so.
• Given 𝔸,𝔹∈ℱ with 𝔹⩽𝔸, we have an algorithm for the projection 𝜋𝔸→𝔹.
• Given b∈𝔸∈ℱ , we can effectively compute 𝔸/(b)∈ℱ and 𝔸[b−1]∈ℱ .
• For any𝔸≅𝔹1⊕⋅⋅⋅⊕𝔹s with𝔸,𝔹1,...,𝔹s∈ℱ , we have algorithms for both directions

of this isomorphism.
Using Gröbner basis techniques, the above conditions are in particular verified ifℱ is the
set of all parametric algebras𝔸 that are explicitly given by a finite set of generators of I𝔸.
Indeed, a Gröbner basis of I𝔸 induces a basis of 𝔸 over 𝕂 along with the multiplication
matrices by 𝛼1, . . . , 𝛼t, so the above operations boil down to linear algebra. This observa-
tion is convenient from a conceptual point of view, but, of course, not very efficient from
the asymptotic complexity perspective. Sections 4, 5, and 7 are devoted to more specific
parametric frameworks that allow for asymptotically faster implementations.

3.2. Unpermissive evaluation
From now on, 𝔸 denotes a parametric algebra, and we will use the notations from sec-
tion 2.1 for computation trees. The unpermissive evaluation of a computation tree T with
input nodes ℐ as above at a=(a1,...,a|ℐ |)∈𝔸|ℐ | is defined as follows. Informally speaking,
the tree is evaluated in the usual way over 𝔸 concerning ring operations, but the evalu-
ation aborts whenever a zero-divisor needs to be inverted or tested to zero.

More precisely, we write P̄(T;a) for the unpermissive path, and ℰ̄ for the unpermissive
evaluation function. We introduce a new output value, written inconsistent, in order to
indicate that the evaluation process detects that the current algebra 𝔸 is not a field. We
define ℰ̄(v;a) by induction:
• If the current node v of the path is a computation node of the form (invert;u), then we

distinguish the following cases:
∘ If ℰ̄(u;a) is zero in 𝔸, then the path ends at v with ℰ̄(T;a)≔ℰ̄(v;a)≔undefined.
∘ If ℰ̄(u;a) is invertible, then ℰ̄(v;a)≔ℰ̄(u;a)−1 and the next node of the path becomes

the successor of v.
∘ Otherwise, ℰ̄(u;a) is a zero-divisor in𝔸, and the evaluation aborts; the path ends

at v, we set ℰ̄(T;a)≔ℰ̄(v;a)≔ inconsistent, and record the zero-divisor ℰ̄(u;a) for
future use.

• If the current node v in the path is a branching node (zero?;u), then we distinguish
the following cases:
∘ If ℰ̄(u;a) is zero in 𝔸, then ℰ̄(v;a)≔ true, and the next node of the path becomes

the right successor of v.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13



∘ If ℰ̄(u;a) is invertible in𝔸, then we set ℰ̄(v;a)≔ false, and the next node of the path
becomes the left successor of v.

∘ Otherwise, ℰ̄(u;a) is a zero-divisor in𝔸, and the evaluation aborts; the path ends
at v, we set ℰ̄(T;a)≔ℰ̄(v;a)≔ inconsistent, and record the zero-divisor ℰ̄(u;a) for
future use.

• For the other types of nodes, the evaluation rules remain the same as for the standard
evaluation described in section 2.1.

LEMMA 3.1. With the above notations, let𝔹⩽𝔸. If ℰ̄(T;a)≠ inconsistent, then the evaluation
paths P̄(T;a) and P(T; 𝜋𝔸→𝔹(a)) coincide and 𝜋𝔸→𝔹(ℰ̄(T;a))=ℰ(T;𝜋𝔸→𝔹(a)) holds, under
the natural convention that 𝜋𝔸→𝔹(undefined)≔undefined.

Proof. The proof is straightforward from the definitions. □

3.3. Panoramic values

DEFINITION 3.2. Given an input a=(a1, . . . ,a|ℐ |)∈𝔸|ℐ | for a computation tree T, we say that

𝔸≅𝔻1⊕ ⋅ ⋅ ⋅ ⊕𝔻ℓ

is a panoramic splitting of 𝔸 for the pair (T, a) if ℰ̄(T; 𝜋𝔸→𝔻i(a))≠ inconsistent for i=
1,...,ℓ. A panoramic value of T at a is a set of pairs {(𝔻1,b1),..., (𝔻ℓ,bℓ)} such that𝔻1⊕⋅⋅⋅⊕
𝔻ℓ is a panoramic splitting of 𝔸 and bi≔ℰ̄(T;𝜋𝔸→𝔻i(a)) for i=1, . . . , ℓ.

LEMMA 3.3. Let𝔸≅𝔼1⊕⋅⋅⋅⊕𝔼s denote the total splitting of 𝔸, and let {(𝔻1,b1),..., (𝔻ℓ,bℓ)}
be a panoramic value of T at a. Then, for each i∈{1, . . . , s}, we have

ℰ̄(T;𝜋𝔸→𝔼i(a))=ℰ(T;𝜋𝔸→𝔼i(a))=𝜋𝔻j→𝔼i(bj),

where j∈{1, . . . , ℓ} is the unique integer such that 𝔼i⩽𝔻j.

Proof. Since 𝔼i is a field, any non-zero element in 𝔼i is invertible. Consequently,

ℰ̄(T;𝜋𝔸→𝔼i(a))≠ inconsistent,

and Lemma 3.1 implies that ℰ̄(T;𝜋𝔸→𝔼i(a))=ℰ(T;𝜋𝔸→𝔼i(a)). On the other hand,

bj=ℰ̄(T;𝜋𝔸→𝔻i(a))≠ inconsistent,

and Lemma 3.1 implies that
𝜋𝔻j→𝔼i(bj)=ℰ(T;𝜋𝔸→𝔼i(a)). □

Example 3.4. Consider the computation tree T from Example 2.1 for some 𝜅∈ℕ, and let

𝜇(x)≔(x2−p1) ⋅ ⋅ ⋅ (x2−p𝛿),

I≔(𝜇(x)), and𝔸≔ℚ[x]/I, with 𝛿>𝜅. If 𝛼 represents the image of x in𝔸, then a possible
panoramic splitting of T at 𝛼 is

𝔸≅𝔻1⊕ ⋅ ⋅ ⋅⊕𝔻ℓ,
where
• ℓ≔𝜅+1,
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• 𝔻i≔ℚ[x]/(x2−pi) and ℰ̄(T;𝜋𝔸→𝔻i(𝛼))= i, for i=1, . . . , 𝜅,
• 𝔻ℓ≔ℚ[x]/((x2−p𝜅+1) ⋅ ⋅ ⋅ (x2−p𝛿)) and ℰ̄(T;𝜋𝔸→𝔻ℓ(𝛼))=0.

Notice that the associated primes of I are𝔓i=(x2−pi) for i=1,...,𝛿, and the total splitting
of 𝔸 is

𝔸≅�
i=1

𝛿
ℚ[x]/(x2−pi).

The following naive algorithm for the computation of panoramic values was already
sketched in the introduction:

Algorithm 3.1
Input. A computation tree T and an evaluation point a∈𝔸|ℐ |.
Output. A panoramic value of T at a.

1. Compute the unpermissive evaluation ℰ̄(T;a).
2. If ℰ̄(T;a)≠ inconsistent, then return {(𝔸, ℰ̄(T;a))}.
3. Otherwise a non-trivial zero-divisor b∈𝔸 has been recorded, which allows us to com-

pute proper subalgebras𝔹1, . . . ,𝔹l and k∈{2,. . . , l−1} such that𝔸/(b)≅𝔹1⊕ ⋅ ⋅ ⋅ ⊕𝔹k
and 𝔸[b−1]≅𝔹k+1⊕ ⋅ ⋅ ⋅⊕𝔹l.

4. Recursively apply the algorithm to 𝜋𝔸→𝔹i(a) for i=1, . . . , l and return the union the
panoramic values obtained in this way.

PROPOSITION 3.5. Algorithm 3.1 is correct.

Proof. The algorithm finishes since 𝔸 is finite dimensional. As for the correctness it
suffices to verify that the output in step 2 is correct, which is straightforward from the
definitions. □

3.4. Directed operations
From now we focus on the development of a faster alternative for Algorithm 3.1. The
idea is to impose a finer control over the dimension of the components of splittings. Infor-
mally speaking, computation trees over 𝔸 will be evaluated entirely, while restricting
operations to suitable subalgebras of 𝔸: when a zero test or an inversion occurs for
a value a, the current subalgebra is further restricted to its largest subalgebra where the
projection of a is either invertible or zero.

In order to formalize this idea, we need some definitions and the underlying directed
arithmetic operations.

DEFINITION 3.6. Given a computation tree T, we say that a splitting

𝔸≅𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ

is directed if
• dim𝕂𝔻⩾1 and dim𝕂ℍi⩾1 for i=1, . . . , ℓ,
• 2dim𝕂ℍi⩽dim𝕂𝔸 for i=1, . . . , ℓ.

A directed evaluation of T takes as input:
• a directed splitting of 𝔸≅𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ,
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• a point a∈𝔻|ℐ |,
and returns
• a refined directed splitting of 𝔸≅�̃�⊕ℍ̃1⊕ ⋅ ⋅ ⋅ ⊕ℍ̃s⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ,

• ℰ̄(T;𝜋𝔻→�̃�(a)) such that ℰ̄(T;𝜋𝔻→�̃�(a))≠ inconsistent.

We introduce a directed variant of the inversion in 𝔸, that takes a directed splitting
𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ as input, the value a in 𝔻 to be inverted, and that returns a directed
splitting �̃�⊕ℍ̃1⊕ ⋅ ⋅ ⋅⊕ℍ̃s⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ such that
• 𝜋𝔻→�̃�(a) is either zero or invertible;
• The result of the directed inversion of a is respectively undefined or 𝜋𝔻→�̃�(a)−1.

We also introduce a directed variant of the zero-test in 𝔸, that takes a directed splitting
𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ and the value a in 𝔻 to be tested as input, and that returns a directed
splitting �̃�⊕ℍ̃1⊕ ⋅ ⋅ ⋅⊕ℍ̃s⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ such that
• 𝜋𝔻→�̃�(a) is either zero or invertible;
• If 𝜋𝔻→�̃�(a) is invertible, then 𝜋𝔻→�̃�(a)−1 has been computed and recorded;
• The result is zero?(𝜋𝔻→�̃�(a)).

Remark 3.7. The above specifications leave room for some flexibility for the precise imple-
mentation of zero-tests and inversions: in general, the conditions 2dim𝕂ℍi⩽dim𝕂𝔸
do not imply uniqueness of the output splittings.

Remark 3.8. We could have introduced directed variants of additions, subtractions, and
products in parametric algebras, exactly in the same way as for the zero-test and the
inversion. This could actually be useful in practice. However, in order to keep our expo-
sition simple, we prefer to use straight-line programs over 𝕂 for these operations, so
splittings never occur.

3.5. Directed evaluation
Let us now define the directed evaluation of a tree T. As input, we take a directed split-
ting 𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅⊕ℍℓ and a∈𝔻|ℐ |. Informally speaking, this evaluation simply applies
the above directed operations in sequence, so we evaluate the entire computation tree
while restricting the current algebra when encountering zero-tests and inversions. The
list of the residual subalgebras is maintained throughout the evaluation process. For
consistency, the evaluation takes a directed splitting𝔻⊕ℍ1⊕⋅⋅⋅⊕ℍℓ as input, but only
the summand 𝔻 will be decomposed during the evaluation process.

Formally speaking, the directed evaluation path is written P~(T;a). To each node v∈
P~(T;a), we both associate a directed splitting

𝒟~ (v;a)=(𝔻v,ℍv,1, . . . ,ℍv,ℓv)
of 𝔸, so

𝔸≅𝔻v⊕ℍv,1⊕ ⋅ ⋅ ⋅ ⊕ℍv,ℓv,
and a value

ℰ~(v;a)∈𝔻v∪{false, true,undefined}∪ �
v∈𝒪

𝔻v
m(v).
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The directed evaluation of T is defined inductively as follows:
• The path P~ (T; a) starts with the input nodes u1, . . . , u|ℐ | of ℐ . We set 𝒟~ (ui; a)≔
(𝔻,ℍ1, . . . ,ℍℓ) and ℰ~(ui; a)≔ ai, for i= 1, . . . , |ℐ|. The next node of the path is set
to the successor of u|ℐ |.

• If the current node v of the path is the root of the path, and is a computation
node (op;u1, . . . ,um), then we necessarily have ℐ = ∅ and m= 0, we set 𝒟~ (v; a)≔
(𝔻,ℍ1, . . . ,ℍℓ) and ℰ~(v; a)≔op(). The next node of the path is set to the successor
of v.

• If the current node v of the path is a computation node (op; u1, . . . , um) with op∈
𝕂0∪𝕂1∪{+,−,×}, whose direct predecessor is w, then we set 𝒟~ (v;a)≔𝒟~ (w;a) and

ℰ~(v;a)≔op(𝜋𝔻u1→𝔻w(ℰ~(u1;a)), . . . ,𝜋𝔻um→𝔻w(ℰ~(um;a))).

The next node of the path is set to the successor of v.
• If the current node v of the path is a computation node (invert;u), whose direct pre-

decessor is w, then we apply the directed inversion to e≔𝜋𝔻u→𝔻w(ℰ~(u; a)) for the
splitting𝒟~ (w;a). This yields a new splitting𝔸≅𝔻v⊕ℍv,1⊕⋅⋅⋅⊕ℍv,ℓv that we assign
to 𝒟~ (v;a).
∘ If 𝜋𝔻w→𝔻v(e)=0, then we set ℰ~(T;a)≔ℰ~(v;a)≔undefined, and the path ends at v.

∘ Otherwise ℰ~(v;a)≔𝜋𝔻w→𝔻v(e)−1, and the next node of the path becomes the suc-
cessor of v.

• If the current node v of the path is a branching node (zero?; u), whose direct pre-
decessor is w, then we apply the directed zero-test to e≔𝜋𝔻u→𝔻w(ℰ~(u; a)) for the
splitting 𝒟~ (w; a). This yields a new splitting 𝔸≅𝔻v⊕ℍv,1⊕ ⋅ ⋅ ⋅ ⊕ℍv,ℓv, that we
assign to 𝒟~ (v;a).
∘ If 𝜋𝔻w→𝔻v(e)=0, then ℰ~(v;a)≔true, and the current node of the path becomes the

right successor of v.
∘ Otherwise, ℰ~(v; a)≔ false, and the current node of the path becomes the left suc-

cessor of v. We also record the inverse 𝜋𝔻w→𝔻v(e)−1.
• If the current node v of the path is an output node (u1, . . . ,um), whose predecessor

is w, then we set 𝒟~ (T;a)≔𝒟~ (v;a)≔𝒟~ (w;a) and

ℰ~(T;a)≔ℰ~(v;a)≔(𝜋𝔻u1→𝔻w(ℰ~(u1;a)), . . . ,𝜋𝔻um→𝔻w(ℰ~(um,a))).

Whenever u,v∈P~(T; a) are such that v is a successor of u, the splittings of 𝔸 at u and v
satisfy 𝔻v⩽𝔻u. It can be checked by induction over the path P~(T; a) that 𝒟~ (T; a) and
ℰ~(T;a) are well defined.

PROPOSITION 3.9. Let 𝔸≅�̃�⊕ℍ̃1⊕ ⋅ ⋅ ⋅ ⊕ℍ̃s⊕ℍ1⊕ ⋅ ⋅ ⋅⊕ℍℓ represent the directed splitting
𝒟~ (T;a) returned by the directed evaluation of T at a as above. Then, for all 𝔼⩽�̃�, we have

𝜋�̃�→𝔼(ℰ~(T;a))= ℰ̄(T;𝜋𝔸→𝔼(a)).

Proof. We verify by induction on paths that P~(T;a) and P̄(T;𝜋𝔸→𝔼(a)) coincide, and that
𝜋𝔻v→𝔼(ℰ~(v;a))= ℰ̄(v;𝜋𝔸→𝔼(a)) holds for all v∈P~(T;a) that is not a branching node. □
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Example 3.10. Let us again consider the computation tree T from Example 2.1, and let

𝜇(x)≔(x2−p1) ⋅ ⋅ ⋅ (x2−p𝛿),

I ≔ (𝜇(x)), and 𝔸≔ℚ[x]/ I, with 𝛿 > 𝜅. Consider the directed evaluation of T at
a=𝛼, where 𝛼 represents the image of x in 𝔸. The first zero-test that we encounter is
zero?(a2−p1), which yields the directed splitting

𝔸≅ℚ[x]/((x2−p2) ⋅ ⋅ ⋅ (x2−p𝛿))⊕ℚ[x]/(x2−p1).

After the 𝜅 zero-tests zero?(a2−p1), . . . ,zero?(a2−p𝜅), we end up with the directed decom-
position

𝔸≅ℚ[x]/((x2−p𝜅+1) ⋅ ⋅ ⋅ (x2−p𝛿))⊕ℚ[x]/(x2−p𝜅)⊕ ⋅ ⋅ ⋅ ⊕ℚ[x]/(x2−p1)

and the value ℰ~(T; 𝛼)=0. This is due to the requirement that directed evaluation always
privileges the “branch of highest degree”. If 𝛿=𝜅+1, then the last zero-test potentially
leads to another directed decomposition

𝔸≅ℚ[x]/(x2−p𝜅)⊕ℚ[x]/(x2−p𝜅+1)⊕ℚ[x]/(x2−p𝜅−1)⊕ ⋅ ⋅ ⋅ ⊕ℚ[x]/(x2−p1)

and the value ℰ~(T;𝛼)=𝜅. In general, we recall that directed evaluation is a non-determin-
istic process: the output may depend on internal splitting choices that are made during
the directed zero-tests and inversions.

3.6. Fast panoramic evaluation
We are now in a position to state a central algorithm of this paper, which performs
panoramic evaluations using directed ones. The presentation is abstract, in terms of
general parametric frameworks. In the remainder of the paper we will study various
concrete instantiations of this algorithm.

Algorithm 3.2
Input. A computation tree T and an evaluation point a∈𝔸|ℐ |.
Output. A panoramic value of T at a.

1. Perform the directed evaluation of T at a for the trivial directed splitting (𝔸) of 𝔸.
Let 𝔸≅𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ be the directed splitting obtained in return.

2. Compute the projections 𝜋𝔸→ℍi(a) for i=1, . . . , ℓ.
3. Recursively call the algorithm in order to evaluate T at 𝜋𝔸→ℍi(a) for i=1, . . . , ℓ.

4. Return the union of {(𝔻,ℰ~(T;a))} and of the panoramic values obtained in step 3.

PROPOSITION 3.11. Algorithm 3.2 is correct.

Proof. Algorithm 3.2 finishes because the dimension of the input algebra strictly decreases
throughout the recursive calls in step 3. At the end of step 1, we have

ℰ~(T;a)=ℰ̄(T;𝜋𝔸→𝔻(a))≠ inconsistent,

by Proposition 3.9. Therefore the singleton {(𝔻, ℰ~(T; a))} is a panoramic value of T at
𝜋𝔸→𝔻(a). We conclude by observing that the union of the panoramic values in step 4
gives a panoramic value of T at a. □
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Example 3.12. Example 3.10 illustrates step 1 of Algorithm 3.2, for which we obtain𝔻=
ℚ[x]/((x2− p𝜅+1) ⋅ ⋅ ⋅ (x2− p𝛿)), ℰ~(T; 𝛼)=0 and ℍi=ℚ[x]/(x2− pi) for i=1, . . . , 𝜅. After
the 𝜅 recursive calls in step 3, we obtain the panoramic value

{(ℚ[x]/((x2−p𝜅) ⋅ ⋅ ⋅ (x2−p𝛿)),0), (ℚ[x]/(x2−p1),1), . . . , (ℚ[x]/(x2−p𝜅),𝜅)}.

In the next sections, Algorithm 3.2 will lead to nearly linear asymptotic complexity
bounds. So it turns out to be much faster than the naive Algorithm 3.1.

3.7. Delayed reductions
From the complexity point of view, there is still a problem with naive implementations
of Algorithm 3.2: the directed evaluation approach involves many potentially expensive
conversions of the form 𝜋𝔻u→𝔻w(ℰ~(u;a)). A general solution to this issue is tedious, but
for the concrete parametric frameworks from this paper, a natural and efficient approach
is to delay these conversions. This can be done at the price of performing arithmetic
operations in the input algebra instead of its subalgebras.

Consider for instance the simplest case when 𝔸=𝕂[x]/(𝜇(x)), where 𝜇 is monic of
degree d. Let𝔻=𝕂[x]/(𝜈(x))⩽𝔸with 𝜈 |𝜇 and deg 𝜈⩾d/2. Then one projection 𝜋𝔸→𝔻
corresponds to a division by 𝜈 of cost O(M𝕂(d)), when using the standard representation
for elements in 𝔻. This means that additions during the directed evaluation of a tree
typically admit a cost O(M𝕂(d)) instead of O(d), which is suboptimal.

A natural remedy to this problem is to delay reductions modulo 𝜈. This strategy
naturally fits in our setting of parametric frameworks through the use of redundant rep-
resentations. More precisely, consider some 𝔸∈ℱ within a parametric framework ℱ .
Then we may define a new parametric framework ℱ𝔸 whose objects are algebras 𝔹⩽𝔸
in ℱ , with this modification that elements in 𝔹 are represented by elements in𝔸. Given
𝔹′⩽𝔹, this means that projections 𝜋𝔹→𝔹′ are free of charge in ℱ𝔸. The arithmetic oper-
ations op∈𝕂0∪𝕂1∪{+,−, ×} on elements in 𝔹 are also performed in 𝔸. The inversion
of b∈𝔹 is done by computing the projection b′=𝜋𝔸→𝔹(b) inℱ and then performing the
inversion of b′ in 𝔹; zero-tests are done similarly.

Of course, at the end of a directed evaluation that uses this kind of redundant repre-
sentations, we may wish to convert the result to the standard representation in ℱ . This
can be done by inserting a “finalization” step at the end of step 1 in Algorithm 3.2.

4. COMPLEXITY OF UNIVARIATE PANORAMIC EVALUATION

This section is devoted to parametric algebras with one algebraic parameter, that is of the
form 𝔸=𝕂[x]/(𝜇𝔸(x)) with 𝜇𝔸 monic, separable, and of degree d. For our complexity
bounds it will be convenient to assume that d⩾2.

Elements in 𝔸 are represented as remainder classes a=Amod 𝜇𝔸 with A∈𝕂[x]<d.
The univariate situation is notably simple but already useful enough to be treated sepa-
rately. We first specify the parametric framework and the directed operations, then we
analyze the cost of our fast panoramic evaluation, and finally we compare the directed
evaluation strategy with dynamic evaluation.

For efficiency reasons, we further assume that 𝜇𝔸 is explicitly separable in the sense that
we are given the cofactors 𝜃𝔸 and 𝜉𝔸 in 𝕂[x]<d in the Bézout relation

1=𝜃𝔸𝜇𝔸′ +𝜉𝔸𝜇𝔸. (4.1)

Computing this relation from the outset only requires O(M𝕂(d) log d) operations in 𝕂.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 19



4.1. Univariate parametric framework
Let us first specify the required operations of the univariate parametric framework, and
explicit their complexity.
• Additions and subtractions in 𝔸 can clearly be performed by straight-line programs

in linear time O(d), whereas multiplications take time O(M𝕂(d)).
• An element a=Amod𝜇𝔸∈𝔸with A∈𝕂[x]<d is invertible if and only if gcd(A,𝜇𝔸)=1

and, in that case, a−1 can be computed using the extended Euclidean algorithm.
Both the test and the computation of a−1 can be done by a computation tree in time
O(M𝕂(d) log d).

• We have 𝔹⩽𝔸 if and only if 𝜇𝔹 |𝜇𝔸. In that case, we have

𝜋𝔸→𝔹(Amod 𝜇𝔸)=(Amod𝜇𝔸)mod 𝜇𝔹

for all A∈𝕂[x]<d; the projection 𝜋𝔸→𝔹 can thus be computed in time O(M𝕂(d)) by
a straight-line program (below, we will rather use the technique of delayed reduc-
tions from section 3.7 in order to avoid projections altogether).

• Given b= B mod 𝜇𝔸∈𝔸∖ {0} with B∈𝕂[x]<d, we have 𝜇𝔸/(b)= gcd (𝜇𝔸, B) and
𝜇𝔸[b−1]=𝜇𝔸/gcd(𝜇𝔸,B). This shows that we can compute 𝔸/(b) and 𝔸[b−1] in time
O(M𝕂(d) log d) using computation trees.

• Given univariate parametric algebras𝔹1, . . . ,𝔹s⩽𝔸, we have𝔸≅𝔹1⊕⋅⋅⋅⊕𝔹s if, and
only if, 𝜇𝔸=𝜇𝔹1 ⋅⋅⋅𝜇𝔹s (which in particular implies that the 𝜇𝔹i are pairwise coprime).
In this case, the isomorphism 𝔸≅𝔹1⊕ ⋅ ⋅ ⋅ ⊕𝔹s in both directions can be computed
in time O(M𝕂(d) log s) by using the usual subproduct tree of 𝜇𝔹1, . . . , 𝜇𝔹s; see [21,
chapter 10].

The directed zero-tests and inversions of an element a∈𝔸with preimage A can be com-
puted in time O(M𝕂(d) log d), as follows:
• The input is a directed splitting of 𝔸,

𝔸≅𝕂[x]/(𝜇𝔻(x))⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ,

the Bézout relation 1=𝜃𝔻𝜇𝔻′ +𝜉𝔻𝜇𝔻, and an element a∈𝕂[x]/(𝜇𝔻(x))with preimage
A∈𝕂[x]<deg𝜇𝔻.

• If A= 0, then the result of the zero-test is true and the result of the inversion is
undefined. The input directed splitting is left unchanged in return.

• We compute g≔gcd(A, 𝜇𝔻) along with the Bézout relation g=UA+V𝜇𝔻.
• If g=1, then the result of the zero-test is true and the result of the inversion is U. The

input directed splitting is left unchanged in return.
• We compute h≔𝜇𝔻/g, and deduce the Bézout relations of g′ and g, and of h′ and h

by Lemma 4.1 below.
• If 2deg h⩽deg 𝜇𝔸 then we return the directed splitting

𝔸≅𝕂[x]/(g(x))⊕𝕂[x]/(h(x))⊕ℍ1⊕ ⋅ ⋅ ⋅⊕ℍℓ

and the image of a is zero in 𝕂[x]/(g(x)). The value of the zero-test is true, and the
result of the inversion is undefined.

• Otherwise, we return the splitting

𝔸≅𝕂[x]/(h(x))⊕𝕂[x]/(g(x))⊕ℍ1⊕ ⋅ ⋅ ⋅⊕ℍℓ
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and the image of a in𝕂[x]/(h(x)) is invertible. The latter splitting is actually directed
since 2deg h>deg 𝜇𝔸 implies

2deg g=2(deg 𝜇𝔻−deg h)⩽2(deg 𝜇𝔸−deg h)<deg 𝜇𝔸.

The inverse of a modulo h is obtained as follows:
∘ From the Bézout relation 1=𝜃𝔻𝜇𝔻′ +𝜉𝔻𝜇𝔻, we deduce 1=𝜃𝔻(g′h+gh′)+𝜉𝔻𝜇𝔻

and then
1=𝜃𝔻gh′ mod h.

∘ From the Bézout relation g=UA+V𝜇𝔻, we get g=UAmod h, and deduce

1=𝜃𝔻h′UAmod h.

The value of the zero-test is false, and the result of the inversion is 𝜃𝔻h′U rem h.

LEMMA 4.1. Let f ∈𝕂[x] be monic and separable of degree d, and let g and h be non-con-
stant monic polynomials in 𝕂[x] such that f = g h. Given the Bézout relation 1=A f ′ +B f,
the Bézout relations for g′ and g, and h′ and h can be computed by a straight-line program
in time O(M𝕂(d)).

Proof. From the given Bézout relation we have

1=Agh′+(Bg+Ag′)h.

Since deg(((Ag) rem h)h′) and deg(((Bg+Ag′) rem h′)h) are strictly less than deg(h′h),
reduction of this relation modulo h′h yields

1=((Ag) rem h)h′+((Bg+Ag′) rem h′)h.

This is the desired Bézout relation for h′ and h. By symmetry, the Bézout relation for g′
and g can be computed in a similar way. □

4.2. Main complexity result with one algebraic parameter
We are now ready to present the main complexity bound of this section, in terms of the
detailed cost functions defined in section 2.1.

THEOREM 4.2. Let 𝔸=𝕂[x]/(𝜇𝔸(x)) be an explicitly separable extension of 𝕂 of degree d≔
deg 𝜇𝔸⩾2, and let T be a computation tree over 𝕂-algebras of detailed cost (𝜏in, 𝜏out, 𝜏add,
𝜏mul,𝜏div). Then the panoramic evaluation of T over 𝔸 by Algorithm 3.2 takes time

O((𝜏addd+(𝜏out+𝜏mul)M𝕂(d)+(𝜏in+𝜏div)M𝕂(d) log d) log d).

Proof. We use Algorithm 3.2 in combination with the technique of delayed reductions
from section 3.7. This means that we avoid the cost of conversions, at the price of per-
forming arithmetic operations in subalgebras of𝔸 in the algebra𝔸 itself. More precisely,
the cost of one directed evaluation of T over 𝔸 is the sum of:
• O(𝜏addd) operations in 𝕂 for the nodes of type in 𝕂0∪𝕂1∪{+,−},
• O(𝜏mulM𝕂(d)) operations in 𝕂 for the nodes of type ×,
• O(𝜏divM𝕂(d) log d) operations in 𝕂 for the directed zero-tests and inversions,
• O(𝜏outM𝕂(d)) operations in𝕂 for the reductions in the output nodes of the path (i.e.

the “finalization step” in the terminology of section 3.7).
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Let 𝔸≅𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ denote the directed splitting obtained at the end of step 1 of
Algorithm 3.2. By construction we have

dim𝕂ℍi⩽d/2 for all i=1, . . . , ℓ. (4.2)
Fast multi-remaindering yields 𝜋𝔸→ℍi(a) for i=1, . . . , ℓ in time O(𝜏inM𝕂(d) log d).

We recursively perform the panoramic evaluation of T over ℍi for all i=1, . . . , ℓ.
Let C(d) be the cost of one panoramic evaluation of T over an algebra of dimension ⩽d.
We have shown that there exists a universal constant c such that

C(d)⩽ c(𝜏addd+(𝜏out+𝜏mul)M𝕂(d)+(𝜏in+𝜏div)M𝕂(d) log d)+�
i=1

ℓ

C(dim𝕂ℍi).

In view of (4.2), we conclude by unrolling this inequality at most � log d
log 2� times. □

Example 4.3. Continued from Example 3.12. The first directed evaluation of T performs
O(𝜅M𝕂(𝛿)log(𝜅 𝛿)) operations in 𝕂. One directed evaluation of T over ℚ[x]/(x2−pi)
takes time O(i log 𝜅), for i=1,.. . , 𝜅. In this example, the resulting cost of Algorithm 3.2 is

O(((((((((((((((((𝜅M𝕂(𝛿) log(𝜅 𝛿)+�
i=1

𝜅

i log 𝜅)))))))))))))))))=O(𝜅M𝕂(𝛿) log(𝜅 𝛿)),

which is better than the bound of Theorem 4.2 because the recursive depth is constant. If
𝔸 is a field, then we notice that the usual evaluation of T at 𝛼 takes time O(𝜅M𝕂(𝛿)log𝜅).

4.3. Comparison with previous work
Let us now compare the complexity of directed evaluation with the complexities of
other known strategies for a single algebraic parameter. One problem with dynamic
evaluation is that it is hard to implement in common programming languages without
support for parallelism or high level control structures such as continuations [41]. Early
implementations of dynamic evaluation were therefore naive [13], the computation tree
essentially being reevaluated for every separate case: see subsection 4.3.1. In theory,
using SCHEME-style continuations or UNIX-style forking, it is possible to factor out many
common computations between the different cases; see [4]. We analyze these approaches
from a complexity point of view in section 4.3.2. Besides dynamic evaluation, various
more ad hoc approaches have also be proposed for computations with a single algebraic
parameter; we will discuss them in section 4.3.3.

4.3.1. Naive dynamic evaluation
When using common sequential programming languages, dynamic evaluation is usu-
ally implemented as in Algorithm 3.2, with the following two differences:
• Splittings are no longer required to be directed. In other words, at each evaluation

step, the splitting 𝔸≅𝔻v⊕ℍv,1⊕ ⋅ ⋅ ⋅ ⊕ℍv,ℓv at node v of T is not required to satisfy
the conditions 2dim𝕂ℍv,i⩽dim𝕂𝔸 for i=1, . . . , ℓv. Consequently, whenever a zero-
test or an inversion triggers a basic splitting for𝔻v, the branch where we continue the
evaluation is chosen non-deterministically. Such evaluations are said to be undirected
in the sequel.

• Once the undirected evaluation is finished, the projections in step 2 of Algorithm 3.2
are done naively, without fast multi-remaindering.

Adapting the cost analysis of Algorithm 3.2 leads to the complexity bound

O((𝜏addd+(𝜏mul+𝜏in+𝜏out)M𝕂(d)+𝜏divM𝕂(d) log d)d)
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for naive dynamic evaluation, in terms of the detailed cost functions from section 2.1.
The following example shows that the latter bound is tight in the worst case. So naive

dynamic evaluation is in general less efficient than fast panoramic evaluation.

Example 4.4. Let us again consider the family of computation trees of Example 2.1, let

𝜇(x)≔(x2−p1) ⋅ ⋅ ⋅ (x2−p𝛿),

with 𝛿>𝜅, I≔(𝜇(x)), 𝔸≔ℚ[x]/I, and let 𝛼 represent the image of x in 𝔸. Then a pos-
sible undirected evaluation of T at a=𝛼 performs a basic splitting and may select the
splitting

ℚ[x]/(x2−p1)⊕ℚ[x]/((x2−p2) ⋅ ⋅ ⋅ (x2−p𝛿)).

So a possible undirected evaluation ends with the latter splitting and output value 1.
A possible undirected evaluation of T overℚ[x]/((x2−p2) ⋅⋅⋅ (x2−p𝛿))may end with

the splitting
ℚ[x]/(x2−p2)⊕ℚ[x]/((x2−p3) ⋅ ⋅ ⋅ (x2−p𝛿))

and value 2. Doing so for the rest of the evaluation, we may end with the splitting

ℚ[x]/(x2−p1)⊕ ⋅ ⋅ ⋅ ⊕ℚ[x]/(x2−p𝜅)⊕ℚ[x]/((x2−p𝜅+1) ⋅ ⋅ ⋅ (x2−p𝛿))

and the value of T over ℚ[x]/(x2 − pi) is i for i= 1, . . . , 𝜅, and is 0 over ℚ[x]/((x2 −
p𝜅+1) ⋅ ⋅ ⋅ (x2−p𝛿)).

The total execution time therefore grows at least with

�
k=1

𝜅

kM𝕂(𝛿−k) = Ω(((((((((((((((((�k=1
𝜅

k(𝛿−k)))))))))))))))))) = Ω(𝜅2 (𝛿−𝜅)).

In comparison to Example 4.3, it turns out that dynamic evaluation may be significantly
more expensive than our fast panoramic evaluation based on directed evaluation.

4.3.2. Dynamic evaluation using continuations or forking
The naive implementation of dynamic evaluation using reevaluations of the entire com-
putation tree leads to unnecessary recomputations. High-level control structures such as
continuations can be used to avoid this kind of recomputations, by resuming the “recom-
putations” directly at the points where the splittings occurred. UNIX-style forks can be
used to the same effect. We will now illustrate the benefit of these approaches on our
running Example 2.1, after which we will present another example that remains prob-
lematic even with this type of optimizations.

Example 4.5. Let T be a computation tree of the family introduced in Example 2.1, and
let us again consider

𝜇(x)≔(x2−p1) ⋅ ⋅ ⋅ (x2−p𝛿),

with 𝛿>𝜅, I≔(𝜇(x)),𝔸≔ℚ[x]/I, and let 𝛼 represent the image of x in𝔸. The dynamic
evaluation of T at 𝛼 encounters an inconsistency when testing whether (x2−p1)𝜅 is zero
modulo 𝜇(x). One computation continues modulo x2 − p1, and so returns 1. Another
computation continues modulo (x2−p2)⋅⋅⋅ (x2−p𝛿) and a new splitting occurs at the zero-
test of (x2− p2)𝜅, etc. Counting common computations in branches only once, the total
cost of the dynamic evaluation is bounded by

O(𝜅M𝕂(𝛿) log 𝜅+𝜅M𝕂(𝛿) log 𝛿)=O(𝜅M𝕂(𝛿) log(𝜅 𝛿))
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which is essentially the same as the cost of our fast panoramic evaluation: see Example 4.3.

Example 4.6. Let us now consider the following (still somewhat artificial) program over
ℚ-algebras:

for i from 1 to 𝜅 do
fi≔(x2−pi)𝜅

for i from 1 to 𝜅 do
if fi=0 then fi≔ fi+1

Evaluated over a field 𝔸 of degree d over 𝕂, the total cost of this program is

�
i=1

𝜅

M𝕂(d) log 𝜅= Õ(𝜅d).

Let us now take𝔸≔ℚ[x]/I with I as in the previous example. The dynamic evaluation
executes the first loop sequentially with cost ∑i=1

𝜅 M𝕂(𝛿) log 𝜅= Õ(𝜅 𝛿). Then it splits at
the zero-test of (x2−p1) modulo 𝜇(x) into two branches:

• The first branch works modulo x2 − p1 and reduces f2, . . . , f𝜅 modulo x2 − p1,
which amounts to O((𝜅 − 1) 𝛿) operations in 𝕂. The costs of the zero-tests totalize
O((𝜅−1)M𝕂(2) log 2).

• The second branch works modulo (x2 − p2) ⋅ ⋅ ⋅ (x2− p𝛿). The zero-test of f2 costs
O(M𝕂(𝛿−1) log(𝛿−1)), and causes the present branch to split up into two:

∘ The first branch works modulo x2 − p2 and reduces f3, . . . , f𝜅, which
amounts to O((𝜅 − 2) 𝛿) operations in 𝕂. The costs of the zero-tests totalize
O((𝜅−2)M𝕂(2) log 2).

∘ The second branch works modulo (x2− p3) ⋅ ⋅ ⋅ (x2− p𝛿). The zero-test of f3 costs
O(M𝕂(𝛿−2) log(𝛿−2)), and causes the present branch to split up into two:

− .. .

The total execution time when using dynamic evaluation is therefore

Ω(((((((((((((((((�i=1
𝜅

M𝕂(𝛿) log 𝜅+�
i=1

𝜅

((𝜅− i) 𝛿+M𝕂(𝛿− i) log(𝛿− i)))))))))))))))))))=Ω(𝜅2𝛿).
By Theorem 4.2, the execution time using fast panoramic evaluation is Õ(𝜅 𝛿), which is
significantly better.

4.3.3. Specific algorithms

The bottleneck of dynamic evaluation in Example 4.6 lies in the projections of data from
parametric algebras into smaller ones. It is important to stress that this cost cannot
be reduced by executing the branches in a judicious order or by cleverly factoring out
common computations in branches using continuations. In our fast panoramic evalu-
ation strategy, this means that fast multi-remaindering plays a crucial role for handling
these projections efficiently.
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The above examples show that determining the best strategy to compute a panoramic
value for a given computation tree is not an obvious problem: in fact, computation trees
and more general programs may often be modified in order to accelerate panoramic
evaluations. Let us now consider some specific computation trees for which efficient
ad hoc strategies have been developed.

For panoramic quasi-inversions in𝔸, gcds, and coprime factorizations in𝔸[y], Dahan
et al. have designed fast algorithms in [8]. For instance, they showed that a panoramic
gcd in 𝔸[y]⩽n could be obtained with cost

O(M𝕂(d) log dM𝕂(n) log n); (4.3)

see [8, Propositions 2.4 and 4.1]. For this problem, Theorem 4.2 leads to the cost

O((M𝕂(n)M𝕂(d) log n+nM𝕂(d) log d) log d),

which can be further improved to

O((M𝕂(dn) log n+nM𝕂(d) log d) log d) (4.4)

by using Kronecker substitution to multiply polynomials in (𝕂[x]/(𝜇(x)))[y]⩽n in time
O(M𝕂(d n)). If log2 n= o(log d), then this cost is slightly higher than (4.3). If d=O(n),
then (4.4) simplifies to O(dM𝕂(n) log n log d), which is slightly better than (4.3).

Another interesting application of fast panoramic evaluation is the computation of
the determinant Δ of an n× n matrix M with entries in 𝔸=𝕂[x]/(𝜇(x)). By means
of Berkowitz' algorithm [1], such a determinant can be computed in time O(n𝜔+1) by
a straight-line program over 𝔸, and therefore in time O(n𝜔+1M𝕂(d)) by a straight-line
program over 𝕂. This cost decreases to Õ(n𝜔/2+2)M𝕂(d) by using [32], and even to
O(n𝜔+1/2M𝕂(d)) thanks to [40], whenever inverses of 2, 3, . . . ,n are given in 𝕂. We can
do better with fast panoramic evaluation: we first compute the determinant of M over𝔸
as if it were a field by means of a computation tree that performs O(n𝜔) ring opera-
tions and O(n2) zero-tests and inversions. By Theorem 4.2, this can be done in time

O((n𝜔M𝕂(d)+n2M𝕂(d) log d) log d).

The resulting panoramic value corresponds to the residues of Δmodulo several pairwise
coprime factors of 𝜇. Chinese remaindering finally allows to recover the actual determi-
nant Δ using O(M𝕂(d) log d) additional operations in 𝕂.

5. SEVERAL ALGEBRAIC PARAMETERS

From now on, we focus on the complexity of panoramic evaluation for t⩾2 algebraic
parameters. Such a tower is determined by algebraic parameters 𝛼1, . . . , 𝛼t, where 𝛼1 is
constrained by an algebraic equation over𝕂, and 𝛼i is constrained by an algebraic equa-
tion over 𝕂[𝛼1, . . . , 𝛼i−1] for i=2, . . . , t. It is natural to apply the method of the previous
sections for a single algebraic parameter in a recursive manner. But we have to face
a new difficulty: directed zero-tests and inversions in 𝕂[𝛼1, . . . , 𝛼t] will involve occa-
sional zero-tests and inversions in𝕂[𝛼1,...,𝛼t−1], that will themselves involve occasional
zero-tests and inversions in 𝕂[𝛼1, . . . , 𝛼t−2], etc. The first goal of this section is to design
data structures that allow us to create new branches for free during directed evaluation.
At the end of a directed evaluation we need to project input data into all the residual
branches. Performing this task efficiently is the second goal of this section.
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Data structures play an important role in the efficiency of operations required by
parametric frameworks. From now on, we will only manipulate parametric algebras
whose defining ideals are generated by triangular sets. In other words, all parametric
algebras will be represented by towers (𝔸i)i⩽t over 𝔸0=𝕂, as in section 1.1. We recall
that (𝔸i)i⩽t is also assumed to be absolutely reduced, i.e. �̄�⊗𝔸t is a product of fields. A
tower (𝔸i)i⩽t is said to be explicitly separable if we are given the Bézout cofactors 𝜃i and 𝜉i
in 𝔸i−1[xi] such that 1=𝜃i𝜇i′+𝜉i𝜇i for i=1, . . . , t.

In order to simplify complexity analyses, it is convenient to assume that di≔deg 𝜇i⩾2
for i=1, . . . , t. In particular, d= d1 ⋅ ⋅ ⋅ dt⩾2. This restriction is harmless, since exten-
sions of degree di=1 can be discarded without cost in our model of computation trees.

5.1. Tower factorizations

Consider two towers (𝔸i)i⩽t and (𝔹i)i⩽t of the same height t and over the same base
field 𝕂. Let (𝜇i)i⩽t and (𝜈i)i⩽t denote the respective defining polynomials of (𝔸i)i⩽t and
(𝔹i)i⩽t. We say that (𝔹i)i⩽t is a factor tower of (𝔸i)i⩽t if Z𝔹t⊆Z𝔸t. This is the case if, and
only if, there exist natural projections 𝜋𝔸i→𝔹i (that naturally extend to projections 𝜋𝔸i→𝔹i:
𝔸i[xi]→𝔹i[xi] in a coefficient-wise manner) such that:

• 𝜈i divides 𝜋𝔸i−1→𝔹i−1(𝜇i) for i=1, . . . , t.

• 𝜋𝔸i→𝔹i sends an element a∈𝔸i represented by A(xi)=∑k=0
di−1 Ak xi

k∈𝔸i−1[xi]<di to

𝜋𝔸i−1→𝔹i−1(A(xi))=�
k=0

di−1

𝜋𝔸i−1→𝔹i−1(Ak)xi
k rem 𝜈i(xi),

for i=1, . . . , t.

Given such a factor tower (𝔹i)i⩽t of (𝔸i)i⩽t, let us now study the cost C(𝔸i→𝔹i) of
computing one projection 𝜋𝔸i→𝔹i(x)∈𝔹i of an element x∈𝔸i with i⩽ t.

LEMMA 5.1. Let (𝔹i)i⩽t be a factor tower of (𝔸i)i⩽t. The projection 𝜋𝔸t→𝔹t(a) of an element
a∈𝔸t can be computed by a straight-line program in time

C(𝔸t→𝔹t)=O(((((((((((((((((((�i=1
t

M𝔹i−1(di)di+1 ⋅ ⋅ ⋅ dt)))))))))))))))))))=O(CtM𝕂(d)).

Proof. Let A∈𝔸t−1[xt]<dt denote the preimage of a. We recursively apply 𝜋𝔸t−1→𝔹t−1

to the coefficients of A. Then, the reduction of 𝜋𝔸t−1→𝔹t−1(A) modulo 𝜈t can be done by
a straight-line program with cost O(M𝔹t−1(dt)). Consequently, there exists a universal
constant c such that the cost function C(𝔸t→𝔹t) satisfies

C(𝔸t→𝔹t) ⩽ cM𝔹t−1(dt)+C(𝔸t−1→𝔹t−1)dt.

Unrolling this inequality yields

C(𝔸t→𝔹t)=O(((((((((((((((((((�i=1
t

M𝔹i−1(di)di+1 ⋅ ⋅ ⋅ dt))))))))))))))))))).
Taking M𝔹i−1(di)=O(Ci−1M𝕂(d1 ⋅ ⋅ ⋅ di)) from Proposition 2.6 concludes the proof. □
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𝕂

𝔸1;1

𝔸2;1,1

𝔸3;1,1,1 . . . 𝔸3;1,1,l1,1

. . . 𝔸2;1,l1

𝔸3;1,l1,1 . . . 𝔸3;1,l1,l1,l1

. . . 𝔸1;l()

𝔸2;l(),1

𝔸3;l(),1,1 . . . 𝔸3;l(),1,ll(),1

. . . 𝔸2;l(),ll()

𝔸3;l(),ll(),1 . . . 𝔸3;l(),ll(),ll(),ll()

Figure 5.1. Example of a tree factorization of a tower of height t=3.

In the sequel, “()” stands for the empty tuple. Let Σk be an index set of k-tuples of
integers with Σ0={()} and

Σk={(𝜎1, . . . ,𝜎k−1, i) : (𝜎1, . . . , 𝜎k−1)∈Σk−1, i∈{1, . . . , l𝜎1, . . . ,𝜎k−1}},

for integers l𝜎1, . . . ,𝜎k−1 and k=1, . . . , t. Consider a family ((𝔸i;𝜎)i⩽t)𝜎∈Σt of factor towers
of (𝔸i)i⩽t with the property that 𝔸k;𝜎1, . . . ,𝜎t only depends on 𝜎1, . . . , 𝜎k for all (𝜎1, . . . ,𝜎t)∈
Σt, and write 𝔸k;𝜎1, . . . ,𝜎k≔𝔸k;𝜎1, . . . ,𝜎t. We say that such a family of factors forms a tree
factorization of (𝔸i)i⩽t if the variety Z𝔸t is partitioned into Z𝔸t=∐𝜎∈Σt

Z𝔸t;𝜎. If k>0 and
𝜎∈Σk, then we also write 𝜇k;𝜎∈𝔸k;𝜎1, . . . ,𝜎k−1[xk] for the defining polynomial of 𝔸k;𝜎 over
𝔸k−1;𝜎.

It is convenient to represent such a factorization by a labeled tree (see Figure 5.1): the
nodes are identified with the index set made of the disjoint union

Σ0⨿Σ1⨿ . . . ⨿Σt,

and each node 𝜎∈Σk is labeled with the algebraic extension𝔸k;𝜎. The parent of the node
𝜎 ∈Σk with k>0 is simply the node (𝜎1, . . . , 𝜎k−1)∈Σk−1. Each individual factor tower
(𝔸i;𝜎)i⩽t corresponds to a path from the root to a leaf.

Given k⩽ t and 𝜎∈Σk, let

Σt;𝜎≔{𝜏 :(𝜎,𝜏)∈Σt}.
Projecting the equality

Z𝔸t= �
𝜎∈Σk

�
𝜏∈Σt;𝜎

Z𝔸t;𝜎 ,𝜏

on the first k coordinates, we observe that the projection of Z𝔸t;𝜎 ,𝜏, for given 𝜎 ∈Σk, is
the same for all 𝜏∈Σt;𝜎, and equals Z𝔸k;𝜎, whence Z𝔸k =∐𝜎∈Σk

Z𝔸k;𝜎. Consequently,
((𝔸i;𝜎1, . . . ,𝜎i)i⩽k)𝜎∈Σk forms a tree factorization of the sub-tower (𝔸i)i⩽k. From an alge-
braic point of view, this means that we have a natural isomorphism

𝔸k ≅ �
𝜎∈Σk

𝔸k;𝜎.

5.2. Directed evaluation in the multivariate case
Consider an explicitly separable tower (𝔸i)i⩽t and assume that we wish to compute the
panoramic evaluation of a computation tree T over 𝔸t. In order to apply Algorithm 3.2
in this multivariate context, it would be natural to specify a parametric framework, as we
did in the univariate case. Since we will exclusively focus on the directed approach from
now on, it turns out to be simpler and more straightforward to describe how to perform
the directed evaluation and the projections in steps 1 and 2.
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𝕂

𝔸
˘
1=𝔸1

1,1

𝔸
˘
2=𝔸2

2,1

⋅⋅⋅

𝔸
˘

t=𝔸t
t,1 𝔸t

t,2 . . . 𝔸t
t,lt

⋅⋅⋅ . . . ⋅⋅⋅

𝔸2
2,2

⋅⋅⋅

𝔸t
2,2

. . . 𝔸2
2,l2

⋅⋅⋅

𝔸t
2,l2

𝔸1
1,2

𝔸2
1,2

⋅⋅⋅

𝔸t
1,2

. . . 𝔸1
1,l1

𝔸2
1,l1

⋅⋅⋅

𝔸t
1,l1

Figure 5.2. Illustration of a generic tower factorization involved in a directed evaluation. The prin-
cipal branch is highlighted.

Informally speaking, we want to work with respect to a “factor of highest possible
degree” at each level. This leads to special types of factorizations of (𝔸i)i⩽t that are
illustrated in Figure 5.2. The actual computations are done in the algebras from the
highlighted “principal branch”. The other “residual branches” are dealt with at a next
iteration, when the computations for the principal branch have been completed.

Technically speaking, a directed splitting of 𝔸t will be represented by:

• Vectors 𝜇i
→≔(𝜇i,1, . . . , 𝜇i,li) of polynomials in 𝔸i−1[xi] for i=1, . . . , t, such that:

∘ 𝜇
˘
1≔𝜇1,1, . . . , 𝜇

˘
t≔𝜇t,1 are the defining polynomials of a factor tower of (𝔸i)i⩽t,

written (𝔸
˘

i)i⩽t, and called the principal branch.
∘ 𝜋𝔸i−1→𝔸

˘
i−1
(𝜇i)=𝜇

˘
i𝜋𝔸i−1→𝔸

˘
i−1
(𝜇i,2) ⋅ ⋅ ⋅ 𝜋𝔸i−1→𝔸

˘
i−1
(𝜇i,li) for i=1, . . . , t.

∘ 2deg 𝜇i,k⩽deg 𝜇i for k=2, . . . , li.

• The Bézout relations 1=𝜃
˘
i𝜇
˘

i′+𝜉
˘
i𝜇
˘

i for i=1, . . . , t, so (𝔸
˘

i)i⩽t is explicitly separable.
Each factor 𝜋𝔸j−1→𝔸

˘
j−1
(𝜇j,k) with j=1, . . . , t and k=2, . . . , lj gives rise to a factor tower

(𝔸i
j,k)i⩽t of (𝔸i)i⩽t, called a residual branch, as follows:

• For i< j, we set 𝔸i
j,k≔𝔸

˘
i.

• 𝔸j
j,k≔𝔸

˘
j−1[xj]/�𝜋𝔸j−1→𝔸

˘
j−1
(𝜇j,k(xj))�.

• For i> j, the defining polynomial of𝔸i
j,k over𝔸i−1

j,k is the projection of 𝜇i(xi) in𝔸i−1
j,k [xi].

The tree representation of the resulting tower factorization is summarized in Figure 5.2.
The actual directed splitting of 𝔸t represented in this manner is

𝔸t ≅ 𝔸
˘

t⊕𝔸t
t,2⊕ ⋅ ⋅ ⋅ ⊕𝔸t

t,lt⊕ ⋅ ⋅ ⋅ ⊕𝔸t
2,2⊕ ⋅ ⋅ ⋅⊕𝔸t

2,l2⊕ ⋅ ⋅ ⋅ ⊕𝔸t
1,2⊕ ⋅ ⋅ ⋅ ⊕𝔸t

1,l1.

Notice that a directed splitting 𝜇1
→→, . . . , 𝜇t

→ of (𝔸i)i⩽t naturally induces a directed splitting
𝜇1
→→, . . . , 𝜇j

→ of (𝔸i)i⩽ j for j=1, . . . , t.
Now the main idea is to perform the directed evaluation of a computation tree over

the principal branch, while postponing evaluations over residual branches. With our
representation of directed splittings, creating residual branches is essentially free of
charge; the corresponding tower representations will only be computed after comple-
tion of the entire directed evaluation, using a dedicated “finalization” procedure that
will be detailed in subsection 5.4 below. After the finalization, the projections from step 2
of Algorithm 3.2 can be carried out efficiently using fast multi-remaindering; this will
also be detailed in subsection 5.4.
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As in the univariate case, it will be convenient to use the technique of delayed reduc-
tions from section 3.7. During directed evaluations, this means that we will actually
represent elements in 𝔸

˘
i by elements in 𝔸i, for i=1, . . . , t. In particular, operations in

𝕂0∪𝕂1∪{+,−, ×} on elements in𝔸
˘

i are really performed in𝔸i. We recall that the main
benefit of this representation is that projections 𝜋𝔸

˘
i→�̆�i

are free of charge, whenever �̆�i

is a quotient algebra of𝔸
˘

i whose elements are also redundantly represented by elements
in 𝔸i. On the other hand, we will resort to reduced representations for directed zero-
tests and inversions. We will also systematically reduce all output values. Notice that
elements in 𝔸

˘
i can be reduced in time O(C iM𝕂(d1 ⋅ ⋅ ⋅ di)), by Lemma 5.1. In the next

subsection, we detail how to perform directed zero-tests and inversions.

5.3. Directed zero-tests and inversions
In the case of a single algebraic parameter, we reduced directed inversions and zero-tests
to extended gcd computations. With several parameters the problem is more difficult.
An element a in 𝔸t can be tested to be invertible by means of a straight-line program
over𝕂with polynomial cost and a single zero-test in𝕂: it essentially suffices to compute
the determinant of the multiplication endomorphism 𝔸t∋x↦ax∈𝔸t using Berkowitz'
algorithm [1]. But the cost of this approach is more than quadratic in d, which is not
satisfactory for our purposes. We now develop a more efficient strategy based on recur-
sive calls of the fast extended gcd algorithm in the directed evaluation model. Note that
a similar recursive approach was previously used in the contexts of dynamic evaluation
and triangular sets.

Algorithm 5.1
Input. An explicitly separable tower (𝔸i)i⩽t, a directed splitting (𝜇i

→)i⩽t of (𝔸i)i⩽t, and
a∈𝔸

˘
t, where (𝔸

˘
i)i⩽t denotes the principal branch of (𝜇i

→)i⩽t.
Output. A directed splitting (𝜇i

←)i⩽t of (𝔸i)i⩽t, with principal branch (�̆�i)i⩽t, the boolean
value of the zero-test of ă≔𝜋𝔸

˘
t→�̆�t

(a), where ă is either zero or invertible in �̆�t, and
the inverse ă−1 whenever ă is non-zero.

1. If t=0 then return true if a=0 or false and a−1 otherwise. The directed splitting is left
unchanged.

2. Let A∈𝔸
˘

t−1[xt]<dt denote the preimage of a, and recursively compute the extended
monic gcd of A and 𝜇

˘
t over𝔸

˘
t−1, using directed evaluation of a computation tree for

extended gcds, with the directed splitting (𝜇i
→)i⩽t−1 as extra input.

Let (𝜇i
←)i⩽t−1 denote the directed splitting obtained in return and let (�̆�i)i⩽t−1 be its

principal branch. This extended gcd computation also returns a monic polynomial
g∈�̆�t−1[xt], and U,V in �̆�t−1[xt] such that the following Bézout relation holds:

g=UĂ+V �̆�t,

where Ă≔𝜋𝔸
˘

t−1→�̆�t−1
(A) and �̆�t≔𝜋𝔸

˘
t−1→�̆�t−1

(𝜇
˘

t).

3. Let 𝜃t≔𝜋𝔸
˘

t−1→�̆�t−1
(𝜃
˘
t), 𝜉t≔𝜋𝔸

˘
t−1→�̆�t−1

(𝜉
˘
t), so that the Bézout relation 1=𝜃t �̆�t′ + 𝜉t �̆�t

holds. Compute the reduced representations of Ă, �̆�t, 𝜃t, 𝜉t, and g (recall that we
delayed these reductions), and then compute h≔�̆�t/g.

4. Deduce the Bézout relations 1=𝜃gg′+𝜉gg and 1=𝜃hh′+𝜉hh by means of Lemma 4.1.
5. If g=0, then return true, along with the directed splitting (𝜇i

←)i⩽t−1, (�̆�t, 𝜇t,2, . . . , 𝜇t,lt),
and the Bézout relation of �̆�t′ and �̆�t.
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6. If g=1, then return false, along with the directed splitting (𝜇i
←)i⩽t−1, (�̆�t,𝜇t,2, . . . , 𝜇t,lt),

the Bézout relation of �̆�t′ and �̆�t, and the inverse U(xt) mod �̆�t of 𝜋𝔸
˘

t→�̆�t
(a).

7. If 2 deg h⩽deg 𝜇t, then return true, along with the directed splitting (𝜇i
←)i⩽t−1,

(g,h, 𝜇t,2, . . . ,𝜇t,lt), and the Bézout relation of g′ and g.
8. Otherwise return false, along with the directed splitting (𝜇i

←)i⩽t−1, (h, g, 𝜇t,2, . . . , 𝜇t,lt),
the Bézout relation of h′ and h, and the inverse 𝜃tUh′ mod h of 𝜋𝔸

˘
t→�̆�t

(a).

Until the end of the paper, M𝕂(d1, . . . ,di;n) represents a cost function for products in
𝔸
˘

i[x]<n where (𝔸
˘

i)i⩽t can be any principal branch encountered in the directed evalua-
tion model over (𝔸i)i⩽t. Similarly, P𝕂(d1,...,di) is a cost function for reduced projections
from 𝔸i onto 𝔸

˘
i.

PROPOSITION 5.2. Algorithm 5.1 is correct and takes O(CtM𝕂(d) log d̄) operations in𝕂, where
d̄≔max(d1, . . . ,dt).

Proof. In step 8 we have

2deg g=2(deg 𝜇t,1−deg h)⩽2(deg 𝜇t −deg h)⩽deg 𝜇t.

Consequently, the splittings in the output are directed.
In step 8, the fact that 𝜃t Uh′ taken modulo h is the inverse of ă in �̆�t can be verified

as follows, in the same way as in section 4.1: the Bézout relation of Ă and �̆�t gives

𝜃th′UĂmod h=𝜃t h′gmod h,

which simplifies to 1mod h thanks to the Bézout relation of �̆�t′ and �̆�t. The correctness of
the algorithm follows from these facts.

Let us write D𝕂(d1, . . . , dt) for the cost of the algorithm and recall that we are using
the technique of delayed reductions. If t=0 then the cost is O(1). Otherwise, when com-
puting extended gcds using the fast algorithm from section 2.2, step 2 takes

O(M𝕂(d1, . . . ,dt−1;dt) log dt+P𝕂(d1, . . . ,dt−1)dt)+D𝕂(d1, . . . ,dt−1)dt

operations in 𝕂. Step 3 takes

O(P𝕂(d1, . . . ,dt−1)dt+M𝕂(d1, . . . ,dt−1;dt))

further operations, and step 4 takes time O(M𝕂(d1,...,dt−1;dt)), by Lemma 4.1. Steps 5 to 8
require O(M𝕂(d1 ⋅ ⋅ ⋅ dt−1; dt)) operations in 𝕂. Therefore, there exists a universal con-
stant c0 such that

D𝕂(d1, . . . ,dt)⩽c0(M𝕂(d1, . . . ,dt−1;dt) log dt+P𝕂(d1, . . . ,dt−1)dt)+D𝕂(d1, . . . ,dt−1)dt. (5.1)

Proposition 2.6 and Lemma 5.1 lead to

M𝕂(d1, . . . ,dt−1;dt) = O(Ct−1M𝕂(d1 ⋅ ⋅ ⋅ dt))
P𝕂(d1, . . . ,dt−1) = O(Ct−1M𝕂(d1 ⋅ ⋅ ⋅ dt−1)),

whence
D𝕂(d1, . . . ,dt)⩽c1Ct−1M𝕂(d1 ⋅ ⋅ ⋅ dt) log dt+D𝕂(d1, . . . ,dt−1)dt,

for some universal constant c1. Using C>1, unrolling the latter inequality leads to the
claimed bound. □
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5.4. Finalizing the residual branches
As before, let (𝔸i)i⩽t be a separable tower with defining polynomials 𝜇i of degree di⩾2,
and denote d≔d1 ⋅ ⋅ ⋅ dt. At the end of a directed evaluation, we must recover the tower
factorization of (𝔸i)i⩽t induced by the directed splitting. We also need efficient routines
for projecting onto the residual branches. In this subsection (and contrary to the previous
subsection), we use the traditional, reduced representations for elements in towers. We
begin with a simple lemma for the computation of Bézout relations induced by factor-
izations.

LEMMA 5.3. Let f ∈𝕂[x] be monic and separable of degree d, and let g1, . . . ,gs be non constant
monic polynomials in 𝕂[x] such that f =g1 ⋅ ⋅ ⋅ gs. Given the Bézout relation 1=Af ′+Bf of f ′
and f, the Bézout relations of gi′ and gi for i=1, . . . , s can be computed by a straight-line program
in time O(M𝕂(d) log s).

Proof. We first construct the subproduct tree of g1, . . . , gs: it is defined as the set of the
sub-products defined recursively as follows:
• the set {g1} if s=1,
• the union of {g1 ⋅⋅⋅gs} and the subproduct trees of g1,...,g⌈s/2⌉ and g⌈s/2⌉+1,...,gs if s>1.

A straightforward divide and conquer algorithm computes all these products with
O(M𝕂(d) log s) arithmetic operations in 𝕂. Then, we obtain the Bézout relations for
(g1 ⋅ ⋅ ⋅ g⌈s/2⌉)′ and g1 ⋅ ⋅ ⋅ g⌈s/2⌉, as well as for (g⌈s/2⌉+1 ⋅ ⋅ ⋅ gs)′ and g⌈s/2⌉+1 ⋅ ⋅ ⋅ gs, in time
O(M𝕂(d)) by Lemma 4.1. We conclude using a standard induction argument on s. □

LEMMA 5.4. Given a directed splitting (𝜇i
→)i⩽t as above, the explicitly separable factor towers

(𝔸i
j,k)i⩽t for j=1,. . . , t and k=1,. . . , lj can be computed in time O(CtM𝕂(d) log d̄) by a straight-

line program, where d̄≔max(d1, . . . ,dt). In addition, both directions of the isomorphism

𝔸t≅𝔸
˘

t⊕�
j=1

t
�
k=2

lj
𝔸t

j,k (5.2)

can be computed by straight-line programs in time O(CtM𝕂(d) log d̄).

Proof. Until the end of the proof, it is convenient to keep in mind the notation for the tree
factorization in Figure 5.2, associated to the directed splitting. Let us write:
• F𝕂(d1, . . . , dt) for the cost of the construction of the explicitly separable factor

towers (𝔸i
j,k)i⩽t;

• Q𝕂(d1, . . . ,dt) for the cost of the projections from 𝔸t onto 𝔸
˘

t⊕⨁j=1
t ⨁k=2

lj 𝔸t
j,k;

• R𝕂(d1,...,dt) for the cost of the Chinese remaindering from𝔸
˘

t⊕⨁j=1
t ⨁k=2

lj 𝔸t
j,k to𝔸t.

The proof is done by induction on t. If t=0, then the costs are zero. Assume now that t⩾1
and that explicitly separable factor towers (𝔸i

j,k)i⩽t−1 have been constructed. We thus
have the following effective isomorphism:

𝔸t−1 ≅ 𝔹t−1 ≔ 𝔸
˘

t−1⊕�
j=1

t−1
�
k=2

lj
𝔸t−1

j,k . (5.3)

We first project 𝜇t(xt) and the Bézout relation 1=𝜃t(xt)𝜇t′(xt)+𝜉t(xt)𝜇t(xt) onto𝔸
˘

t−1[xt]
and 𝔸t−1

j,k [xt] for j=1,. . . , t−1 and k=2, . . . , lj with cost O(Q𝕂(d1, . . . ,dt−1)dt). This already
gives the defining polynomials of 𝔸t

j,k over 𝔸t−1
j,k for j=1, . . . , t −1 and k=2, . . . , lj, along

with the corresponding Bézout relations.
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We next project the polynomials of 𝜇t
→ onto 𝔸

˘
t−1[xt], namely

𝜇
˘

t,k≔𝜋𝔸t−1→𝔸
˘

t−1
(𝜇t,k),

for k=2,..., lt, using O(Q𝕂(d1,. ..,dt−1)dt) operations in𝕂 (it is better to use Lemma 5.1 in
practice, but the present bound in terms of Q𝕂 simplifies the analysis). From the already
computed 𝜋𝔸t−1→𝔸

˘
t−1
(𝜇t), 𝜋𝔸t−1→𝔸

˘
t−1
(𝜃t), and 𝜋𝔸t−1→𝔸

˘
t−1
(𝜉t), we deduce the Bézout rela-

tions of 𝜇
˘

t,k′ and 𝜇
˘

t,k for k=2, . . . , lt, by means of Lemma 5.3, in time

O�M𝔸
˘

t−1
(dt) log dt�.

Overall, we have shown that there exists a universal constant c1 such that

F𝕂(d1, . . . ,dt)⩽c1(M𝕂(d1, . . . ,dt−1;dt) log dt+Q𝕂(d1, . . . ,dt−1)dt)+F𝕂(d1, . . . ,dt−1). (5.4)

Let us now consider both directions of the isomorphism (5.2). Given a∈𝔸t, represented
by A∈𝔸t−1[xt]<dt, we compute the projections A

˘
≔𝜋𝔸t−1→𝔸

˘
t−1
(A) and 𝜋𝔸t−1→𝔸t−1

j,k (A) for
j=1,..., t−1 and k=2,..., lj in time O(Q𝕂(d1,...,dt−1)dt); this already gives the images of a
into𝔸t

j,k for j=1,...,t−1 and k=2,..., lj. Then we compute the remainders of A
˘

modulo 𝜇
˘

t,k
for k=1,. . . , lt in time O�M𝔸

˘
t−1
(dt) log dt�. So there exists a universal constant c2 such that

Q𝕂(d1, . . . ,dt) ⩽ c2M𝕂(d1, . . . ,dt−1;dt) log dt+Q𝕂(d1, . . . ,dt−1)dt. (5.5)

For the inverse Chinese remaindering problem, we are given at,k∈𝔸t
t,k for k=1, . . . , lt,

and aj,k∈𝔸t
j,k for j=1, . . . , t−1 and k=2, . . . , lj. We have at our disposal 𝜋𝔸t−1→𝔸

˘
t−1
(𝜇t), its

factors 𝜇
˘

t,k for k=1,..., lt and the Bézout relation of 𝜋𝔸t−1→𝔸
˘

t−1
(𝜇t)′ and 𝜋𝔸t−1→𝔸

˘
t−1
(𝜇t). We

compute at−1,1∈𝔸
˘

t−1[xt]/(𝜋𝔸t−1→𝔸
˘

t−1
(𝜇t)) whose projections are at,k for k=1, . . . , lt:

At−1,1=�
k=1

t

((At,k𝜋𝔸t−1→𝔸
˘

t−1
(𝜃t)𝜇

˘
t,k′ ) rem𝜇

˘
t,k)

𝜋𝔸t−1→𝔸
˘

t−1
(𝜇t)

𝜇
˘

t,k
,

where At−1,1 (resp. At,k) is the canonical preimage of at−1,1 (resp. of at,k). Computing
At−1,1 costs O�M𝔸

˘
t−1
(dt) log dt�; see [21, Algorithm 10.20]. The isomorphism (5.3) gives

rise to the isomorphism

𝔸t = 𝔸t−1[xt]/(𝜇t(xt))
≅ 𝔹t−1[xt]/(𝜋𝔸t−1→𝔹t−1(𝜇t(xt)))

≅ 𝔸
˘

t−1[xt]/(𝜋𝔸t−1→𝔸
˘

t−1
(𝜇t(xt)))⊕�

j=1

t−1
�
k=2

lj
𝔸t−1

j,k [xt]/(𝜋𝔸t−1→𝔸t−1
j,k (𝜇t(xt))),

whose right-hand side contains (at−1,1, (aj,k)j⩽t−1,2⩽k⩽lj). We finally recover the image of
this element in𝔸t using dt recursive calls of the Chinese remaindering procedure. Alto-
gether, this shows that there exists a universal constant c3 with

R𝕂(d1, . . . ,dt)⩽ c3M𝕂(d1, . . . ,dt−1;dt) log dt+R𝕂(d1, . . . ,dt−1)dt. (5.6)

By using C>1, inequality (5.5) and Proposition 2.6 give

Q𝕂(d1, . . . ,dt) = O(((((((((((((((((((�i=1
t

C i−1M𝕂(d1 ⋅ ⋅ ⋅ di)di+1 ⋅ ⋅ ⋅ dt log dt)))))))))))))))))))
= O(CtM𝕂(d) log d̄).
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Similarly, the relation (5.6) yields

R𝕂(d1, . . . ,dt)=O(CtM𝕂(d) log d̄).

Finally, using our assumption that di⩾2 for i=1, . . . , t, the relation (5.4) implies that

F𝕂(d1, . . . ,dt)=O(CtM𝕂(d) log d̄). □

5.5. Panoramic evaluation
We are now ready the state the main complexity result of this section, in terms of the
detailed cost functions from section 2.1.

THEOREM 5.5. Let (𝔸i)i⩽t be an explicitly separable tower of degree d≔dim𝕂𝔸t, let d̄≔
max(d1, . . . ,dt), and let T be a computation tree over 𝕂-algebras of detailed cost (𝜏in,𝜏out,𝜏add,
𝜏mul, 𝜏div). Then the panoramic evaluation of T over 𝔸 using Algorithm 3.2, along with the
computation of auxiliary data, requires

O((𝜏addd+(𝜏out+𝜏mul)CtM𝕂(d)+(𝜏in+𝜏div)CtM𝕂(d) log d̄) log d)

operations in𝕂. Let𝔸≅𝔻1⊕⋅⋅ ⋅⊕𝔻ℓ denote the panoramic splitting in the output. By means
of the auxiliary data, conversions in both directions of this isomorphism can be done in time

O(CtM𝕂(d) log d̄ log d).

Proof. The proof is very similar to the one of Theorem 4.2. It is straightforward whenever
𝜏div=0, so we may freely assume 𝜏div>0 from now. Using redundant representations,
the directed evaluation of T over 𝔸t requires the following operations in 𝕂:
• O(𝜏addd) operations for the nodes of type in 𝕂0∪𝕂1∪{+,−};
• O(𝜏mulCtM𝕂(d)) operations for the nodes of type × by Proposition 2.6;
• O(𝜏divCtM𝕂(d) log d̄) operations for the zero-tests and inversions by Lemma 5.1 and

Proposition 5.2;
• O(𝜏outCtM𝕂(d)) operations to reduce the output values, by Lemma 5.1.

At the end, the directed splitting

𝔸≅𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ (5.7)
satisfies

�
i=1

ℓ

dim𝕂ℍi⩽d and dim𝕂ℍi⩽d/2 for i=1, . . . , ℓ. (5.8)

The finalization of the residual branches ℍ1, . . . , ℍℓ takes time O(Ct M𝕂(d) log d̄) by
Lemma 5.4. In step 2 of Algorithm 3.2 we next project the 𝜏in input values of the com-
putation tree to the residual algebras ℍ1, . . . ,ℍℓ. Again by Lemma 5.4, this can be done
in time O(𝜏inCtM𝕂(d) log d̄).

LetC(d) denote the cost function of one panoramic evaluation of T over a𝕂-algebra of
dimension⩽d. The above analysis shows the existence of a universal constant c such that

C(d) ⩽ c(𝜏addd+(𝜏out+𝜏mul)CtM𝕂(d)+(𝜏in+𝜏div)CtM𝕂(d) log d̄)+�
i=1

ℓ

C(dim𝕂ℍi).

Unrolling this inequality at most � log d
log 2� times, thanks to (5.8), the claimed complexity

bound follows.
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Let D(d) denote the cost function of the conversions between 𝔸 and a panoramic
splitting. Using Lemma 5.4, we conclude that

D(d) = O(CtM𝕂(d) log d̄)+�
i=1

ℓ

D(dim𝕂ℍi)

= O(CtM𝕂(d) log d̄ log d),

again thanks to (5.8). □

6. PRIMITIVE TOWER REPRESENTATIONS

Before we turn to the more technical topic of speeding up computations in algebraic
towers, we will have a short intermezzo to study primitive tower representations. The
results in this section are essentially from [29, sections 3 and 4.1], although we slightly
generalized some of them.

6.1. Evaluating polynomials at points in algebras
Let 𝔸 be an effective 𝕂-algebra and let 𝔹 be an effective 𝔸-algebra with an explicit
basis b1, . . . , br. We start by recalling the main result from [29, section 3] about the eval-
uation of multivariate polynomials in 𝔸[x1, . . . ,xt] at points in 𝔹t. This can in particular
be used in order to compute so-called multivariate modular compositions. We recall
that m𝔸 (resp. m𝔹) stands for the number of operations in 𝕂 that are required in order
to multiply two elements in 𝔸 (resp. 𝔹). We assume that m𝔹⩾ r m𝔸 and that additions
and subtractions in 𝔸 and 𝔹 are cheaper than multiplications.

PROPOSITION 6.1. Let 𝔹 be an effective 𝔸-algebra of rank r, whose basis is explicitly given. Let
A∈𝔸[x1, . . . ,xt] with degxi A<di for i=1, . . . , t, and let a1, . . . ,at∈𝔹. If d≔d1 ⋅ ⋅ ⋅ dt=O(r),
then A(a1,…,at) can be computed by a straight-line program in time

O(m𝔹 d� +m𝔸 rd𝜛−1).

Proof. The case t=1 corresponds to the classical baby-step giant-step algorithm over 𝔹;
see for instance [29, section 3.1]. The extension to t⩾2 has been designed in [29, sec-
tion 3.2]. In [29, Proposition 3.3], the assumption di⩾2 for i= 1, . . . , t was used for
convenience. But if di=1 for some i, then xi does not actually appear in A, so discarding xi
is free of charge in the straight-line program model. □

6.2. Primitive tower representations
The main difference with [29] is that we will consider primitive tower over arbitrary
𝕂-algebras 𝔸 instead of fields 𝕂. In the same spirit as section 3.7, it will also be conve-
nient to also integrate the idea of redundant representations in the definition.

From an abstract point of view, given two effective𝕂-algebras𝔸 and𝔹, we may use
elements in 𝔹 as a redundant representation of elements in 𝔸 if we have an effective
monomorphism Φ0:𝔸↪𝔹 and an effective epimorphism Ψ0:𝔹↠𝔸 such that Ψ0∘Φ0 is
the identity map of 𝔸. We say that 𝔸 is an effective retract of 𝔹. We will write C(𝔸→𝔹)
(resp.C(𝔸←𝔹)) for the cost of one evaluation ofΦ0 (resp.Ψ0), and we denoteC(𝔸↔𝔹)≔
max(C(𝔸→𝔹),C(𝔸←𝔹)).
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From now on, assume that 𝔸 is a product of separable field extensions of 𝕂. We
consider a tower of ring extensions of 𝔸 of the form 𝔸0≔𝔸, 𝔸i≔𝔸i−1[xi]/(𝜇i(xi)) for
i=1,..., t, where 𝜇i is monic and explicitly separable of degree di, which means that there
exists a Bézout relation 1=𝜃i𝜇i′+𝜉i𝜇i with 𝜃i∈𝔸i−1[xi]<di and 𝜉i∈𝔸i−1[xi]<di−1.

DEFINITION 6.2. A primitive tower representation of (𝔸i)i⩽t consists of:
• A 𝕂-algebra 𝔹, a monomorphism Φ0:𝔸↪𝔹, and an epimorphism Ψ0: 𝔹↠𝔸 such that
Ψ0∘Φ0 is the identity map of 𝔸.

• Linear forms b1(x1)≔x1, bi(x1, . . . ,xi)≔xi+𝜆i bi−1(x1, . . . ,xi−1) with 𝜆i∈𝕂, for i=2, . . . , t.
• Monic polynomials 𝜈i∈𝔹[yi], for i=1, . . . , t.
• 𝜙i, j∈𝔹[yi]<d1 ⋅ ⋅ ⋅di, for i=1, . . . , t and j=1, . . . , i.

Writing 𝛽i for the class of yi in 𝔹i≔𝔹[yi]/(𝜈i(yi)), we assume that these data satisfy the fol-
lowing properties for i=1, . . . , t:
W1. The following map Φi is a monomorphism that extends Φ0:

Φi: 𝔸i ↪ 𝔹i

𝛼j ↦ 𝜙i, j(𝛽i) (j=1, . . . , i).

W2. The following map Ψi with Ψi∘Φi=Id𝔸i is an epimorphism that extends Ψ0:

Ψi: 𝔹i ↠ 𝔸i
𝛽i ↦ bi(𝛼1, . . . , 𝛼i).

W3. Φi(bi(𝛼1, . . . , 𝛼i))=𝛽i.
The polynomials 𝜙i, j are called parametrizations of the 𝛼j in terms of 𝛽i.

6.3. Complexity of conversions
In terms of the triangular set (Ti)i⩽t defined in the introduction (Ti is the canonical
preimage of 𝜇i in 𝔸[x1, . . . , xi]), an element a∈𝔸i is represented by a polynomial
A(𝛼1, . . . , 𝛼i)with A∈𝔸[x1, . . . ,xi] defined modulo (T1, . . . ,Ti). So the conversion of a∈𝔸t
into an element of𝔹t boils down to evaluatingΦ0(A)(𝜙t,1(yt), . . . ,𝜙t,t(yt))modulo 𝜈t(yt).
The backward conversion consists in evaluating the image Ψ0(B) of a univariate poly-
nomial B∈𝔹[yt]<d at bt(𝛼1,...,𝛼t). Both conversions are instances of multivariate modular
composition problems that can be handled using Proposition 6.1. More precisely:

PROPOSITION 6.3. Assume that we are given:
• (𝔸i)i⩽t in terms of the defining polynomials (𝜇i)i⩽t, and
• (𝔹i)i⩽t in terms of 𝜆2, . . . ,𝜆t, (𝜈i)i⩽t and (𝜙i, j)j⩽i⩽t,

such that (𝔹i)i⩽t is a primitive tower representation of (𝔸i)i⩽t. Then there exist straight-line
programs for which:
• One evaluation of Φt takes O(m𝔹d𝜛)+dC(𝔸→𝔹) operations in 𝕂.
• The images 𝜌i≔Φi−1(𝜇i) for i=1, . . . , t can be computed in time O(m𝔹d𝜛)+2dC(𝔸→𝔹).
• Given 𝜌1, . . . , 𝜌t, one evaluation of Ψt can be done in time O(m𝔹d𝜛)+dC(𝔸←𝔹).

Proof. If di=1 for some i, then xi does not actually appear in polynomial representations
of elements in𝔸t. In the computation tree model, we may suppress such indices without
any cost. Without loss of generality we may therefore assume that di⩾2 for i=1, . . . , t.
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The complexity bound for one evaluation of Φi with i⩽ t is a direct consequence of
Proposition 6.1. Indeed, any element in 𝔸i can be represented as A(𝛼1, . . . , 𝛼i), where
A∈𝔸[x1, . . . ,xi] admits partial degrees <dj in xj for j=1, . . . , i. Now we can compute

B ≔ Φ0(A)(𝜙i,1(yi), . . . ,𝜙i,i(yi))mod 𝜈i(yi) ∈ 𝔹[yi]<d1⋅ ⋅ ⋅di

in time

O�m𝔹(d1 ⋅ ⋅ ⋅ di)
3
2+�𝜛− 3

2�+m𝔹(d1 ⋅ ⋅ ⋅ di)𝜛�+d1 ⋅ ⋅ ⋅ diC(𝔸→𝔹)
= O(m𝔹 (d1 ⋅ ⋅ ⋅ di)𝜛)+d1 ⋅ ⋅ ⋅ diC(𝔸→𝔹),

since 𝜛> /3 2. We finally notice that Φi(A(𝛼1, . . . , 𝛼i))=B(𝛽i).
For i=1,...,t, the mapΦi−1 extends coefficientwise into a map𝔸i−1[xi]↪𝔹i−1[xi]. We

may thus convert the minimal polynomial 𝜇i∈𝔸i−1[xi] of 𝛼i over𝔸i−1 into a polynomial
𝜌i∈𝔹i−1[xi] in time

O(m𝔹 (d1 ⋅ ⋅ ⋅ di−1)𝜛di)+d1 ⋅ ⋅ ⋅ diC(𝔸→𝔹).

The computation of 𝜌1,...,𝜌t then takes time O(m𝔹d𝜛)+2dC(𝔸→𝔹), since di⩾2 for all i.
In order to evaluate Ψt at an element b in 𝔹t, we write B∈𝔹[yt]<d for the preimage

of b and observe that
Ψt(b)=Ψ0(B)(bt(𝛼1, . . . , 𝛼t))=Ψ0(B)(𝛼t+𝜆t bt−1(𝛼1, . . . , 𝛼t−1)).

We first evaluate B at 𝜒t+𝜆t𝛽t−1 in 𝔹t−1[𝜒t]=𝔹[𝛽t−1][𝜒t], where 𝜒t is the class of xt in
𝔹t−1[xt]/(𝜌t(xt)). This takes time O(m𝔹d𝜛) by Proposition 6.1 and yields a polynomial

B̃(xt)≔B(xt+𝜆t𝛽t−1)mod 𝜌t(xt).

Since Ψt−1∘Φt−1=Id𝔸t−1, we next notice that

Ψt−1(B̃(xt))=Ψ0(B)(xt+𝜆tΨt−1(𝛽t−1))mod 𝜇t(xt),

so the preimage in 𝔸t−1[xt] of Ψt−1(B̃(xt)) is

Ψ0(B)(xt+𝜆t bt−1(𝛼1, . . . , 𝛼t−1))mod 𝜇t(xt),

which representsΨt(b). ApplyingΨt−1 to the⩽dt coefficients of B̃ costs dtC(𝔸t−1←𝔹t−1).
Altogether, this proves the existence of a universal constant c such that

C(𝔸t←𝔹t)⩽cm𝔹d𝜛+dtC(𝔸t−1←𝔹t−1).

We conclude that Ψt(b) can be computed in time

O(m𝔹d𝜛+dtm𝔹 (d/dt)𝜛+ ⋅ ⋅ ⋅ +d2 ⋅ ⋅ ⋅ dtm𝔹(d/(d2 ⋅ ⋅ ⋅ dt))𝜛)+dC(𝔸←𝔹)
= O(m𝔹d𝜛(1+dt

1−𝜛+ ⋅ ⋅ ⋅ +(d2 ⋅ ⋅ ⋅ dt)1−𝜛))+dC(𝔸←𝔹)
= O(m𝔹d𝜛)+dC(𝔸←𝔹),

using our assumptions that 𝜛> /3 2 and di⩾2 for all i. □

6.4. Constructing primitive tower representations
If 𝔸=𝔹=𝕂 is a field, then our definition of primitive tower representations of (𝔸i)i⩽t
coincides with the one from [29, Definition 2.2] whenever theΦi are isomorphisms. If 𝕂
has sufficiently many elements, then primitive tower representations can for instance
be computed using linear algebra techniques. For efficiency reasons, we will rely on the
following result that will be used later with a parametric algebra in the role of 𝕂.
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PROPOSITION 6.4. [29, Corollary 4.4] Assume that 𝔸 is a field of cardinality card 𝔸> �d
2�.

Then a primitive tower representation of (𝔸i)i⩽t can be computed using O(d2) inversions and
zero-tests in 𝔸, plus O(dM𝔸(d2) log d) ring operations in 𝔸.

Remark 6.5. Checking that the deterministic algorithm underlying Proposition 6.4 fits
the computation tree model is straightforward and left up to the reader.

Remark 6.6. Proposition 6.4 admits a randomized variant [29, Corollary 4.4]: if
card𝕂⩾2�d

2�, then a primitive tower representation of (𝔸i)i⩽t can be computed by a ran-
domized Las Vegas algorithm using an expected number of O(d) inversions and zero-
tests in 𝔸 plus O(M𝕂(d2) log d) arithmetic ring operations in 𝔸.

It is more subtle to regard such randomized variants as computation trees. Although
our model does not provide us with an instruction to compute random elements of 𝕂,
nothing prevents us from adding a “pool” of randomly chosen elements to the input.
Since randomized Las Vegas algorithms may fail for certain random choices, they typ-
ically loop until suitable random numbers are drawn. As explained in Remark 2.4, we
may unroll such loops to make things fit in our computation tree model, provided that we
can provide an absolute bound on the number of times that we have to run the loop.

In our case, we claim that such an absolute bound indeed exists. Following [29, Propo-
sition 4.3], the construction is incremental in t: assuming that 𝜆2, . . . ,𝜆t−1 already found,
one has to pick up a suitable value of 𝜆t in a subset 𝒮 of 𝕂 of cardinality 2 �d

2�. The
crucial observation is that a suitable value always exists in this finite set 𝒮, which bounds
the number of random values that have to be tried. With 𝒮 ordered randomly, 𝜆t can
actually be found with a bounded number of expected trials.

7. ACCELERATED TOWER ARITHMETIC

The suboptimality of the complexity bounds of Proposition 2.6 and of Theorem 5.5
appears when the height t of the tower gets as large as ⌊log2 d⌋. In fact, if t indeed gets
large, then many of the di are necessarily small. This section is devoted to an efficient
solution to this issue.

Roughly speaking, as long as a product of the form di+1 ⋅ ⋅ ⋅ dj is reasonably small,
it turns out to be favorable to change the given representation of 𝔸j=𝔸i[𝛼i+1, . . . , 𝛼j]
into a more efficient primitive element representation𝔸j≅𝔸i[𝛽j]. Repeating this opera-
tion as many times as necessary, the original tower (𝔸i)i⩽t is replaced by an equivalent
tower (𝔹j)j⩽s of much smaller height and for which all defining polynomials have suf-
ficiently large degree. Such accelerated towers were first introduced in [29, section 4.2].
In this section, we will further refine the concept and show how to use such towers in
combination with directed evaluation.

Throughout this section, we carry on with the notations from section 5: the original
tower (𝔸i)i⩽t is explicitly defined by 𝜇1, . . . , 𝜇t, and we set di≔deg 𝜇i for i=1, . . . , t. As
before, we will assume that t⩾2 and that di⩾2 for i=1,... , t. In particular, d=d1 ⋅⋅ ⋅dt⩾2.

7.1. Accelerated towers
In this subsection, we extend the notion of accelerated towers from [29, Definition 4.6]
and study accelerated tower arithmetic. Let (𝔸i)i⩽t be an explicitly separable tower
over 𝕂, and let 𝛿 > 1. By [29, Lemma 4.7], there exists a sequence of integers 0= i0<
i1< ⋅ ⋅ ⋅ < is= t of length

s⩽3 log d
log 𝛿 +1, (7.1)
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such that, for j=1, . . . , s, we have

ij> ij−1+1 ⟹ ej<𝛿, (7.2)

where ej≔dij−1+1 ⋅ ⋅ ⋅ dij. In this subsection, we assume that the sequence i0< ⋅ ⋅ ⋅ < is has
been fixed once and for all.

DEFINITION 7.1. Let r∈{1, . . . , s} and consider a factor tower (𝔸
˘

i)i⩽ir of (𝔸i)i⩽ir. Then the
subsequence (ij)j⩽r induces a family of towers (𝔸

˘
ij)ij−1+1⩽k⩽ij over𝔸

˘
ij−1 for j=1,...,r. An accel-

erated tower for (𝔸
˘

i)i⩽ir, and with respect to the sub-sequence (ij)j⩽r, consists of a family of
primitive tower representations of these towers (𝔸

˘
ij)ij−1+1⩽k⩽ij for j=1, . . . , r. More precisely,

these representations comprise the following data:
• A tower (𝔹j)j⩽r over𝕂 with defining polynomials 𝜈i1, . . . , 𝜈ir, where𝔹j≔𝔹j−1[yij]/(𝜈ij(yij))

and 𝜈ij∈𝔹j−1[yij], and such that deg 𝜈ij⩽ej. The class of yij in 𝔹j is written 𝛽j.
• For j=1, . . . , r:

∘ Linear forms bij−1+1=xij−1+1, bk=xk+𝜆k bk−1 over 𝕂 for k= ij−1+2, . . . , ij,
∘ 𝜈k∈𝔹j−1[yk] for k= ij−1+1, . . . , ij −1,
∘ 𝜙k,l∈𝔹j−1[yk]<dij−1+1⋅ ⋅ ⋅dk for k= ij−1+1, . . . , ij and l= ij−1+1, . . . ,k.

Let Φ0 represent the identity map of 𝕂. For j=1, . . . , r and k= ij−1+1, . . . , ij, these data induce
the following monomorphism that extends Φij−1:

Φk: 𝔸
˘

k ↪ 𝔹j−1[yk]/(𝜈k(yk))
𝛼
˘

l ↦ 𝜙k,l(𝛽k) for l= ij−1+1, . . . ,k.

Let Ψ0 represent the identity map of 𝕂. For j=1, . . . , r and k= ij−1+1, . . . , ij, we also have the
following epimorphism that extends Ψij−1:

Ψk: 𝔹j−1[yk]/(𝜈k(yk)) ↠ 𝔸
˘

k

𝛽k ↦ bk(𝛼
˘

ij−1+1, . . . , 𝛼
˘

k),

and Ψk∘Φk=Id𝔸
˘

k
. For j=1, . . . , r and k= ij−1+1, . . . , ij, we finally have

Φk(bk(𝛼ij−1−1, . . . , 𝛼k)) = 𝛽k.

In particular, for j=1, . . . , r, we have the following monomorphism that extendsΦij−1:

Φij: 𝔸
˘

ij ↪ 𝔹j=𝔹j−1[yij]/(𝜈ij(yij))
𝛼
˘

l ↦ 𝜙ij,l(yij) (l= ij−1+1, . . . , ij)
bij(𝛼

˘
ij−1+1, . . . , 𝛼

˘
ij) ↦ 𝛽ij.

7.1.1. Accelerated arithmetic

When r= s, taking

𝛿≔d𝜖(d), 𝜖(d)≔ 3 logC
2 log d� (7.3)

yields

s=O((((((((((((((
log d
logC� )))))))))))))), Cs=exp�O� log d� ��=dO�1/ logd� �. (7.4)
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whence products in 𝔹s can be computed using dO�1/ logd� �=O(d1+o(1)) operations in 𝕂,
by Proposition 2.6. The worst case complexity of products in (𝔹j)j⩽s is therefore asymp-
totically better than in (𝔸

˘
i)i⩽t, which explains the terminology of “accelerated towers”.

Let us now detail how to make elements in (𝔸
˘

i)i⩽ir benefit from this acceleration.

LEMMA 7.2. Let (𝔹j)j⩽r be an accelerated tower for (𝔸
˘

i)i⩽ir as in Definition 7.1. Given j⩽r and
ij−1< i⩽ ij, conversions between𝔹j−1[𝛽i]=𝔹j−1[yi]/(𝜈i(yi)) and𝔸

˘
i via Φi and Ψi can be done

by straight-line programs in time O(C jM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1).

Proof. The proof is adapted from [29, Lemma 4.8]. Let us first assume that the polyno-
mials 𝜌k≔Φk−1(𝜇k) have been precomputed for k=1, . . . , i. By Proposition 2.6,

m𝔹j−1 = O(C j−1M𝕂(e1 ⋅ ⋅ ⋅ ej−1)),

and by Proposition 6.3, we have

C(𝔸
˘

i↔𝔹j−1[𝛽i]) = O(m𝔹j−1(dij−1+1 ⋅ ⋅ ⋅ di)𝜛)+C(𝔸ij−1↔𝔹j−1)dij−1+1 ⋅ ⋅ ⋅ di

= O(C j−1M𝕂(e1 ⋅ ⋅ ⋅ ej−1)(dij−1+1 ⋅ ⋅ ⋅ di)𝜛)+C(𝔸ij−1↔𝔹j−1)dij−1+1 ⋅ ⋅ ⋅ di.

If ij= ij−1+1 then such conversions simply cost C(𝔸ij−1↔𝔹ij−1)dij−1+1 ⋅⋅ ⋅di. Otherwise we
have ej<𝛿 by (7.2). In both cases it follows that

C(𝔸
˘

i↔𝔹j−1[𝛽i]) ⩽ cC j−1M𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1+C(𝔸ij−1↔𝔹j−1)dij−1+1 ⋅ ⋅ ⋅ di,

for some universal constant c. Unrolling the latter inequality, while taking into account
that 𝔸0=𝔹0=𝕂 and C>1, we deduce that

C(𝔸
˘

i↔𝔹j−1[𝛽i]) ⩽ cC j−1M𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1

+ dij−1+1 ⋅ ⋅ ⋅ di (cC j−2M𝕂(e1 ⋅ ⋅ ⋅ ej−1)𝛿𝜛−1+ ej−1C(𝔸ij−2↔𝔹j−2))
= c (C j−1+C j−2)M𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1+C(𝔸ij−2↔𝔹j−2) ej−1dij−1+1 ⋅ ⋅ ⋅ di

⩽ ⋅ ⋅ ⋅
= O(C j−1M𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1).

Finally, given k∈{ij−1+1,.. . , i}, we notice that 𝜌k≔Φk−1(𝜇k) can be precomputed in time

O(m𝔹j−1(dij−1+1 ⋅ ⋅ ⋅ dk)𝜛)+2C(𝔸ij−1↔𝔹j−1)dij−1+1 ⋅ ⋅ ⋅ dk=O(C jM𝕂(d1 ⋅ ⋅ ⋅ dk)𝛿𝜛−1),

by Proposition 6.3, again by distinguishing the cases when ij= ij−1+1 and ij> ij−1+1.
Consequently, the total cost of these precomputations is

O(((((((((((((((((((�l=1
j

�
k=il−1+1

min(i,il)

C lM𝕂(d1 ⋅ ⋅ ⋅ dk) 𝛿𝜛−1)))))))))))))))))))=O(C jM𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1). □

PROPOSITION 7.3. Let (𝔹j)j⩽r be an accelerated tower for (𝔸
˘

i)i⩽ir as in Definition 7.1. Given
j⩽r and ij−1< i⩽ ij, products in 𝔸

˘
i can be computed by a straight-line program in time

m𝔸
˘

i
=O(C jM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1).

Two polynomials of degree ⩽n over 𝔸
˘

i can be multiplied by a straight-line program in time

M𝔸
˘

i
(n)=O(C j (M𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1n+M𝕂(d1 ⋅ ⋅ ⋅ di n))).
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Proof. One conversion between 𝔸
˘

i and 𝔹j−1[𝛽i] can be done in time

C(𝔸
˘

i↔𝔹j−1[𝛽i]) = O(C j−1M𝔸(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1)

by Lemma 7.2. On the other hand, Proposition 2.6 yields

m𝔹ij−1[𝛽i] = O(C jM𝕂(d1 ⋅ ⋅ ⋅ di))
M𝔹ij−1[𝛽i](n) = O(C jM𝕂(d1 ⋅ ⋅ ⋅ di n)), for all n⩾0.

Combining the latter costs, we deduce that

M𝔸
˘

i
(n) = O(C(𝔸

˘
i↔𝔹ij−1[𝛽i])n)+M𝔹ij−1[𝛽i](n)

= O(C j (M𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1n+M𝕂(d1 ⋅ ⋅ ⋅ di n))),

and the claimed cost for m𝔸
˘

i
corresponds to setting n=1. □

7.1.2. Redundant representations
One motivation behind Definitions 6.2 and 7.1 with respect to the less general definitions
from [29] is to allow for redundant representations. More precisely, we have:

LEMMA 7.4. Let (𝔹j)j⩽r be an accelerated tower for (𝔸
˘

i)i⩽ir as in Definition 7.1. Then (𝔹j)j⩽r
is an accelerated tower for any factor tower of (𝔸

˘
i)i⩽ir.

Proof. A tower factor (�̃�i)i⩽ir of (𝔸
˘

i)i⩽ir is a tower factor of (𝔸i)i⩽ir. Let 𝜄�̃�k→𝔸
˘

k
: �̃�k↪𝔸

˘
k

denote the canonical monomorphism, then 𝜋𝔸
˘

k→�̃�k
∘ 𝜄�̃�k→𝔸

˘
k
is the identity of �̃�k. Setting

Φ̃k≔Φ0 we first verify by induction that

Φ̃k: �̃�k ↪ 𝔹j−1[yk]/(𝜈k(yk))
�̃�l ↦ 𝜙k,l(𝛽k) (l= ij−1+1, . . . ,k)

is a monomorphism that extends Φ̃ij−1, for k= ij−1+1, . . . , ij, since Φ̃k=Φk∘ 𝜄�̃�k→𝔸
˘

k
.

Let Ψ̃0 represent the identity map of𝕂. For j=1,..., r, we define the epimorphism Ψ̃k,
for k= ij−1+1, . . . , ij, that extends Ψ̃ij−1:

Ψ̃k: 𝔹j−1[yk]/(𝜈k(yk)) ↠ �̃�k

𝛽k ↦ bk(�̃�ij−1+1, . . . , �̃�k).

Since Ψ̃k=𝜋𝔸
˘

k→�̃�k
∘Ψk, we deduce that Ψ̃k∘Φ̃k is the identity map of �̃�k. □

Notice that the tower (𝔹j)j⩽r is only used for the acceleration of arithmetic opera-
tions; we do not require this tower to be separable. Writing 𝔹

˘
j for the image of 𝔸

˘
ij in

𝔹j, our use of redundant representations also makes it unnecessary to determine the
defining polynomials of (𝔹

˘
j)j⩽r. Although the computation of such defining polyno-

mials 𝜈
˘
j along with Bézout relations for 𝜈

˘
j and 𝜈

˘
j′ would be convenient for speeding up

multiplications in 𝔸
˘

t, it seems tricky to integrate these computations without deterio-
rating the overall complexity.

When reduced, non-redundant representations are explicitly required, we will resort
to the following counterpart of Lemma 5.1:

LEMMA 7.5. Let (𝔸
˘

i)i⩽ir be a factor tower of (𝔸i)i⩽ir, and let (𝔹j)j⩽r be an accelerated tower
for (𝔸

˘
i)i⩽ir as in Definition 7.1. Given j⩽ r and ij−1< i⩽ ij, the projection of an element a∈𝔸i

onto 𝔸
˘

i can be computed by a straight-line program in time O(C jM𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1 log 𝛿).

40 DIRECTED EVALUATION



Proof. The proof is the same as in Lemma 5.1, except that we appeal to accelerated prod-
ucts M𝔸

˘
i
(n)=O(C jM𝕂(d1 ⋅ ⋅ ⋅din)𝛿𝜛−1) of Proposition 7.3. The cost of the projection thus

becomes:

C(𝔸i→𝔸
˘

i) = O((((((((((((((((((
(�

k=1

i

M𝔸
˘

k−1
(dk)dk+1 ⋅ ⋅ ⋅ di))))))))))))))))))

)

= O((((((((((((((((((
(�

l=1

j

�
k=il−1+1

min(i,il)

ClM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1))))))))))))))))))
)

= O(((((((((((((((((((�l=1
j

C lM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1(il − il−1)))))))))))))))))))).
Now (7.2) yields il− il−1=O(log 𝛿) for l=1,..., j. Since C>1, the claimed bound follows. □

7.1.3. Directed zero-tests and inversions

PROPOSITION 7.6. Let (𝔸
˘

i)i⩽ir be a principal branch encountered in a directed evaluation
over (𝔸i)i⩽ir, and let (𝔹j)j⩽r be an accelerated tower of (𝔸

˘
i)i⩽ir, as in Definition 7.1. Given

j⩽r and ij−1< i⩽ ij, one directed zero-test or inversion can be done in time

O(C jM𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1 log2 𝛿 log d̄).

Proof. We adapt the proof of Proposition 5.2 so as to benefit from accelerated products.
From Proposition 7.3 we have

M𝕂(d1, . . . ,di;n)=O(C jM𝕂(d1 ⋅ ⋅ ⋅ di n) 𝛿𝜛−1)),

and from Lemma 7.5 we have

P𝕂(d1, . . . ,di)=O(C jM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1 log 𝛿).

Consequently, the relation (5.1) implies the existence of a universal constant c such that

D𝕂(d1, . . . ,di) = O(M𝕂(d1, . . . ,di−1;di) log di+P𝕂(d1, . . . ,di−1)di)+D𝕂(d1, . . . ,di−1)di

⩽ cC j−1M𝕂(d1 ⋅ ⋅ ⋅ di) 𝛿𝜛−1 log 𝛿 log di+D𝕂(d1, . . . ,di−1)di.

Unrolling the latter inequality yields

D𝕂(d1, . . . ,di) = O((((((((((((((((((
(�

l=1

j

�
k=il−1+1

min(i,il)

ClM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1 log 𝛿 log dk))))))))))))))))))
)

= O(((((((((((((((((((�l=1
j

C lM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1 log2 𝛿 log d̄)))))))))))))))))))
= O(C jM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1 log2 𝛿 log d̄),

while using the facts that C>1 and il − il−1=O(log 𝛿) for l=1, . . . , j, by (7.2). □

7.2. Directed construction of an accelerated tower
Now that we have seen how to benefit from accelerated arithmetic, let us show how
to construct accelerated towers. We use induction on the height, in combination with
Proposition 6.4. As usual, all computations in the directed model are done using the
redundant representation.
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Algorithm 7.1
Input. An explicitly separable tower (𝔸i)i⩽t and a sequence of integers 1⩽ i1<⋅⋅⋅< is= t.
Output. A directed splitting of (𝔸i)i⩽t with principal branch (𝔸

˘
i)i⩽t and an accelerated

tower (𝔹j)j⩽s for (𝔸
˘

i)i⩽t.
1. If s=0, then return () for the directed splitting along with an empty accelerated tower.
2. Otherwise s⩾1; recursively apply the algorithm to (𝔸i)i⩽is−1 and 1⩽ i1< ⋅ ⋅ ⋅ < is−1.

Let (�̃�i)i⩽is−1 represent the directed splitting of (𝔸i)i⩽is−1 obtained in return, let (�̃�i)i⩽is−1

be the principal branch, and let (𝔹j)j⩽s−1 be the accelerated tower for (�̃�i)i⩽is−1.
3. Let Pis−1+1, . . . ,Pis be the canonical preimages of 𝜇is−1+1, . . . , 𝜇is in 𝔸is−1[xis−1+1, . . . , xis];

compute Qis−1+1≔𝜋𝔸is−1→�̃�is−1
(Pis−1+1), . . . ,Qis≔𝜋𝔸is−1→�̃�is−1

(Pis).
4. By directed evaluation over 𝔸is−1, starting with the directed splitting (�̃�i)i⩽is−1, com-

pute a primitive tower representation for

�̃�is−1[xis−1+1]/(Qis−1+1)⊆ ⋅ ⋅ ⋅ ⊆�̃�is−1[xis−1+1, . . . ,xis]/(Qis−1+1, . . . ,Qis),

seen as a tower over �̃�is−1. Let (𝜇i
→)i⩽is−1 be the directed splitting obtained in return

and let (𝔸
˘

i)i⩽is−1 be the corresponding principal branch.
5. The latter primitive tower representation consists of

• Linear forms bis−1+1=xis−1+1, bk=xk+𝜆k bk−1 over 𝕂 for k= is−1+2, . . . , is;
• 𝜈k

𝔸∈𝔸
˘

is−1[yk] for k= ij−1+1, . . . , ij;
• 𝜙k,l

𝔸 ∈𝔸
˘

is−1[yk]<dij−1+1⋅ ⋅ ⋅dk for k= ij−1+1, . . . , ij and l= ij−1+1, . . . ,k.
With the notation of Definition 7.1, we set 𝜈k≔Φis−1(𝜈k

𝔸) for k= ij−1+ 1, . . . , ij and
𝜙k,l≔Φis−1(𝜙k,l

𝔸) for k= ij−1+1, . . . , ij and l= ij−1+1, . . . ,k.
6. Compute 𝜋�̃�is−1→𝔸

˘
is−1
(Qis−1+1), . . . ,𝜋�̃�is→𝔸

˘
is
(Qis) and define, for k= is−1+1, . . . , is:

• 𝜇
˘

k as 𝜋�̃�is−1→𝔸
˘

is−1
(Qis−1+1) regarded as in 𝔸

˘
k−1[xk];

• 𝔸
˘

k≔𝔸
˘

k−1[yk]/(𝜇
˘

k(xk)).
Complete the tower (𝔸

˘
i)i⩽t with the projections of the Bézout relations of 𝜇k′ and 𝜇k

over 𝔸
˘

is−1; return this tower, (𝜇i
→)i⩽is−1, (𝜇

˘
is−1+1), . . . , (𝜇

˘
is), and (𝔹j)j⩽s.

PROPOSITION 7.7. If card𝕂>�d
2�, then Algorithm 7.1 is correct and runs in time

O(CsM𝕂(d) 𝛿𝜛+1 log(𝛿 d̄)),
for a sequence of integers (ij)j⩽s that satisfies (7.2).

Proof. When entering step 5, (𝔹j)j⩽s−1 is an accelerated tower for (𝔸
˘

i)i⩽is−1; so we have
the monomorphism Φis−1:𝔸

˘
is−1↪𝔹s−1 and the epimorphism Ψis−1:𝔹s−1↠𝔸

˘
is−1 such that

Ψis−1 ∘Φis−1 is the identity map of 𝔸
˘

is−1. We also have the following isomorphisms for
k= is−1+1, . . . , is:

𝔸
˘

k ≔ 𝔸
˘

is−1[𝛼
˘

is−1+1, . . . , 𝛼
˘

k] ≅ 𝔸
˘

is−1[yk]/(𝜈k
𝔸(yk))

𝛼
˘

l ↦ 𝜙k,l
𝔸(yk)mod 𝜈k

𝔸(yk) (l= is−1+1, . . . ,k).

So the following morphisms are monomorphisms that extend Φis−1:𝔸
˘

is−1↪𝔹s−1, for k=
is−1+1, . . . , is:

Φk: 𝔸
˘

k ↪ 𝔹s−1[yk]/(𝜈k(yk)) ≔𝔹s−1[𝛽k]
𝛼
˘

l ↦ 𝜙k,l(𝛽k) (l= is−1+1, . . . ,k)
bk(𝛼

˘
is−1+1, . . . , 𝛼

˘
k) ↦ 𝛽k.
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Let

Ψk: 𝔹s−1[𝛽k] ↠ 𝔸
˘

k

𝛽k ↦ bk(𝛼
˘

is−1+1, . . . , 𝛼
˘

k).

We observe that Ψk extends Ψis−1 and that

(Ψk∘Φk)(𝛼
˘

l) = Ψk(𝜙k,l(𝛽k))
= Ψis−1(𝜙k,l)(bk(𝛼

˘
is−1+1, . . . , 𝛼

˘
k))

= Ψis−1(Φis−1(𝜙k,l
𝔸))(bk(𝛼

˘
is−1+1, . . . , 𝛼

˘
k))

= 𝜙k,l
𝔸(bk(𝛼

˘
is−1+1, . . . , 𝛼

˘
k)) = 𝛼

˘
l.

This completes the correctness proof.
Step 1 takes constant time. In step 3, the projections require

O((((((((((((((((((( �
k=is−1+1

is
Cs−1M𝕂(d1 ⋅ ⋅ ⋅ dis−1)dis−1+1 ⋅ ⋅ ⋅ dk𝛿𝜛−1 log 𝛿)))))))))))))))))))=O(CsM𝕂(d) 𝛿𝜛−1 log 𝛿)

operations in 𝕂, by Lemma 7.5 and the assumption that di⩾2 for i=1, . . . , t. Notice that
the same bound holds for step 6.

Step 4 is free of charge whenever is= is−1+ 1. Otherwise es⩽ 𝛿 holds by (7.2).
During the directed evaluation of step 4, one product in the principal branch takes
O(Cs−1M𝕂(e1 ⋅⋅⋅es−1)𝛿𝜛−1) operations in𝕂 by Proposition 7.3, and the cost of one directed
inversion is O(Cs−1M𝕂(e1 ⋅ ⋅ ⋅ es−1) 𝛿𝜛−1 log2 𝛿 log d̄) by Proposition 7.6. Consequently,
step 4 runs in time

O(Cs−1M𝕂(e1 ⋅ ⋅ ⋅ es−1) es
2𝛿𝜛−1 log2 𝛿 log d̄+Cs−1M𝕂(e1 ⋅ ⋅ ⋅ es−1es

2) es𝛿𝜛−1 log 𝛿)
= O(Cs−1M𝕂(e1 ⋅ ⋅ ⋅ es) es𝛿𝜛−1 log2 𝛿 log d̄+Cs−1M𝕂(e1 ⋅ ⋅ ⋅ es) es

2𝛿𝜛−1 log 𝛿)
= O(Cs−1M𝕂(d) 𝛿𝜛 log2 𝛿 log d̄+Cs−1M𝕂(d)𝛿𝜛+1 log 𝛿)
= O(CsM𝕂(d) 𝛿𝜛+1 log(𝛿 d̄)),

by Proposition 6.4 and (2.1).
In step 5 we perform

O(dis−1+1+2dis−1+1dis−1+2+ ⋅ ⋅ ⋅ +(is − is−1)dis−1+1 ⋅ ⋅ ⋅ dis)=O(es log 𝛿)

conversions from 𝔸
˘

is−1 to 𝔹s−1, which amount to

O(Cs−1M𝕂(e1 ⋅ ⋅ ⋅ es−1) es𝛿𝜛−1 log 𝛿)=O(CsM𝕂(d) 𝛿𝜛−1 log 𝛿)
operations in 𝕂 by Lemma 7.2. □

Remark 7.8. If card𝕂⩾2�d
2�, then the randomized Las Vegas version of Proposition 6.4

(see Remark 6.6) may be used in Algorithm 7.1, so that step 4 has an expected cost

O(CsM𝕂(d) 𝛿𝜛 log(𝛿 d̄)),

which still dominates the cost of Algorithm 7.1 in this model.

7.3. Panoramic evaluation with accelerated towers
In order to make the directed evaluation benefit from accelerated arithmetic, we first
need to compute an accelerated tower. Then, the complexity of accelerated divisions is
simply adjusted according to Proposition 7.6. At the end of a computation, we use the
following lemma in order to recover the extended tower factorization of (𝔸i)i⩽t, as in
section 5.4.
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LEMMA 7.9. Given a directed splitting (𝜇i
→)i⩽t as above, and an accelerated tower for its principal

branch, the explicitly separable factor towers (𝔸i
j,k)i⩽t for j=1,...,t and k=1,..., lj can be computed

in time O(CsM𝕂(d)𝛿𝜛−1 log 𝛿 log d̄) by a straight-line program, where d̄≔max(d1, . . . ,dt). In
addition, both directions of the isomorphism

𝔸t ≅ 𝔸
˘

t ⊕ �
j=1

t
�
k=2

lj
𝔸t

j,k

can be computed by straight-line programs in time O(CsM𝕂(d)𝛿𝜛−1 log 𝛿 log d̄).

Proof. The algorithm is the same as in the proof of Lemma 5.4. We only revisit the cost
analysis when using accelerated arithmetic. Given ij−1< i⩽ ij, Proposition 7.3 yields

M𝕂(d1, . . . ,di;n)=O(C jM𝕂(d1 ⋅ ⋅ ⋅ di n)𝛿𝜛−1),
whence

Q𝕂(d1, . . . ,dt) = O(((((((((((((((((
((
(
(�

j=1

s

�
i=is−1+1

is

C jM𝕂(d1 ⋅ ⋅ ⋅ di)𝛿𝜛−1di+1 ⋅ ⋅ ⋅ dt log di)))))))))))))))))
))
)
)

= O(CsM𝕂(d)𝛿𝜛−1 log 𝛿 log d̄).

In a similar way, we obtain

R𝕂(d1, . . . ,dt) = O(CsM𝕂(d)𝛿𝜛−1 log 𝛿 log d̄).

We deduce that

F𝕂(d1, . . . ,dt) = O(CsM𝕂(d) 𝛿𝜛−1 log 𝛿 log d̄). □

THEOREM 7.10. Let (𝔸i)i⩽t be an explicitly separable tower of degree d≔dim𝕂𝔸t, let d̄≔
max(d1, . . . ,dt), and let T be a computation tree over 𝕂-algebras of detailed cost (𝜏in,𝜏out,𝜏add,
𝜏mul,𝜏div), as defined in section 2.1. Assume that card𝕂>�d

2�. Then the panoramic evaluation
of T over 𝔸t using Algorithm 3.2, along with the computation of auxiliary data, requires

O((𝜏addd+𝜎CsM𝕂(d) 𝛿𝜛−1) log d) (7.5)
operations in 𝕂, where

𝜎 =𝜏mul+𝜏div log2 𝛿 log d̄+𝜏out log 𝛿+𝜏in log 𝛿 log d̄+𝛿 2 log(𝛿 d̄).

Let 𝔸≅𝔻1⊕ ⋅ ⋅ ⋅ ⊕𝔻ℓ denote the panoramic splitting in the output. Using the auxiliary data,
conversions in both directions of this isomorphism can be done in time

O(CsM𝕂(d) 𝛿𝜛−1 log 𝛿 log d̄ log d). (7.6)

Proof. The directed construction of the accelerated tower takes

O(CsM𝕂(d)𝛿𝜛+1 log(𝛿 d̄))

by Proposition 7.7. Then, we project the input values onto the principal branch, written
(𝔸
˘

i)i⩽t, in time
O(𝜏inCsM𝕂(d) 𝛿𝜛−1 log 𝛿),

by Lemma 7.5.
Let us summarize the number of operations in 𝕂 needed for the directed evaluation

of T over 𝔸t, when using redundant representations in 𝔸
˘

t:
• O(𝜏addd) operations for the nodes of type in 𝕂0∪𝕂1∪{+,−};
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• O(𝜏mulCsM𝕂(d) 𝛿𝜛−1) for the nodes of type × by Proposition 7.3;
• O(𝜏divCsM𝕂(d)𝛿𝜛−1 log2 𝛿 log d̄) for the zero-tests and inversions by Lemma 7.5 and

Proposition 7.6,
• O(𝜏outCsM𝕂(d) 𝛿𝜛−1 log 𝛿) for the reduction of the output node by Lemma 7.5.

At the end, the directed splitting 𝔸t≅𝔻⊕ℍ1⊕ ⋅ ⋅ ⋅ ⊕ℍℓ satisfies

�
i=1

ℓ

dim𝕂ℍi⩽d, dim𝕂ℍi⩽d/2 (i=1, . . . , ℓ). (7.7)

Then we finalize the construction of the residual branches ℍ1, . . . ,ℍℓ in time

O(CsM𝕂(d)𝛿𝜛−1 log 𝛿 log d̄),

by Proposition 7.9. We next project the 𝜏in input values of the tree to ℍ1, . . . ,ℍℓ, in time

O(𝜏inCsM𝕂(d)𝛿𝜛−1 log 𝛿 log d̄),

again by Proposition 7.9. We finally perform the recursive panoramic evaluations of T
over ℍ1, . . . ,ℍℓ. The conclusion follows as in the proof of Theorem 5.5. □

Remark 7.11. If card𝕂>2�d
2�, then the factor 𝛿 2 in the definition of 𝜎 can be replaced by

an expected 𝛿 in Theorem 7.10, by using the randomized variant from Remark 7.8 for the
directed construction of the accelerated tower.

The following corollary simplifies the above complexity bound by tuning the para-
meters 𝛿 and s.

COROLLARY 7.12. For a suitable choice of 𝛿, the bound (7.5) simplifies into

O(𝜏addd log d)+(𝜏in+𝜏out+𝜏mul+𝜏div)d1+O�1/ logd� �

and the bound (7.6) into d1+O�1/ logd� �.

Proof. It suffices to take 𝛿 and s as in (7.3) and (7.4). □

7.4. Applications
The main result of [29] is an efficient algorithm to compute products in separable towers
of field extensions. We are now in a position to generalize this result to arbitrary explic-
itly separable towers.

THEOREM 7.13. Let (𝔸i)i⩽t be an explicitly separable tower as in the introduction of this section.
If card𝕂>�d

2�, then products in 𝔸t can be computed in time

d1+O�1/ logd� �.

Proof. Let a, b∈𝔸t. Applying Theorem 7.10 to the straight-line program that simply
computes a product, it requires O(CsM𝕂(d) 𝛿𝜛+1 log(𝛿 d̄) log d) operations to compute
a parametric splitting 𝔸t≅𝔻1⊕ ⋅ ⋅ ⋅ ⊕𝔻ℓ, auxiliary data, and the projections 𝜋𝔸→𝔻i(ab)
for i=1, . . . , ℓ. Using the auxiliary data, the theorem also allows us to recover a b from
these projections using O(CsM𝕂(d) 𝛿𝜛−1 log 𝛿 log d̄ log d) further operations in 𝕂. We
conclude by taking 𝛿 and s as in (7.3) and (7.4). □
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Another interesting application that has already been discussed in the univariate case
at the end of section 4.3.3 is the computation of determinants.

THEOREM 7.14. Let (𝔸i)i⩽t be an explicitly separable tower as in the introduction of this section.
If card𝕂>�d

2�, then the determinant of an n×n matrix in 𝔸t
n×n can be computed in time

n𝜔d1+O�1/ logd� �.

Proof. The proof is similar to the one of Theorem 7.13. □

As a final application, we revisit the matrix product. We need the following general-
ization of Proposition 2.6:

PROPOSITION 7.15. With the notations of Proposition 2.6 and C⩾2, assume that card𝕂⩾2td.
Then the product of two n×n matrices in 𝔸t

n×n can be computed in time

O(2t n𝜔d+2tn2M𝕂(d) log d+Ctn2M𝕂(d)).

Proof. We proceed along the same lines as Lebreton in [35, section 3.2]; see also [29,
Proposition 2.4]. Consider two matrices M,N∈𝔸t

n×n, we first lift the matrices to multi-
variate polynomial matrices in𝕂[x1,...,xt]n×n of partial degrees<di in xi for i=1,..., t. We
next convert these polynomial matrices to univariate polynomial matrices in 𝕂[y]<2t−1d
using Kronecker substitution. We multiply these matrices using the evaluation-interpo-
lation technique. Since𝕂 admits at least card𝕂⩾2td distinct evaluation points, this can
be done in time

O(2t n𝜔d+n2M𝕂(2t d) log(2td)).

We finally convert the result back to a polynomial matrix in 𝕂[x1, . . . , xt]n×n, and we
reduce each of the entries with respect to 𝜇1, . . . , 𝜇t using the algorithm from [35, sec-
tion 3.2]. This reduction step requires O(n2M𝕂(Ctd)) operations in𝕂. Now our assump-
tion that di⩾2 for i=1, . . . , t implies 2t⩽ d and Ct⩽ d2. Using (2.1), we conclude that
the total running time is bounded by

O(2t n𝜔d+n2M𝕂(2t d) log(2td)+n2M𝕂(Ctd))
= O(2t n𝜔d+2tn2M𝕂(d) log d+Ctn2M𝕂(d)). □

The next proposition is an example of a less straightforward use of Theorem 7.10,
where we adapt the “acceleration factor” 𝛿 to a specific situation, and where we wish to
decrease the overhead of the accelerated towers. Precisely, after a directed construction
of an accelerated tower, we obtain a directed splitting𝔸t≅𝔻⊕ℍ1⊕⋅⋅⋅⊕ℍh that satisfies

�
i=1

h

dim𝕂ℍi⩽d, dim𝕂ℍi⩽d/2 (i=1, . . . ,h).

As a byproduct, we have an accelerated tower of 𝔻 of degree ⩽d at our disposal. The
recursive calls to panoramic evaluations over ℍi for i=1, . . . ,h then lead to accelerated
towers for each of the factor towers of (𝔸i)i⩽t. Let A(d) denote a bound for the sum of
the degrees of all these accelerated towers. Then we have

A(d)⩽d+A(dim𝕂ℍ1)+ ⋅ ⋅ ⋅ +A(dim𝕂ℍh).

Unrolling this inequality leads to A(d)=O(d log d), which is slightly suboptimal.
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We may modify the construction of accelerated towers, described in Algorithm 7.1,
in order to ensure that the degree of the accelerated tower is never more than twice the
degree of the principal branch before entering the evaluation of the given computation
tree. This is done as follows. At the end of Algorithm 7.1, we compare the degree of
the accelerated tower (𝔹j)j⩽s to the degree of the principal branch (𝔸

˘
i)i⩽t. If dim𝕂𝔹s⩽

2dim𝕂𝔸
˘

t then we are done. Otherwise, the principal branch is much smaller than𝔸t in
the sense that 2dim𝕂𝔸

˘
t<dim𝕂𝔹s⩽d, and we use again Algorithm 7.1 in order to com-

pute an accelerated tower for (𝔸
˘

i)i⩽t. We carry on computing a new accelerated tower
of the current principal branch in the directed model over (𝔸i)i⩽t until the condition
dim𝕂𝔹s⩽2dim𝕂𝔸

˘
t is met. By Proposition 7.7, the total cost of this process is roughly

only twice as much as a single run of Algorithm 7.1 since

O(CsM𝕂(d)𝛿𝜛+1 log(𝛿 d̄)+CsM𝕂(d/2)𝛿𝜛+1 log(𝛿 d̄)+CsM𝕂(d/4)𝛿𝜛+1 log(𝛿 d̄)+ ⋅⋅⋅)
= O(CsM𝕂(d)𝛿𝜛+1 log(𝛿 d̄)).

With these modifications in hand, we ensure that A(d)⩽2d.

PROPOSITION 7.16. Let (𝔸i)i⩽t be an explicitly separable tower as in the introduction of this
section. If card 𝕂> d2 and d= nO(1), then two n× n matrices in 𝔸t

n×n can be multiplied in
time O(n𝜔d).

Proof. Let 𝛼<(𝜔−2)/(𝜛−1) be a fixed positive constant. Take 𝛿=n𝛼 and fix a sequence
i0< ⋅ ⋅ ⋅ < is such that (7.1) and (7.2) hold. Since d=nO(1), we observe that s=O(1).

We first compute a single product in 𝔸t with the sole purpose of retrieving a para-
metric splitting𝔸t≅𝔻1⊕⋅⋅⋅⊕𝔻ℓ, together with the auxiliary data for efficient conversions
in both directions, and an accelerated tower of height s for each𝔻i of degree⩽2Di, where
Di≔dim𝕂𝔻i; as discussed above. This precomputation takes time

Õ(Cs d𝛿𝜛+1)= Õ(dn(𝜛+1)𝛼)= Õ(dn𝜔−2(𝜛+1−𝜔)/(𝜛−1))=O(n𝜔d).

One conversion between 𝔸t
n×n and 𝔻1

n×n⊕ ⋅ ⋅ ⋅ ⊕𝔻ℓ
n×n also take time

Õ(Cs d𝛿𝜛−1n2)= Õ(dn2+𝛼(𝜔−2))=O(n𝜔d).

Now assume that we wish to multiply two matrices M,N∈𝔸t
n×n. This problem is reduced

to ℓ multiplication problems of matrices in 𝔻i
n×n that we further transform into matrix

multiplications within the corresponding accelerated towers, so Proposition 7.15, yields
the cost

O(((((((((((((((((
((
(
(�

i=1

ℓ

2s n𝜔Di+2sn2M𝕂(Di) log d+Csn2M𝕂(Di))))))))))))))))))
))
)
)

= O(2s n𝜔d+2sn2M𝕂(d) log d+Csn2M𝕂(d))
= O(n𝜔d+n2M𝕂(d) log d)
= O(n𝜔d).

using the assumptions that 𝜔>2 and d=nO(1). □

Remark 7.17. In view of the above proposition, it is likely that determinants can also be
computed in time O(n𝜔d). It is an interesting question how to adapt the setting of this
paper so that complexity bounds of this type can be derived.
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8. CONCLUSION

Theorems 4.2, 5.5, and 7.10 show that the approach of directed evaluation allows us to
compute panoramic evaluations in a time that is arbitrarily close to linear. We chose the
setting of computation trees as our complexity model and it is natural to ask whether
similar results hold in the RAM and Turing models. This seems plausible, although
technical difficulties are likely to arise in the efficient implementation of data structures
on Turing machines; see [30] for a detailed analysis of a similar kind, but for another
problem.

So far, we have only addressed the sequential complexity of dynamic evaluation
and its variants. It would be interesting to conduct a similar study for parallel com-
putation models. Dynamic evaluation lends itself particularly well to parallel execution:
whenever we encounter a splitting, it is natural to continue the execution of each of the
branches in parallel. In the directed setting, we a priori have to complete the execution
of the principal branch in order to benefit from the fastest possible multi-remaindering.
Nevertheless, this is really a trade-off, and we may very well start to execute some “suf-
ficiently thick” residual branches before completion of the principal branch. It is also
important to notice that these considerations have only minor impact from the worst case
complexity perspective: the opportunities for this kind of parallelism only arise when
splittings actually occur. In the absence of splittings, we have to evaluate the computa-
tion tree T over the full original algebra𝔸, so the parallel complexity is really a function
of the amount of parallelism that is available in T and in the algebra operations of 𝔸.

For our presentation, we restricted our towers to be explicitly separable from the
outset. In practice, towers are usually constructed by adding new parameters that satisfy
polynomial constraints one by one. These polynomials may contain multiple factors, in
which case one is usually only interested in the radical ideal generated by the constraints.
This more general setting can actually also be covered efficiently using our techniques.
Indeed, consider an explicitly separable tower (𝔸i)i⩽t and a new algebraic parameter 𝛼t+1
that is subjected to 𝜇t+1(𝛼t+1)= 0, where 𝜇t+1∈𝔸t[xt+1] is a monic polynomial that is
not necessarily separable. Then we simply compute the separable factorization 𝜇t+1=
𝜑1𝜑22 ⋅ ⋅ ⋅ 𝜑n

n as if 𝔸t were a field (here assuming that the characteristic is zero or suffi-
ciently large), using panoramic evaluation, together with the requested Bézout relations
for the non-trivial factors 𝜑i≠1. Let 𝔸t≅𝔻1⊕ ⋅ ⋅ ⋅⊕𝔻ℓ be the resulting splitting. Then
any pair (𝜑i,𝔻j) with 𝜑i≠1 gives rise to a new explicitly separable tower of height t+1,
which allows us to recurse.

In this paper, we only considered parameters that satisfy polynomial constraints,
but the technique of directed evaluation naturally generalizes to various other settings.
For instance, for an integer parameter r∈ℤ, one may compute in ℤ/rℤ as if it were
a field, so r is partially factored during directed evaluations. This situation is commonly
encountered in number theory and computer algebra, where the deterministic construc-
tion of “large” prime numbers is rather expensive. Another possible extension of our
work concerns real algebraic numbers in the continuation of [16].

Another direction for future work concerns the particular kind of tower arithmetic
that we build on. In this paper, we essentially combined the best previously known
generic algorithms from Theorem 2.6 with the idea of accelerated towers. For specific
base fields 𝕂, such as finite fields or subfields of ℂ, other efficient algorithms have been
proposed for tower arithmetic [9, 27, 28]. It should not be hard to combine directed eval-
uation with these algorithms in order to improve on Theorem 7.10 and Corollary 7.12
for such more specific base fields 𝕂.
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Finally, the recent new theoretical ideas from [27, 28, 29] and this paper should also
allow for more efficient software implementations, although it remains a major challenge
to make this happen. In particular, this requires to implement all available approaches
with care and determine the thresholds for which they are most efficient. For particularly
long parametric evaluations, one may also wish to switch to towers of smaller height,
and to spend more time on factoring the defining polynomials.

Acknowledgments. We thank the anonymous referees for their useful comments.
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