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Aluminum Metal Matrix Composites (AMMCs) are the precise resources for aerospace, marine and automobile industries, due to their elevated strength to mass ratio. In machining vicinity of these materials, industries are facing lots of troubles, as the existence of abrasive particles such as silicon carbide, aluminium oxide etc., causes the brisk tool wear and hence tool malfunction within a very near to the ground machining time. In other hand, machining the difficult-to-machine electrically conductive components with the high degree of accessible accuracy and the fine surface quality make WEDM priceless. Still, a threat occurred is the ceramic particles resists the current through the composites. Hence this paper focused on trim down these struggles. For this selecting the matrix material among the three series of aluminium materials available with the suppliers by means of the normalization criterion have been done. AMMC samples are produced as per the taguchi experimental design in view of collective material and WEDM parameters and machined to obtain the responses: Tool wear and process cost. These are analyzed and derived an optimal set of parameters with the patronage of fuzzy approach.

Introduction. Aluminium Metal Matrix Composites are vastly developed advanced resources which are fine alternatives to many conventional materials, mostly when high strength and low-weight parts are needed. AMMCs have found many unbeaten engineering applications in recent years by means of their incomparable properties such as high strength-to-weight ratio and high toughness etc. [START_REF] Vukcevic | Some New Directions in Aluminum Based PM Materials for Automotive Applications[END_REF][START_REF] Rosso | Ceramic and metal matrix composites: Routes and properties[END_REF]. Conventional machining of AMMCs causes serious tool wear due to the existence of abrasive particles and hence tool malfunction [START_REF] Dhar | Mathematical modeling of electric discharge machining(EDM) of Al-4Cu-6Si alloy-10%SiC composites[END_REF]. As a result, researchers are attracted to machine MMCs using various non-conventional machining methods such as abrasive jet machining, laser beam machining and electrical discharge machining (EDM) [START_REF] Hamatami | Machinability of high temperature composites by abrasive water jet[END_REF][START_REF] Muller | Non-conventional machining of particle reinforced metal matrix composite[END_REF][START_REF] Muller | Non-conventional machining of particle reinforced metal matrix composites[END_REF]. WEDM is a better substitute As WEDM process provides an effective solution for machining hard materials, it confirms easy control and can machine obscure shapes [START_REF] Garg | Modeling and multi objective optimization of process parameters of WEDM using non dominated sorting algorithm[END_REF][START_REF] Kozak | Machining of low electrical conductive materials by wire electrical discharge machining (WEDM) process[END_REF]. The discharge current has most significance on kerf width, among the process parameters: discharge duration, pulse interval time, discharge current and the wire drum speed [START_REF] Lal | Wire electrical discharge machining of AA7075/SiC/Al2O3 hybrid composite fabricated by inert gasassisted electromagnetic stircasting process[END_REF].The pulse on time and peak current are the momentous parameters which affecting the, surface roughness and cutting speed. The wire tension has minor effect on the cutting speed but it has great effect on the surface roughness [START_REF] Maher | Improve WEDM performance at different machining parameters[END_REF]. Factors like pulse on time, pulse off time, servo voltage, rate of wire feed, tension of wire, servo feed, spark gap voltage and rate of dielectric fluid are playing a momentous role in cutting operations for maximization of MRR, minimization of surface roughness and minimization of spark gap in WEDM [START_REF] Rajyalakshmi | Simulation, Modelling and Optimization of Process parameters of Wire EDM using Taguchi -Grey Relational Analysis[END_REF] Various optimization techniques have been used by the researchers to find the best combination of process parameters [START_REF] Bhaskar | Machining of aluminium metal matrix composites with Electrical discharge machining -A Review[END_REF]. Fuzzy logic is with an immense potential to confine analysis, decision-making and other aspects [START_REF] Kosko | Neural network and fuzzy systems -A dynamic approach to machine intelligence[END_REF]. A fuzzy logic's rule base contains three basic units: fuzzifier, inference engine and defuzzifier. The primary task of the system is to create a relation between influential parameters and responses [START_REF] Tozan | The effects of fuzzy forecasting models on supply chain performance[END_REF][START_REF] Tozan | Fuzzy Forecasting Applications on Supply Chains[END_REF][START_REF] Tozan | Hybrid grey and ANFIS approach to bullwhip effect in supply chain networks[END_REF]. Many authors have got assistance of fuzzy logic for optimizing machining parameters and succeed in their research [START_REF] Sharma | Multi response optimization of process parameters based on Taguchi-fuzzy model for coal cutting by water jet technology[END_REF][START_REF] Tonkovic | Predicting natural gas consumption by neural networks[END_REF][START_REF] Galzina | Application of fuzzy logic in boiler control[END_REF][START_REF] Lin | Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics[END_REF]. In the present paper an optimum combination of collective, material and machining parameters has been derived using fuzzy logic to trim down the struggles in machining of AMMCs by means of optimizing the Tool wear and process cost.

Design of experiments and production of AMMCS.

As many numbers of parameters are considered for this research, Taguchi experimental design has been incorporated to reduce the number of experiments and cost. The parameters and their levels considered for this research (table 2) are collected from the past research except the selection of base material is followed a normalization technique.

A. Selection of Base Material. Selection of base material is one of the most important activities for preparation of Aluminium Metal Matrix Composite materials and it was paying attention of many researchers from past few decades. An inappropriate selection of materials may result in damage or failure of a system and severely decreases the performances [START_REF] Jahan | A Comprehensive VIKOR method for material selection[END_REF]. For selecting the base materials, properties such as Tensile strength, hardness, melting point, density and cost of the material (table 1) of various alloys of 5xxx, 6xxx, 7xxx series, which are available with the suppliers are considered. For the present work, a general normalization procedure is followed to select the base material. The properties whose higher values are desirable, such as strength, hardness and melting point are normalized using equation1 and tabulated in the table1. In addition, properties whose smaller values are always preferable, such as density and cost are normalized using equation2 and tabulated in the table1. Production of AMMC samples. For the present work nine AMMC samples are produced using stir casting furnace as per Taguchi L27 experimental design (table 2). To produce AMMCs, First the stir casting furnace with graphite crucible is switched on and allow it to raise the temperature up to 500 O C then the required amount of base material is poured into the crucible and the temperature is raised up to 850 O C and allow it to maintain the same up to complete melting of base material. At this stage, the wetting agent Mg of 1% is added to the base material by reducing its temperature to 100 o above the melting point of the alloy. Then the reinforcement particles are added slowly to the molten base material while the stirrer rotating. Before adding the reinforcement particles, they are heated to oxidise their surfaces. After mixing, the temperature of the slurry is raised up to 850 O C for getting improved fluidity and stirring is continued up to 5 minuets. Then the mixed slurry was poured in different preheated steel dies to produce the samples.

Experimental work and optimization of parameters.

The experiments were conducted in ULTRA CUT WEDM Machine (Supplied by Vellore Wire Cut. Pvt. Ltd, Vellore, Tamilnadu) as per the L27 Taguchi experimental design and the experimental data is recorded in the Table 4. For these experiments, brass wire is used as electrode and water as dielectric fluid. Experimental results are optimized using fuzzy logic and analyzed as following

Normalization of Experimental Data.

Data normalization is required where the range and unit in one data sequence may differ from the others. In data pre-processing, the original sequence is transformed to a comparable sequence.

Various methodologies are available for various quality characteristic of a data sequence.

For quality characteristic of the "largerthe -better", the data can be normalized as

𝑥 * 𝑖 (k) =
𝑥 𝑜 𝑖 (𝑘) -min 𝑥 𝑜 𝑖 (𝑘) max 𝑥 𝑜 𝑖 (𝑘) -min 𝑥 𝑜 𝑖 (𝑘)

(1) For quality characteristic of the "smallerthe -better" the data can be normalized as

𝑥 * 𝑖 (k) = max 𝑥 𝑜 𝑖 (𝑘) -𝑥 𝑜 𝑖 (𝑘) max 𝑥 𝑜 𝑖 (𝑘) -min 𝑥 𝑜 𝑖 (𝑘) (2) 
Where i = 1…, m; k = 1…, n; m -is the number of experimental data items;

nthe number of parameters;

𝑥 𝑜 𝑖 (k)denotes the original sequence; 𝑥 * 𝑖 (k)the sequence after the data pre-processing; max 𝑥 𝑜 𝑖 (k)the largest value of 𝑥 𝑜 𝑖 (k); min 𝑥 𝑜 𝑖 (k) -the smallest value of 𝑥 𝑜 𝑖 (k); 𝑥 𝑜is the desired value.

For the experimental values of, tool wear and process cost, smaller-the-better is applicable. Hence, its experimental values are normalized using Eq. 2 and tabulated the values in table in Table 4.

Resolving the Fuzzy Grade. A fuzzy logic unit contains a fuzzifier, defuzzifier, a fuzzy rule base, membership functions and an inference engine. In the fuzzy logic analysis, the fuzzifier uses membership functions to fuzzify the input values and then the inference engine performs a fuzzy reasoning on fuzzy rules to breed a fuzzy value. Finally, the defuzzifier converts the fuzzy value into a Fuzzy grade (table4). The structure built for this study is a Two input-one-output fuzzy logic unit as shown in Fig. 1. The input variables of the fuzzy logic system in this study are the normalized values of experimental data of Tool wear and process cost. They are converted into linguistic fuzzy subsets using membership functions of a triangle form (fig2), and are evenly assigned into three fuzzy subsets: low (L), medium (M), and High (H). Dissimilar with the input variables, the output variable is assigned into relatively nine subsets i.e., very very low (VVL), very low (VL), Low(L) medium low(ML),medium (M), medium high(MH) high(H), very high (VH), very very high(VVH) grade. The fuzzy rule base consists of a group of If -then control rules to express the inference relationship between input and output. For this work 9 fuzzy rules are defined and shown in Figure 3. 

Obtaining the Optimal Combination of Influential Factors

After resolving the Fuzzy Grade, the consequence of each parameter is separated based on Fuzzy Grade of various levels. The mean values of Fuzzy Grade for each level of the influential factors and the effect of influential factors on multi responses in rank wise are summarized in Table 6. Mostly, the parameter level with larger Fuzzy Grade is considered as optimized. From the table 5 and fig. 4, the optimal combination of influential factors is Base material at level 3 i.e.. Al7075 reinforcement material at level 1 i.e. SiC, percentage of reinforcement material at level 1 i.e.; 2.5 ton at level 3 i.e.;

112, Toff at level 2 ie; 58, WP at level 1 i.e.; 3, WF at level 2 i.e.; 2, SF at level 3 i.e.; 1070.

("BM3RM1PRFM1TON3TOFF2WP1WF2SF3") are the optimum influential parameters for optimized tool wear and process cost. Fig. 4. Fuzzy Grade for each level of influential factors.

Confirmation experiment.

For the obtained optimal combination, confirmation test has been conducted and compared the results (Table 6) with initial set of parameters. These results are satisfactory as the responses for optimal combination shows better performance. Summary. For this paper WEDM experiments are conducted by producing AMMC samples as per L27 Taguchi experimental design which is considered the collective material and machining parameters. The Fuzzy approach has been applied effectively for determining the set of optimum influential parameters. After analyzing the data, it is concluded that Ton, RM and Toff are the most significant parameters which influence the multi responses, PRM and BM are the medium influenced parameters on multi responses and WP, WF SF are influenced lastly the multi responses. When compared the conformational experimental results with initial set of parameters combination, the better improvement is noted, and the improvement in tool wear is 0.08mm and in process cost is Rs 201. Hence, it is concluded that this approach provides a systematic and effective methodology for optimizing the collective material and machining parameters which in turn reduces the manufacturing cost and greatly enhances manufacturing efficiency.

Fig. 1 .

 1 Fig. 1. Two input-one-output fuzzy logic unit.

Fig. 2 .

 2 Fig. 2. Membership functions of a triangle form.

Fig. 3 .

 3 Fig. 3. Nine fuzzy rules.

  

Table 1 .

 1 Properties and cost of various alloys and their normalized values.

	Aluminium Alloy	Properties of various alloys and cost TS H MP D C	Normalized values of alloys properties and cost TS H MP D C	Sum of Normalized values
		5XXX Series	
	Al5052	262 68 625 2.68 270 0.17 0.00 1.00 0.00 1.00	2.17
	Al5083	345 85 615 2.66 450 1.00 1.00 0.60 1.00 0.00	3.60
	Al5754	245 75 600 2.67 450 0.00 0.41 0.00 0.50 0.00	0.91
		6XXX Series	
	Al6061	350 95 651 2.7 350 1.00 1.00 0.40 1.00 0.00	3.40
	Al6063	241 73 654 2.7 250 0.00 0.00 1.00 1.00 1.00	3.00
	Al6082	330 91 650 2.7 280 0.82 0.82 0.20 1.00 0.70	3.53
	Al6351	310 95 649 2.71 300 0.63 1.00 0.00 0.00 0.50	2.13
		7XXX Series	
	Al7050	552 147 629 2.83 550 0.00 0.00 0.00 0.00 0.33	0.33
	Al7075	572 150 635 2.81 350 0.59 1.00 1.00 1.00 1.00	4.59

Al7475

586 150 635 2.81 650 1.00 1.00 1.00 1.00 0.00 4.00

NB* TS -Tensile Strength, H -Hardness, MP -Melting Point, D -Density, C -Cost

From the table 1 it is observed that the sum of Normalized values of 5083 in 5XXX Series is larger, 6082 in 6XXX Series is larger and 7075 in 7XXX is larger. Hence, these alloys are selected as Base materials.

Table 2 .

 2 Influential parameters and their levels.

	Sl. No	Influential parameters	Level 1 Level 2 Level 3
		Material Parameters			
	1	Base material (BM)	Al5083 Al6082 Al7075
	2	Type of reinforcement material (RM)	SiC	Al2O3	Flyash
	3	Percentage of reinforcement particle (PRFM)	2.5	5	10
		WEDM Parameters			
	4	Pulse on time(Ton)	108	110	112
	5	Pulse off time (Toff)	56	58	60
	6	Water pressure(wp)	4	7	10
	7	Wire feed (Wf)	1	2	3
	8	Servo feed (SF)	1030	1050	1070

Experimental Design. For the present work, L27 Taguchi experimental design (table

3

) have been obtained through mini-tab software by considering various influential parameters related to material and WEDM (table

2

).

Table 3 .

 3 Taguchi design of experiments.

	Expt. No	AMMC Sample No.	BM	Material parameters RFM PRFM Ton Toff Wf Wp SF WEDM parameters
	1		Al5083 SiC	2.5	108 56	4	1	1030
	2	1	Al5083 SiC	2.5	108 58	7	2	1050
	3		Al5083 SiC	2.5	108 60	10 3	1070
	4		Al5083 Al2O3	5.0	110 56	4	1	1050
	5	2	Al5083 Al2O3	5.0	110 58	7	2	1070
	6		Al5083 Al2O3	5.0	110 60	10 3	1030
	7		Al5083 Fly ash	10.0	112 56	4	1	1070
	8	3	Al5083 Fly ash	10.0	112 58	7	2	1030
	9		Al5083 Fly ash	10.0	112 60	10 3	1050
	10		Al6082 SiC	5.0	112 56	7	3	1030
	11	4	Al6082 SiC	5.0	112 58	10 1	1050
	12		Al6082 SiC	5.0	112 60	4	2	1070
	13		Al6082 Al2O3	10.0	108 56	7	3	1050
	14	5	Al6082 Al2O3	10.0	108 58	10 1	1070
	15		Al6082 Al2O3	10.0	108 60	4	2	1030
	16		Al6082 Fly ash	2.5	110 56	7	3	1070
	17	6	Al6082 Fly ash	2.5	110 58	10 1	1030
	18		Al6082 Fly ash	2.5	110 60	4	2	1050
	19		Al7075 SiC	10.0	110 56	10 2	1030
	20	7	Al7075 SiC	10.0	110 58	4	3	1050
	21		Al7075 SiC	10.0	110 60	7	1	1070
	22		Al7075 Al2O3	2.5	112 56	10 2	1050
	23	8	Al7075 Al2O3	2.5	112 58	4	3	1070
	24		Al7075 Al2O3	2.5	112 60	7	1	1030
	25		Al7075 Fly ash	5.0	108 56	10 2	1070
	26	9	Al7075 Fly ash	5.0	108 58	4	3	1030
	27		Al7075 Fly ash	5.0	108 60	7	1	1050

Table 4 .

 4 Experimental results, normalized values of experimental data and fuzzy grade values.

	Expt.	Experimental Results	Normalized values of experimental results	Fuzzy
	No	Tool wear	Process Cost	Tool wear	Process cost	Grade
	1	0.018	633	0.3043	0.6652	0.3832
	2	0.01	519	0.6521	0.7828	0.6692
	3	0.014	533	0.4782	0.748	0.5272
	4	0.018	477	0.3043	0.8271	0.4034
	5	0.025	395	0	0.9119	0.223
	6	0.018	569	0.3043	0.7316	0.3918
	7	0.015	698	0.4347	0.5988	0.4462
	8	0.011	705	0.6086	0.5915	0.6223
	9	0.018	1277	0.3043	0	0.2833
	10	0.013	567	0.5217	0.7336	0.5799
	11	0.009	394	0.6956	0.9123	0.698
	12	0.012	346	0.5652	0.962	0.6578
	13	0.019	781	0.2608	0.5128	0.3238
	14	0.013	822	0.5217	0.4698	0.5244
	15	0.013	987	0.5217	0.2993	0.4815
	16	0.015	408	0.4347	0.8975	0.4952
	17	0.016	658	0.3913	0.6394	0.4215
	18	0.009	510	0.6956	0.7937	0.6881
	19	0.019	569	0.2608	0.732	0.3764
	20	0.014	394	0.4782	0.9123	0.5565
	21	0.016	414	0.3913	0.8194	0.4485
	22	0.014	352	0.4782	0.9561	0.5653
	23	0.002	309	1	1	0.9615
	24	0.014	568	0.4782	0.7328	0.5244
	25	0.013	470	0.5217	0.8338	0.5995
	26	0.012	600	0.5652	0.9996	0.6616
	27	0.015	561	0.4347	0.7394	0.4745

Table 5 .

 5 Fuzzy grade for each level of influential factors.

	Level	BM	RM	PRFM	Ton	Toff	WP	WF	SF
	1	0.438844 0.544078 0.581733 0.516100 0.463656 0.582200 0.480456 0.493622
	2	0.541133 0.488789 0.521056 0.444933 0.593111 0.484533 0.542567 0.518011
	3	0.574244 0.521356 0.451433 0.593189 0.497456 0.487489 0.531200 0.542589
	Delta 0.135400 0.055289 0.130300 0.148256 0.129456 0.097667 0.062111 0.048967
	Rank	2	7	3	1	4	5	6	8

Table 6 .

 6 Comparison of responses between AMMC with initial combination and optimal combination.

	Influential parameters combination	Combination of Controllable Parameters	Tool Wear	Process Cost
	Initial Combination	BM 2RM2PRM2TON2TOFF2WF2WP2SF2	0.018	476
	Optimal combination	BM3RM1PRFM1TON3TOFF2WP1WF2SF3	0.010	275
	Gain	N/A	0.08	201
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