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We statistically analyse a multivariate HJM diffusion model with stochastic volatility. The volatility process of the first factor is left totally unspecified while the volatility of the second factor is the product of an unknown process and an exponential function of time to maturity. This exponential term includes some real parameter measuring the rate of increase of the second factor as time goes to maturity. From historical data, we efficiently estimate the time to maturity parameter in the sense of constructing an estimator that achieves an optimal information bound in a semiparametric setting. We also identify nonparametrically the paths of the volatility processes and achieve minimax bounds. We address the problem of degeneracy that occurs when the dimension of the process is greater than two, and give in particular optimal limit theorems under suitable regularity assumptions on the drift process. We consistently analyse the numerical behaviour of our estimators on simulated and real datasets of prices of forward contracts on electricity markets.

1. Introduction 1.1. Motivation and setting. We address statistical estimation for multidimensional diffusion processes from historical data, with a volatility structure including both a parametric and a nonparametric components. We aim at achieving efficient estimation of a scalar parameter in the volatility, in presence of nonparametric nuisance, while providing point estimates of nonparametric components simultaneously. The processes of interest follow the multiple Brownian factor representation, as in the Heath-Jarrow-Morton (HJM) framework for forward rates, for instance in Heath et al. [START_REF] Heath | Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation[END_REF], or for electricity forward contracts in Benth and Koekebakker [START_REF] Espen | Stochastic modeling of financial electricity contracts[END_REF].

Our setting is motivated by the context of prices of specific forward contracts, which are available on the electricity market. Interest rate models have been applied to the pricing of such contracts: see for instance Hinz et al. [START_REF] Hinz | Pricing electricity risk by interest rate methods[END_REF], in which an analogy between interest rate models and forward contracts prices models is performed, the maturity in the former framework being a date of delivery in the latter. The factorial representation of the HJM framework has been precisely studied in Benth and Koekebakker [START_REF] Espen | Stochastic modeling of financial electricity contracts[END_REF] to model the electricity forward curve, giving constraints in the volatility terms to ensure no arbitrage. Koekebakker and Ollmar [START_REF] Koekebakker | Forward curve dynamics in the nordic electricity market[END_REF] perform a Principal Component Analysis to point out that two factors can explain 75% of the electricity forward contracts in the Norwegian market, and more than 10 factors are needed to explain 95%. They argue that, due to the non-storability of electricity, there is a weak correlation between short-term and long-term events. In Keppo et al. [START_REF] Keppo | Modeling electricity forward curve dynamics in the nordic market[END_REF], a one-factor model is designed for each maturity date, having correlations between the Brownian motions for distinct dates. In Kiesel et al. [START_REF] Kiesel | A two-factor model for the electricity forward market[END_REF], a two-factor model is described, with a specification of the volatility terms allowing to reproduce the classical behaviour of prices, especially the empirical evidence of the Samuelson effect (the volatility of prices increases as time to maturity decreases) and to ensure non-zero volatility for long-term forward prices.

On some filtered probability space (Ω, F, (F t ) t≥0 , P), we consider a d-dimensional Itô semimartingale X = (X t ) t≥0 with components X j , for j = 1, . . . , d, of the form where X j 0 ∈ R is an initial condition, B = (B t ) t≥0 and B = (B t ) t≥0 are two independent Brownian motions, ϑ and T j are positive numbers and σ = (σ t ) t≥0 , σ = (σ t ) t≥0 , b j = (b j t ) t≥0 are càdlàg adapted processes. To avoid trivial situations, we assume that for some T > 0, we have T ≤ T 1 < . . . < T d and that the T j are known. Moreover, we observe X at times 0, ∆ n , 2∆ n , . . . , n∆ n = T.

Asymptotics are taken as n → ∞. In this setting, it is impossible to identify the components b i , so we are left with trying to estimate the parameter ϑ and the random components t ; σ t (or rather σ 2 t ) and t ; σ t (or σ 2 t ) over the time interval [0, T ] with the best possible rate of convergence. This is not always possible and will require regularity assumptions.

The statistical estimation of the volatility of a diffusion process observed over some period [0, T ] has long been studied for asymptotic regimes in which observation times asymptotically recover the whole observation period. This carries over to the setting, considered here, where the unknown volatility -as a parameteris random w.r.t. the filtration generated by the observation itself, see for instance [START_REF] Genon | On the estimation of the diffusion coefficient for multi-dimensional diffusion processes[END_REF][START_REF] Valentine Genon-Catalot | Nonparametric estimation of the diffusion coefficient by wavelets methods[END_REF][START_REF] Hoffmann | Minimax estimation of the diffusion coefficient through irregular samplings[END_REF][START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF][START_REF] Hoffmann | Adaptive wavelet estimation of the diffusion coefficient under additive error measurements[END_REF] and the references therein for a comprehensive study in both parametric and nonparametric settings. Concerning estimating a functional of the trajectory of the diffusion process the chapters of Mykland and Zhang [START_REF] Mykland | The econometrics of high-frequency[END_REF] and Jacod [START_REF] Jacod | Statistics and high-frequency data[END_REF] present the most advanced problems related to the estimation of diffusion processes, together with important estimation results, stated in a general way. As integrated volatility can be estimated with the usual n 1/2 -rate of convergence, the quality of its estimators may be assessed by looking at the limit law that one can get when writing a central limit theorem, and by looking at a minimal variance in some sense (usually, the limiting distribution is a mixture of a centred Gaussian variable, with random variance). Clément et al. [START_REF] Clément | An infinite dimensional convolution theorem with applications to the efficient estimation of the integrated volatility[END_REF] estimated some functionals of the volatility; in the diffusion model that they introduced, they prove an extension of Hájek convolution theorem, and are able to define some notion of efficiency, which is somehow related to our setting. The present paper is in line with these results from a methodological point of view.

1.2. Main results and organization of the paper. In Section 2.1, we provide an estimator of ϑ, based on quadratic variation, in the above observation scheme. We will explain that while we cannot perform estimation when the number of observed processes d is equal to 1, the case d = 2 is statistically regular, and by approaching the quadratic variation of X 1 , X 2 and X 2 -X 1 , we derive an estimator θ2,n of ϑ, which is ∆ -1/2 n -consistent. Using the theory of statistics for diffusion processes and relying on the tools of stable convergence in law, which are for instance summarized in [START_REF] Jacod | Statistics and high-frequency data[END_REF][START_REF] Mykland | The econometrics of high-frequency[END_REF], we show that

∆ -1/2 n ( θ2,n -ϑ) → N (0, V ϑ (σ, σ)),
stably in law, where, conditional on F, the random variable N (0, V ϑ (σ, σ)) is centred Gaussian, with conditional variance V ϑ (σ, σ), and possibly defined on an extension of the original probability space. When d ≥ 3, the model is somehow degenerate, as it had been reported by Jeffrey et al. [START_REF] Jeffrey | Nonparametric estimation of a multifactor Heath-Jarrow-Morton model: An integrated approach[END_REF] in a similar context, because the d marginal components of the process are driven by less than d Brownian motions. The remaining source of randomness is the drift process, and while we shall find a ∆ -1 n -consistent estimator θd,n for ϑ, we will need that b has some integrated regularity in expectation, reminiscent of the so-called Besov regularity, as will be made precise by Assumption 1, in order to establish a satisfying limit theorem for ∆ -1 n ( θ3,n -ϑ), namely that it converges in probability to some F-measurable random variable. All our results in dimension d = 2, 3 will be stated in Theorem 1. In Section 2.2, we perform a relatively classical nonparametric estimation procedure to get point estimates of σ 2 t and σ 2 t when d = 2. Note however that this is not an usual nonparametric problem, since (1) σ and σ are random themselves, so that we do not estimate them pointwise, instead we estimate the trajectories σ 2 t (ω) t and σ 2 t (ω) t pointwise, as realisations of the volatility processes; (2) an increment ∆ n i X is the sum of two stochastic integrals, in which the volatility processes have different regularities.

We have to separate, in some way, the parts of the random increments that are linked to each of the Brownian integrals, to be able to get estimates of each process. We shall then derive estimators σ 2 n and σ 2 n of σ 2 and σ 2 and in Theorem 2, adding Assumption 2 stating that the volatility processes are Hölder in expectation, it will be shown that each of those point estimators is ∆ -α/(2α+1) n -consistent, where α is the lowest of two values of the Hölder regularities of σ 2 and σ 2 . In Section 2.3, referring to the theory of semiparametric estimation, reported for instance in [START_REF] Van Der | Asymptotic Statistics[END_REF], we compute a lower bound V opt ϑ (σ, σ) for the limit variance while estimating ϑ with d = 2 observed processes, for deterministic volatility functions, in Theorem 3. As soon as σ is not constant, this bound is lower than V ϑ (σ, σ). Then, we derive an estimator θ2,n such that

∆ -1/2 n ( θ2,n -ϑ) → N (0, V opt ϑ (σ, σ)
) stably in law, where conditional on F, the random variable N (0, V opt ϑ (σ, σ)) is centred Gaussian with conditional variance V opt ϑ (σ, σ). This estimator is efficient in the sense that it achieves the minimal conditional variance V opt ϑ (σ, σ) among all possible √ n-consistent estimators that are asymptotically centred mixed normal. In Section 3, we discuss the case d > 3 and also present a possible extension of our setting, that puts additive model error terms in the observables in order to break the degeneration of the model. We perform some numerical experiments in Section 4, using both simulated and real data from the electricity forward markets in order to compare the behaviours of the estimators in various configurations. The proofs are delayed until Section 5.

Construction of the estimators and convergence results

2.1. Rate-optimal estimation of ϑ.

2.1.1.

The case d = 1. In that setting, it is impossible to identify ϑ from data X i∆n , i = 1, . . . , n asymptotically when t ; σ t and t ; σ t are unknown. Indeed X has the same law under the choice of (ϑ, σ, σ) and (ϑ + 1, e T1-• σ, σ).

2.1.2.

The case d = 2. This is the statistically most regular case. Set, as usual ∆ n i X = X i∆n -X (i-1)∆n (componentwise). From the convergences

n i=1 (∆ n i X j ) 2 → T 0 e -2ϑ(Tj -t) σ 2 t + σ 2 t dt, j = 1, 2 and n i=1 (∆ n i X 2 -∆ n i X 1 ) 2 → T 0 (e -ϑT2 -e -ϑT1 ) 2 e 2ϑt σ 2 t dt
in probability, we also obtain the convergence of the ratio 

Ψ n T1,T2 = n i=1 (∆ n i X 2 -∆ n i X 1 ) 2 n i=1 (∆ n i X 2 ) 2 -(∆ n i X 1 ) 2 → e -ϑT2 -e -ϑT1 2 e -2ϑT2 -e -2ϑT1 = ψ T1,T2 (ϑ) 
∆ n i X 2 -∆ n i X 1 ∆ n i X 3 -∆ n i X 2 = e -ϑT2 -e -ϑT1 e -ϑT3 -e -ϑT2
which is invertible as a function of ϑ. It is thus possible to identify ϑ exactly from the observation of a single increment of X! When the b j are not all equal, the situation is still somehow degenerate, as we can eliminate all volatility components by taking linear combinations of the observed increments. The lowestorder remaining term is the drift process, so that we could expect to find ∆ -1 n -consistent estimators instead of ∆ -1/2 n -consistent ones. We then have

Ψ n T1,T2,T3 = n i=1 (∆ n i X 3 -∆ n i X 2 ) 2 n i=1 (∆ n i X 2 -∆ n i X 1 ) 2 → e -ϑT3 -e -ϑT2 e -ϑT2 -e -ϑT1 2 = ψ T1,T2,T3 (ϑ),
say. The function ϑ ; ψ T1,T2,T3 (ϑ) maps (0, ∞) onto 0, T3-T2 T2-T1

2 and is also invertible (see Lemma 3), leading to the estimator θ3,n = ψ -1 T1,T2,T3 Ψ n T1,T2,T3 whenever Ψ n T1,T2,T3 ∈ 0, T3-T2 T2-T1

2 and 0 otherwise.

2.1.4. Convergence results. We need some assumption about the regularity of the processes b, σ and σ. For a random process X = (X t ) 0≤t≤T , introduce the following modulus of continuity:

ω(X) t = sup |h|≤t T 0 E (X s+h -X s ) 2 ds 1/2
. Assumption 1. The processes σ and σ are almost surely positive. Moreover, for some s > 1/2, we have sup t∈[0,T ] t -s ω(b j ) t < ∞ for every j = 1, . . . , d.

To state the convergence results, we need some notation. Set

b t = 2(e -ϑT2 -e -ϑT1 )(e -ϑT3 -e -ϑT2 ) (e -ϑT2 -e -ϑT1 )(b 3 t -b 2 t ) -(e -ϑT3 -e -ϑT2 )(b 2 t -b 1 t ) and b T = (e -ϑT2 -e -ϑT1 ) 2 T 0 (b 3 t -b 2 t ) 2 dt -(e -ϑT3 -e -ϑT2 ) 2 T 0 (b 2 t -b 1 t ) 2 dt.
Define also

D 3 = (e -ϑT3 -e -ϑT2
) (e -ϑT3 -e -ϑT2 )(T 2 e -ϑT2 -T 1 e -ϑT1 ) -(e -ϑT2 -e -ϑT1 )(T 3 e -ϑT3 -T 2 e -ϑT2 ) .

Theorem 1. Work under Assumption 1.

(1) For d = 2, we have

∆ -1/2 n ( θ2,n -ϑ) → N 0, V ϑ (σ, σ)
in distribution as n → ∞, where N 0, V ϑ (σ, σ) is a random variable which, conditionally on F, is centred Gaussian with variance

V ϑ (σ, σ = 1 (T 2 -T 1 ) 2 (e ϑT2 -e ϑT1 ) 2 T 0 e 2ϑt σ 2 t σ 2 t dt T 0 e 2ϑt σ 2 t dt 2 .
(2) For d = 3 we have

∆ -1 n ( θ3,n -ϑ) → b T + T 0 bt e ϑt σ t dB t 2(e -ϑT2 -e -ϑT1 )D 3 T 0 e 2ϑt σ 2
t dt in probability as n → ∞.

2.2.

Rate-optimal estimation of the volatility processes.

2.2.1.

Construction of an estimator. We start with the observation that for any sufficiently regular test function g : [0, T ] → R, we have, for any j = 1, . . . , d,

n i=1 g((i -1)∆ n ) ∆ n i X j 2 → T 0 g(s)d X j s = T 0 g(s) e -2ϑ(Tj -s) σ 2 s + σ 2 s ds (2) 
in probability as n → ∞. Therefore, picking a function g that mimics a Dirac mass at t, we can asymptotically identify e -2ϑ(T1-t) σ 2 t + σ 2 t and e -2ϑ(T2-t) σ 2 t + σ 2 t by applying (2) for j = 1, 2 for a sequence g n that converges to δ t weakly. We thus identify σ 2 t and σ 2 t as well by inverting a 2 × 2 linear system, namely

σ 2 t σ 2 t = M(ϑ) t e -2ϑ(T1-t) σ 2 t + σ 2 t e -2ϑ(T2-t) σ 2 t + σ 2 t
where M(ϑ) t = 1 e -2ϑ(T1-t) -e -2ϑ(T2-t)

1

-1 -e -2ϑ(T2-t) e -2ϑ(T1-t) .

For a threshold n > 0 and a bandwidth h n > 0, define the estimators

(3) σ 2 n,t σ 2 n,t = h -1 n M(max( θ2,n , n )) t t-hn≤(i-1)/n<t (∆ n i X 1 ) 2 (∆ n i X 2 ) 2 .
The bandwidth h n is set below to balance both bias and variance, while n > 0 garantees the well-posedness of the estimator.

2.2.2. Convergence result. We need an additional regularity assumption on the volatility processes σ and σ.

Assumption 2. There exists a constant c > 0 and α ≥ 1/2 such that for every t, s ∈ [0, T ], we have

(4) E (σ 2 t -σ 2 s ) 2 + E (σ 2 t -σ 2 s ) 2 ≤ c|t -s| 2α .
Theorem 2. Work under Assumptions 1 and 2. Specify

h n = ∆ 1/(2α+1) n
and let n → 0. Then the sequences

∆ -α/(2α+1) n σ 2 n,t -σ 2 t ) and ∆ -α/(2α+1) n ( σ 2 n,t -σ 2 t )
are tight, uniformly in t over compact sets included in (0, T ].

2.3.

Efficient estimation of ϑ when d = 2. We look for the best attainable variance among rate-optimal estimators of ϑ that are asymptotically Gaussian. However, we do not have a statistical model in the classical sense, with parameters (ϑ, σ, σ) since t ; σ t and t ; σ t are random processes themselves. In order to bypass this difficulty, we first restrict our attention to the case where σ and σ are deterministic functions, which enables us to identify our data within a semiparametric regular statistical model. Thanks to classical bounds on semiparametric estimation, we can explicitly compute the optimal (best achievable) variance V opt ϑ (σ, σ). In a second step, allowing σ and σ to be random again, we build a one-step correction of our preliminary estimator θ2,n which has the property of being asymptotically mixed Gaussian, with (conditional) variance equal to V opt ϑ (σ, σ), i.e. thus achieving the optimal variance along deterministic paths.

Lower bounds. Consider the statistical experiment E n generated by data

(∆ n i X 1 , ∆ n i X 2 , i = 1, . . . , n) with (5) X i t = X i 0 + t 0 e -ϑ(Ti-s) σ s dB s + t 0 σ s dB s , i = 1, 2,
with parameter (ϑ, σ, σ) ∈ Θ×Σ(c, c), with Θ = (0, ∞) and Σ(c, c) being the space of positive (deterministic) functions (σ, σ) defined on [0, T ], satisfying (4) of Assumption 2 with constant c and satisfying moreover c ≤ inf t σ t ≤ sup t σ t ≤ c for some c > 0.

Theorem 3. Let θn be an estimator of ϑ in the experiment

E n such that ∆ -1/2 n ( θn -ϑ) converges to N 0, V ϑ (σ, σ) in distribution as n → ∞. Then V ϑ (σ, σ) ≥ V opt ϑ (σ, σ) = 1 (T 2 -T 1 ) 2 (e ϑT2 -e ϑT1 ) 2 T 0 e 2ϑt σ 2 t σ 2 t dt -1 .
Construction of an efficient procedure. This is the most delicate part of the paper. By representation (5), we see that the (∆ n i X 1 , ∆ n i X 2 ) are independent for i = 1, . . . , n. Moreover,

(∆ n i X 1 , ∆ n i X 2 ) is a centred Gaussian, with explicit covariance structure E (∆ n i X 1 ) 2 = i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t dt + i∆n (i-1)∆n σ 2 t dt, E (∆ n i X 2 ) 2 = i∆n (i-1)∆n e -2ϑ(T2-t) σ 2 t dt + i∆n (i-1)∆n σ 2 t dt, E ∆ n i X 1 ∆ n i X 2 = i∆n (i-1)∆n e -ϑ(T1+T2-2t) σ 2 t dt + i∆n (i-1)∆n σ 2 t dt.
Let us further denote by f i,n ϑ,σ,σ its density function w.r.t. the Lebesgue measure on R 2 . If the nuisance parameters (σ, σ) were known, then an optimal (efficient) procedure could be obtained by a one-step correction of the type

θn = θ2,n + n i=1 i ϑ= θ2,n,σ,σ (∆ n i X 1 , ∆ n i X 2 ) n i=1 i ϑ= θ2,n,σ,σ (∆ n i X 1 , ∆ n i X 2 ) 2 where (6) i,n ϑ,σ,σ (∆ n i X 1 , ∆ n i X 2 ) = ∂ ϑ log f i,n ϑ,σ,σ (∆ n i X 1 , ∆ n i X 2 ) is the score function associated to (∆ n i X 1 , ∆ n i X 2
), see for instance Section 8.9 in [START_REF] Van Der | Asymptotic Statistics[END_REF]. However, this oracle procedure is not achievable and we need to invoke the theory of semiparametric efficiency (see for instance Chapter 25 of [START_REF] Van Der | Asymptotic Statistics[END_REF]). In the presence of an extra nuisance parameter (σ, σ), we consider instead the so-called efficient score i,n ϑ,σ,σ = i,n ϑ,σ,σ -Π i,n ϑ,σ,σ , where Π is the projection operator onto the tangent space associated to a one-dimensional perturbation around the true (unknown) value (σ, σ). It turns out that we indeed have a simple and explicit formula for i,n ϑ,σ,σ which enables us to derive a one-step correction formula using i,n ϑ,σ,σ and plug-in estimators in order to achieve the optimal bound.

For technical reason, we replace θ2,n by ∆ 

n . Set i,n ϑ,µ (∆ n i X 1 , ∆ n i X 2 ) = (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 )e -ϑ(T2-T1) (T 2 -T 1 ) (1 -e -ϑ(T2-T1) ) 3 ∆ n µ for i = 1, . . . , n and (ϑ, µ) ∈ (0, ∞) × [c, c].
Theorem 4. Work under Assumptions 1 and 2 with α > 1/2. For i = 1, . . . , n, the efficient score for the parameter ϑ associated to

(∆ n i X 1 , ∆ n i X 2 ) is given by i,n ϑ,∆ -1 n i∆n (i-1)∆n σ 2 t dt (∆ n i X 1 , ∆ n i X 2 ). Moreover, the estimator θ2,n defined by θ2,n = θ2,n + i∈In i,n θ2,n, σ 2 n,(i-1)∆n (∆ n i X 1 , ∆ n i X 2 ) i∈In i,n θ2,n, σ 2 n,(i-1)∆n (∆ n i X 1 , ∆ n i X 2 ) 2 with I n = {i = 1, . . . , n, h n ≤ (i -1)∆ n < T } satisfies ∆ -1/2 n θ2,n -ϑ → N 0, V opt ϑ (σ, σ) in distribution as n → ∞.
Finally, the result is still valid if σ and σ are random processes such that P (σ, σ) ∈ Σ(c, c) = 1. In that case, the limiting distribution is, conditionally on F, centred Gaussian with (conditional) variance V opt ϑ (σ, σ).

This result shows that the lower bound V opt ϑ (σ, σ) can be attained, and therefore that efficient estimation can be performed (which has a sense only for deterministic volatility functions). Using Cauchy-Schwarz inequality, it is easy to prove that the expression of the limit variance is equal to the one we got in Theorem 1 for ∆ -1/2 n ( θ2,n -ϑ) if and only if σ is constant over the interval [0, T ]. Otherwise, efficient estimation is more accurate than the one in the first part of Theorem 1.

Discussion on possibly richer observation schemes

3.1. Discussion on the case d > 3. In Section 2.1, we built estimators of ϑ for d = 2, 3. When d > 3, we meet the same problem of degeneracy as when d = 3: the d processes are driven by 2 Brownian motions only. We may therefore build an estimator similar to the one with three processes. We have

Ψ n T 1..d = d j=3 n i=1 (∆ n i X j -∆ n i X j-1 ) 2 n i=1 (∆ n i X 2 -∆ n i X 1 ) 2 → d j=3 e -ϑTj -e -ϑTj-1 e -ϑT2 -e -ϑT1 2 = ψ T 1..d (ϑ). The function ϑ ; ψ T 1..d (ϑ) maps (0, ∞) onto 0, d j=3 Tj -Tj-1 T2-T1
2 and is invertible as the sum of d -2

monotone functions (see Lemma 3). We can thus propose the estimator

θd,n = ψ -1 T 1..d Ψ n T 1..d whenever Ψ n T 1..d ∈ 0, d j=3 Tj -Tj-1 T2-T1
2 and 0 otherwise.

Using the notation

b d t =2(e -ϑT2 -e -ϑT1 ) d j=3 (e -ϑTj -e -ϑTj-1 ) (e -ϑT2 -e -ϑT1 )(b j t -b j-1 t ) -(e -ϑTj -e -ϑTj-1 )(b 2 t -b 1 t ) , b d T =(e -ϑT2 -e -ϑT1 ) 2 T 0 d j=3 (b j t -b j-1 t ) 2 dt - d j=3 (e -ϑTj -e -ϑTj-1 ) 2 T 0 (b 2 t -b 1 t ) 2 dt, D d = d j=3
(e -ϑTj -e -ϑTj-1 ) (e -ϑTj -e -ϑTj-1 )(T 2 e -ϑT2 -T 1 e -ϑT1 )

-(e -ϑT2 -e -ϑT1 )(T j e -ϑTj -T j-1 e -ϑTj-1 ) , it is possible to prove that under Assumption 1, we have

∆ -1 n ( θd,n -ϑ) → b d T + T 0 bd t e ϑt σ t dB t 2(e -ϑT2 -e -ϑT1 )D d T 0 e 2ϑt σ 2
t dt in probability as n → ∞.

A natural question arises while defining this new estimator: are we able to determine if using d > 3 processes is better than using d = 3 processes only? As the convergence rate is the same, the criterion should be the comparison of the limits in probability of ∆ -1 n ( θ3,n -ϑ) and ∆ -1 n ( θd,n -ϑ). The question of finding sufficient conditions so that one of those limits is closer to zero than the other one remains theoretically open. In numerical experiments however, we shall compute all the estimators and compare them.

Incorporating model errors.

Since the HJM model certainly cannot fit a dataset perfectly, we may consider including model errors that somehow fill the gap between the observables and the outputs of the mathematical model. Indeed and as reported earlier, as soon as the dimension of the process is greater than two, the model is degenerate: this is a common feature of HJM models, introduced in Heath et al. [START_REF] Heath | Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation[END_REF]. Jeffrey et al. [START_REF] Jeffrey | Nonparametric estimation of a multifactor Heath-Jarrow-Morton model: An integrated approach[END_REF] calls this phenomenon stochastic singularity. In the absence of drift processes, arbitrage would be possible as some linear combination of processes would be zero; this is not a feature of empirical data. The classical approach to avoid it is to add another source of randomness, as is done in Jeffrey et al. [START_REF] Jeffrey | Nonparametric estimation of a multifactor Heath-Jarrow-Morton model: An integrated approach[END_REF], Bhar and Chiarella [START_REF] Bhar | Interest rate futures: estimation of volatility parameters in an arbitrage-free framework[END_REF] and Bhar et al. [START_REF] Bhar | A maximum likelihood approach to estimation of Heath-Jarrow-Morton models[END_REF]. In the latter, estimation bearing on the prices of interest rates products is performed (in a parametric setting) with the addition of a measurement error to face stochastic singularity. We may introduce a shrinking noise, standing for model errors. We consider again the context of Section 1.1, as we are modeling a multidimensional diffusion process driven by two independent Brownian motions, with the same volatility structure. Yet, at time t i = i∆ n , we have observations Y j ti , j = 1, . . . , d, with Y j ti = X j ti + κ n j j i , where κ n j > 0 are deterministic, and j i are iid centred random variables. Asymptotics are again taken as n → ∞, and in this high-frequency framework, we would like to estimate ϑ and the random components t ; σ 2 t and t ; σ 2 t . Depending on the structure of the error terms κ n j j i , the properties of the estimators we have derived may change, in terms of asymptotic behaviour.

The estimation of processes contaminated by noise has been paid some attention, inspired in finance by the issues arising in microstructure noise modelling (although the context is quite different here). See for instance Zhang et al. [START_REF] Zhang | A tale of two time scales: Determining integrated volatility with noisy high-frequency data[END_REF][START_REF] Zhang | Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach[END_REF]. Jacod and Protter, in Chapter 16 of [START_REF] Jacod | Discretization of processes[END_REF] obtain laws of large numbers and central limit theorems under a very general specification of error terms. In the present setting, while considering noise around the diffusion process, we would like to extend our previous results in order to be able to perform estimation of the parametric and nonparametric components of the volatility when data are noisy; to do so, we need the noise not to be asymptotically bigger than the process of interest, in the sense that we want it to be O P (n -1/2 ). Such a specification should allow us to give simple extensions of the previous results, based on approximation of quadratic variation. Estimation at the rate n 1/2 should be possible, while the best rate should be lower when errors are bigger and tools based on quadratic variation are usually not suitable. See Gloter and Jacod [START_REF] Gloter | Diffusions with measurement errors. I. Local asymptotic normality[END_REF] for the attainable rate in a simple model with shrinking errors.

Numerical implementation

4.1. Electricity forward contracts. The prices of existing forward contracts in the electricity markets are characterised by three time components: the quotation date t and the dates T s and T e of respectively starting and ending power delivery. Therefore, a forward contract F (t, T s , T e ) will deliver to the holder 1 MWh of electricity continuously between dates T s and T e . Such a contract may be bought during a quotation period [t 0 , T ] with T < T s and it is no more available once t > T . Typical observed contracts are of various delivery periods: one week, one month, one quarter (three months), one season (6 months) or one year. Table 1 shows an example of available forward contracts in the French Market on May 23 rd , 2015. For example, the contract called "June 2015" will deliver to the holder 1 MWh of electricity, with a constant power, between the first hour of June 1 st (this is T s ) and the last hour of June 30 th of 2015 (T e ). This table also introduces the contracts of relative maturity (denoted by the "ahead" formulation). A "ahead" contract is a contract with constant delivery period but with changing delivery dates. For example, the 2-month-ahead contract is the forward contract "July 2015" when it is quoted on May 31 th , 2015 (2 months ahead from the quotation date), and becomes the forward contract "August 2015" on June 1 st , 2015 (a jump of contract to stay 2 months ahead from the quotation date). In this study we only consider the 6 observable monthly contracts (i.e. T e -T s = 1 month) to estimate ϑ and the volatility processes σ and σ. Also, for simplicity, we will drop T e from the notation. In the context of simulated data, we will simulate prices of F (t, T s ) = F (t, T s , T e ), the forward delivering continuously 1 MWh during the period [T s , T e ]. In the context of real data, the price F (t, T s ) is observable.

4.2.

Results on simulated data. The objective of this section is to study the estimators' behaviour on a simulated data set, where the log-prices of the forward contracts are simulated according to the two-factor model described in [START_REF] Espen | Stochastic modeling of financial electricity contracts[END_REF]. The parameter values are chosen to be close to values estimated on real data: in [START_REF] Kiesel | A two-factor model for the electricity forward market[END_REF], the volatility processes are constant, and the estimated values are σ = 0.37 y -1/2 and σ = 0.15 y -1/2 . Here we use a CIR-like model (the Cox-Ingersoll-Ross model for interest rates has been introduced in [START_REF] Cox | A theory of the term structure of interest rates[END_REF], in 1985), to emphasize the fact that our model may also be used in the context of interest rates modeling (this is indeed where it comes from, see [START_REF] Hinz | Pricing electricity risk by interest rate methods[END_REF]). Our parameters are b j t = 3.65 • 10 -1 (log(30) -X j t ), σ t = 0.37Σ with

Σ d t = 1 d d j=1 X j t
, which is the square root of the average of the d quoted log-prices. We adopt various values of ϑ (values in y -1 ): 1.4, 10, 20, 40. The first value is the estimated parameter shown in [START_REF] Kiesel | A two-factor model for the electricity forward market[END_REF] and the others are chosen to cover a wide range of possible values to observe different behaviours of our estimators. Finally, the initial value of each simulated log-price series is the logarithm of a random variable taken uniformly over the interval [START_REF] Mykland | The econometrics of high-frequency[END_REF]40], which is an usual range for prices in the market of forward contracts on electricity (see also the constant 30 in the drift, in the center of that interval). We consider different simulation configurations, all related to the situations we are facing on real data. The decreasing number of observations corresponds to the configuration observed with real data: 2 monthly contracts with fixed delivery dates are jointly observed on working days during 5 months (around 100 quotation dates) whereas 6 monthly contracts can be jointly observed only during 1 month (around 20 quotation dates). The number of observations is a bit low, as we are relying on asymptotic results.

For each configuration, we perform 100,000 simulations. Recall that we denote by θj,n the estimator of ϑ from the configuration where j processes are observed, and also by θ2,n the efficient estimator as described in Section 2.3, available in the configuration of 2 observed processes. Although we have not proved that the estimator θ2,n is ∆ -1/2 n -consistent and that it reaches the lower bound for the limit variance when α = 1/2, we have not got any numerical evidence against that possibility. Tables 2, 3 and 4 give the estimation results for ϑ = 1.4, 20 and 40 y -1 , respectively. In each configuration, these tables give the number of converging instances 1 of the estimator and their average, and the empirical confidence interval at 95% (issued from taking the quantiles of the sample of estimated values). We observe that the estimators perform quite well: except in three lines in Table 4, the true value of ϑ is always in the confidence interval. Finally, we empirically observe that adding new maturities does not improve the quality of estimation in all configurations. For instance, increasing the number of maturities may increase or decrease the length of the confidence interval, and it may shift it away from the true value of ϑ. Notice also that the one-step correction from θ2,n to θ2,n never led to very different values. 4. Results of the estimation on simulated data with ϑ = 40 y -1 .

Concerning the estimation results of the volatility processes σ 2 t and σ 2 t , we use the causal kernel K(x) = 1 (0,1](x) , and the bandwidth h n for the two volatility functions is selected by cross validation and visual inspection: as the number of data is quite poor, the empirical criterion to be minimised in the cross validation method does not always admit a minimum. We therefore retain a value of h n close to the values that are given by cross validation when the minimisation is well defined, and we check that it does not lead to obvious under-or oversmoothing. The retained value is 14 days. We also set n = 3.65 • 10 -2 y -1 . In the following we show the estimators σ 2 n and σ 2 n for the configuration where 2 processes are simulated on a period of 5 months (approximately 150 days), which means T = T 1 = 150 and T 2 = 181 days, with n = 100 dates and ϑ = 10 y -1 . First we keep the specification b j t = 3.65•10 -1 (log(30)-X j t ) for the drift process, but we use the constant volatility processes of [START_REF] Kiesel | A two-factor model for the electricity forward market[END_REF], that is σ = 0.37 y -1/2 and σ = 0.15 y -1/2 . A deterministic specification allows us to compare the curve of point estimates with the deterministic function that was used to simulate the processes. Remember that the nonparametric estimation result, Theorem 2, gives convergence uniformly on [h n , T ]. Therefore we expect that the fit is not good for values ot t being less than h n . We perform simulation and estimation 10,000 times, and then take the average and the quantiles of the 10,000 curves (that is, at each point t of the discretisation grid, we take the average and the quantiles at 2.5% and 97.5% of the 10,000 occurrences of σ 2 n,t and σ 2 n,t ). Figure 1 gives the square of the estimated equivalent volatility function e -2 θ2,n(T1-t) σ 2 n,t + σ 2 n,t , together with the true function e -2ϑ(T1-t) σ 2 t + σ 2 t . It shows a good estimation of this equivalent volatility, the error (between the average of the 10,000 estimators and the true value) being maximal in the two ends of the curve. The estimation of σ 2 t , given in Figure 2, also performs well. However, we can observe in Figure 3 a bad performance of estimation of σ 2 t , especially for large values of T -t, even when t > h n . This can be explained by the fact that, due to the presence of the exponential term e -ϑ(T•-t) , the short term factor e -2ϑ(T•-t) σ 2 t is low when T -t is large. Also, if ϑ happens to be overestimated, the estimator of σ 2 t has to take a very high value so that the product σ 2 t e -2ϑ(T•-t) may fit the curve. Therefore, the estimation of σ t should reasonably be taken into account only for small times to maturity T -t, where the estimation procedure seems to work well. On this history, we get 125 periods of 1 month (n 20) where 6 processes (the 6 month-ahead contracts) are jointly observed with no missing data, whereas we get 141 periods of 5 months (n 100) where 2 processes (the 1 month-ahead and the 2 month-ahead contracts) are jointly observed. These numbers of periods are given in Table 5 for all the configurations described in Section 4.2. In the same column, Table 5 also precises the number of periods on which the estimator converges. And the same table gives the estimation results of ϑ for all the possible configurations, with the average value and the standard deviation of the estimators. The main message about these results is that, contrary to the results on simulated data, the values of the estimators are different from one configuration to another. More precisely, the estimators from 2 processes are higher (of a factor between 5 and 8) than the ones from 3 to 6 processes. This can be explained by two different causes. First, the estimators from 3 to 6 processes present 5. Estimators of ϑ on real data in France (unit: y). a theoretical bias, of which value is unknown: this was stated in Theorem 1 and in Section 3.1. Second, these differences may be due to the presence of errors linked to measurement or to the model.

Proofs

Preliminaries: localisation.

With no loss of generality, we may (and will) assume that the processes b j , σ and σ are bounded, relying on a so-called localisation argument. For an integer p ≥ 1, introduce the stopping time τ p = inf{t ∈ [0, T ], min(b j t , σ t , σ t ) > p}. Replacing X j t by X t∧τp , we have bounded processes b j , σ and σ. Moreover since these processes are at least locally bounded, we have P(τ p > T ) → 1 as p → ∞. We refer to Section 3.6.3 in [START_REF] Jacod | Statistics and high-frequency data[END_REF] for details.

Proof of Theorem 1.

Proof of Theorem 1 (1).

Step 1. We first consider the case b j = 0 for j = 1, 2. For notational simplicity, we set e ,k (ϑ) = e -ϑT k -e -ϑT . Let us define 

ζ n i = (∆ n i X 2 ) 2 -(∆ n i X 1 ) 2 and ξ n i = ∆ n i X 2 -∆ n i X 1 2 . Clearly i∆n (i-1)∆n e -ϑ(T2-t) σ t dB t + i∆n (i-1)∆n σ t dB t 2 - i∆n (i-1)∆n e -ϑ(T1-t) σ t dB t + i∆n (i-1)∆n σ t dB t 2 =(e -2ϑT2 -e -2ϑT1 ) i∆n (i-
ζ n i = 1 ψ T1,T2 (ϑ) ξ n i + χ n i .
By standard convergence of the quadratic variation (see for instance Section 2.1.5 in [START_REF] Mykland | The econometrics of high-frequency[END_REF]), ζ n i converges in probability as well, with the same limit as

n i=1 ξ n i → e 1,2 (ϑ) 2 
1 ψ T 1 ,T 2 (ϑ) n i=1 ξ n i . It follows that Ψ n T1,T2 = n i=1 ∆ n i X 2 -∆ n i X 1 2 n i=1 (∆ n i X 2 ) 2 -(∆ n i X 1 ) 2 = n i=1 ξ n i n i=1 ζ n i → ψ T1,T2 (ϑ)
in probability. We derive the convergence

ψ T1,T2 ( θ2,n ) → ψ T1,T2 (ϑ)
in probability on the event {Ψ n T1,T2 ∈ (-1, 0)}, hence the convergence θ2,n → ϑ in probability as well since {Ψ n T1,T2 ∈ (-1, 0)} has asymptotically probability 1 and that ϑ ; ψ T1,T2 (ϑ) is invertible with continuous inverse.

Step 2. Using (7), we readily obtain

∆ -1/2 n Ψ n T1,T2 -ψ T1,T2 (ϑ) = ∆ -1/2 n n i=1 ξ n i n i=1 ζ n i -ψ T1,T2 (ϑ) = -ψ T1,T2 (ϑ) ∆ -1/2 n n i=1 χ n i n i=1 ζ n i .
Consider next the sequence of 1-dimensional processes

χ n (t) = ∆ 1/2 n t∆ -1 n i=1 f ∆ -1/2 n ∆ n i Y 1 , ∆ -1/2 n ∆ n i Y 2 ,
where

Y t = (Y 1 t , Y 2 t ) =
t 0 e ϑs σ s dB s , t 0 σ s dB s . By Theorem 3.21, p. 231 in [START_REF] Jacod | Statistics and high-frequency data[END_REF] applied to the martingale Y with f (x, y) = xy which has vanishing integral under the standard 2-dimensional-Gaussian measure, we have that the process χ n (t) converges stably in law to a continuous process χ(t) defined on an extension of the original probability space and given by

χ(t) = t 0 e ϑs σ s σ s dW s ,
where W is a Brownian motion independent of F. Using successively ∆ -1/2 n n i=1 χ n i = 2e 1,2 (ϑ)χ n (T ), the fact that the convergence χ n → χ holds stably in law and the convergence

n i=1 ζ n i → (e -2ϑT2 -e -2ϑT1 ) T 0 e 2ϑt σ 2 t dt,
in probability, we derive

-∆ -1/2 n ψ T1,T2 (ϑ) n i=1 χ n i n i=1 ζ n i → -ψ T1,T2 (ϑ) 2(e -ϑT2 -e -ϑT1 χ(T ) (e -2ϑT2 -e -2ϑT1 ) T 0 e 2ϑt σ 2 t dt = - 2(e -ϑT2 -e -ϑT1 ) 3 (e -2ϑT2 -e -2ϑT1 ) 2 T 0 e 2ϑt σ 2 t dt χ(T )
in distribution. Conditional on F, the limiting variable is centred Gaussian, with conditional variance

v ϑ (σ, σ) = 4 (e -ϑT 2 -e -ϑT 1 ) 2 (e -ϑT 2 +e -ϑT 1 ) 4 T 0 e 2ϑt σ 2 t σ 2 t dt ( T 0 e 2ϑt σ 2 t dt) 2 .
Step 3. On the event {Ψ n T1,T2 ∈ (-1, 0)}, we have

∆ -1/2 n θ2,n -ϑ = ∆ -1/2 n Ψ n T1,T2 -ψ T1,T2 (ϑ) ∂ ϑ ψ -1
T1,T2 (Z n ) for some Z n that converges to ψ T1,T2 (ϑ) in probability by Step 1. The conclusion follows from

∂ ϑ ψ -1 T1,T2 (ψ T1,T2 (ϑ)) 2 v ϑ (σ, σ) = V ϑ (σ, σ)
together with the fact that {Ψ n T1,T2 ∈ (-1, 0)} has asymptotically probability 1.

Step 4. It remains to relax the restriction b j = 0. When b j is non-zero, by localization again, we may assume it is bounded. Then, by Girsanov theorem, we apply a change of measure which is F-measurable. Since the convergence in distribution in Step 2 holds stably in law, we may work under this change of measure (see Section 2.4.4 in [START_REF] Mykland | The econometrics of high-frequency[END_REF] for a simple explanation)). Finally, relaxing the boundedness assumption on σ, σ and b j is standard, see Section 5.1 above.

Proof of Theorem 1 (2).

Step 1. We have

Ψ n T1,T2,T3 = n i=1 ∆ n i (X 3 -X 2 ) 2 n i=1 ∆ n i (X 2 -X 1 )
2

By standard convergence of the quadratic variation

n i=1 ∆ n i (X 2 -X 1 ) 2 → e 1,2 (ϑ) 2 T 0 e 2ϑt σ 2 t dt, (8) n i=1 ∆ n i (X 3 -X 2 ) 2 → e 2,3 (ϑ) 2 T 0 e 2ϑt σ 2 t dt in probability. Since ψ T1,T2,T3 (ϑ) = e2,3(ϑ) 2
e1,2(ϑ) 2 , we derive ψ T1,T2,T3 θn,3 → ψ T1,T2,T3 (ϑ) in probability on the event Ψ T1,T2,T3 ∈ 0, T3-T2 T2-T1 2 which has asymptotically probability 1, hence the convergence θn,3 → ϑ in probability.

Step 2. We further have

Ψ n T1,T2,T3 -ψ T1,T2,T3 (ϑ) = n i=1 ∆ n i (X 3 -X 2 ) 2 n i=1 ∆ n i (X 2 -X 1 ) 2 - e 2,3 (ϑ) 2 e 1,2 (ϑ) 2 = n i=1 η n i n i=1 ∆ n i (X 2 -X 1 ) 2 ,
with

η n i = ∆ n i (X 3 -X 2 ) 2 - e 2,3 (ϑ) 2 e 1,2 (ϑ) 2 ∆ n i (X 2 -X 1 ) 2 .
Write

∆ n i f = i∆n (i-1)∆n f (t)dt.
One readily checks that the following decomposition holds:

η n i = (η ) n i +(η ) n i , with (η ) n i = ∆ n i (b 3 -b 2 ) 2 - e 2,3 (ϑ) 2 e 1,2 (ϑ) 2 ∆ n i (b 2 -b 1 ) 2 and (η ) n i = 2e 2,3 (ϑ) ∆ n i (b 3 -b 2 ) - e 2,3 (ϑ) e 1,2 (ϑ) (b 2 -b 1 ) i∆n (i-1)∆n
e ϑt σ t dB t .

We will need the following lemma, proof of which is relatively straightforward yet technical and given in Section 6.1.

Lemma 1. Let (Y t ) t≥0 and (Z t ) t≥0 be two càdlàg and progressively measurable processes. Assume that for some s > 1/2, we have

sup t∈[0,T ] t -s ω(Y ) t < ∞. Then ∆ -1 n n i=1 ∆ n i Y 2 → T 0 Y 2 t dt and ∆ -1 n n i=1 ∆ n i (Y ) i∆n (i-1)∆n Z t dB t → T 0 Y t Z t dB t in probability.
We successively have

∆ -1 n n i=1 (η ) n i → T 0 µ ϑ (b t )dt with µ ϑ (b t ) = (b 3 t -b 2 t ) 2 - e2,3(ϑ) 2 e1,2(ϑ) 2 (b 2 t -b 1 t ) 2 and ∆ -1 n n i=1 (η ) n i → 2 T 0 λ ϑ (b t )e ϑt σ t dB t in probability, by Lemma 1 applied to Y t = (b 3 t -b 2 t ) - e2,3(ϑ) e1,2(ϑ) (b 2 t -b 1 t
) and Z t = e ϑt σ t , and Assumption 1, where λ ϑ (b t ) = e 2,3 (ϑ)Y t . This, together with [START_REF] Gloter | Diffusions with measurement errors. I. Local asymptotic normality[END_REF], implies the convergence

∆ -1 n Ψ n T1,T2,T3 -ψ T1,T2,T3 (ϑ) → T 0 µ ϑ (b t )dt + 2 T 0 λ ϑ (b t )e ϑt σ t dB t e 1,2 (ϑ) 2 T 0 e 2ϑt σ 2
t dt in probability.

Step 3. Finally, we have

∆ -1 n θ3,n -ϑ = ∆ -1 n Ψ n T1,T2,T3 -ψ T1,T2,T3 (ϑ) ∂ ϑ ψ -1
T1,T2,T3 (Z n ), for some Z n that converges to ψ T1,T2,T3 (ϑ) by Step 1. Hence

∆ -1 n θ3,n -ϑ → T 0 µ ϑ (b t )dt + 2 T 0 λ ϑ (b t )e ϑt σ t dB t ∂ ϑ ψ T1,T2,T3 (ϑ)e 1,2 (ϑ) 2 T 0 e 2ϑt σ 2
t dt and we conclude by noting that ∂ ϑ ψ T1,T2,T3 (ϑ) = 2D3 e1,2(ϑ) 3 .

5.3.

Proof of Theorem 2. We may (and will) assume that b j = 0. For ease of notation, we write θ2,n for max( θ2,n , n ) and set t i = i∆ n for i = 1, . . . , n. We also define K(t) = 1 (0,1] (t) and K h (t) = h -1 K(th -1 ) for h > 0. We have

σ 2 n,t -σ 2 t = n i=1 K hn t -t i-1 (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 e -2 θ2,n(T1-t) -e -2 θ2,n(T2-t) -σ 2 t = I + II, with I = 1 e -2 θ2,n(T1-t) -e -2 θ2,n(T2-t) - 1 e -2ϑ(T1-t) -e -2ϑ(T2-t) × n i=1 K hn t -t i-1 (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2
and

II = n i=1 K hn t -t i-1 (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 e -2ϑ(T1-t) -e -2ϑ(T2-t) -σ 2 t .
Step

1. Since E[ ∆ n i X j 2 ] is of order ∆ n by Burkholder-Davis-Gundy inequality, we have that E[ (∆ n i X 1 ) 2 - (∆ n i X 2 ) 2
] is of order ∆ n as well and therefore

E n i=1 K hn (t -t i-1 ) (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 n i=1 K hn (t -t i-1 )∆ n 1 since K hn (t -t i-1 ) is of order h -1
n for a number of terms that are at most of order ∆ -1 n h n . Therefore

n i=1 K hn t -t i-1 (∆ n i X 1 ) 2 -(∆ n i X 2 )
2 is tight, and we conclude that I is of order

∆ 1/2 n
in probability by applying Theorem 1 (1).

Step 2. The term II further splits into II = (e -2ϑ(T1-t) -e -2ϑ(T2-t)

) -1 B n (t) + V n (t) , having V n (t) = n i=1 K hn (t -t i-1 ) (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 -E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 F i-1
and

B n (t) = n i=1 E K hn (t -t i-1 ) (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 F i-1 -e -2ϑ(T1-t) -e -2ϑ(T2-t) σ 2 t .
Hereafter, we abbreviate F i∆n by F i .

Step 3. We first prove an upper bound for E[V n (t) 2 ]. We have

sup t∈[hn,T ] E n i=1 K hn (t -t i-1 ) (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 -E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 F i-1 2 = sup t∈[hn,T ] h -2 n n i=1 K t -t i-1 h n 2 E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 -E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 F i-1 2 
because cross-terms in the development are zero due to conditioning. By compactness of the support of K, there are at most of order ∆ -1 n h n nonvanishing terms in the sum and the estimate is

uniform in t ∈ [h n , T ]. Finally, since E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 -E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 F i-1 2 ∆ 2 n , we obtain sup t∈[hn,T ] E V n (t) 2 ∆ n h -1 n .
Step 4. In order to bound the bias we use the decomposition

B n (t) = e -2ϑ(T1-t) -e -2ϑ(T2-t) (III + IV )),
where

III = T 0 h -1 n K t -u h n e -2ϑ(t-u) σ 2 u du -σ 2 t and IV = n i=1 E h -1 n K t-ti-1 hn (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 F i-1 e -2ϑ(T1-t) -e -2ϑ(T2-t) - T 0 h -1 n K t -u h n e -2ϑ(t-u) σ 2 u du.
For every t ∈ [h n , T ] we have

t hn t-T hn K(x)dx = 1 hence E III 2 = E t hn t-T hn K(x)e -2ϑhnx σ 2 t-hnx dx -σ 2 t 2 = E supp(K) K(x) e -2ϑhnx σ 2 t-hnx -σ 2 t dx 2 ≤ supp(K) K(x) 2 E e -2ϑhnx σ 2 t-hnx -σ 2 t 2 dx
by Jensen inequality since supp(K) ⊂ t-T h , t h that integrates to 1. By convexity,

(e -2ϑhnx σ 2 t-hnx -σ 2 t ) 2 ≤ 2(e -2ϑhnx σ 2 t-hnx -σ 2 t-hnx ) 2 + 2(σ 2 t-hnx -σ 2 t ) 2 follows.
Bounding further the remainder in the expansion of x ; e -2ϑhnx at the point 0, we obtain |e -2ϑhnx -1| ≤ M |2ϑh n x| for some M > 0. By localization, we find some M σ > 0 such that σ t < M σ . It follows that

E III 2 ≤ supp(K) K 2 (x) 2M 4 σ (2ϑh n xM ) 2 + 2E σ 2 t-hnx -σ 2 t 2 dx ≤ supp(K) K 2 (x) 2M 4 σ (2ϑh n xM ) 2 + 2c|h n x| 2α dx, using Assumption 2. This estimate is uniform in t ∈ [h n , T ], therefore sup t∈[hn,T ] E III 2 h 2α n . Next, we write IV = n i=1 h -1 n δ i (t), with δ i (t) = E K t -t i-1 h n ti ti-1 e -2ϑ(t-u) σ 2 u du F i-1 - ti ti-1 K t -u h n e -2ϑ(t-u) σ 2 u du, since the term n i=1 h -1 n K t -t i-1 h n E (∆ n i X 1 ) 2 -(∆ n i X 2 ) 2 e -2ϑ(T1-t) -e -2ϑ(T2-t) - ti ti-1 e -2ϑ(t-u) σ 2 u du F i-1 = n i=1 h -1 n K t -t i-1 h n e -2ϑt E ti ti-1 e ϑu σ u dB u 2 - ti ti-1 e 2ϑu σ 2 u du F i-1 = 0 vanishes. Therfore, writing E[IV 2 ] = n i=1 E h -2 n (δ i (t)) 2 + 2 1≤i<j≤n E h -2 n δ i (t)δ j (t) , we successively obtain E[h -2 n (δ S i (t)) 2 ] ≤ ∆ n h 2 n ti ti-1 e -4ϑ(t-u) E K t -t i-1 h n E[σ 2 u |F i-1 ] -K t -u h n σ 2 u 2
by Jensen inequality, so that

n i=1 E h -2 n (δ S i (t)) 2 ∆ n h -1
n uniformly in t, since there are at most of order ∆ n h n nonvanishing terms in the sum. Finally, conditioning on

F j-1 , E h -2 n δ i (t)δ j (t) = h -2 n E δ i (t)E tj tj-1 K t -t j-1 h n -K t -u h n e -2ϑ(t-u) σ 2 u du F j-1 ,
and the difference K t-tj-1 hn

-K t-u hn is non-zero only if t ∈ (t j-1 , u] or t ∈ (t j-1 + h n , u + h n ],
which can be the case for j in some set J t , which contains at most three indexes. Therefore,

1≤i<j≤n E h -2 n δ i (t)δ j (t) = n-1 i=1 j∈Jt E h -2 n δ i (t)δ j (t) ≤ 3h -2 n n-1 i=1 E δ i (t) M 2 σ e 2ϑT ∆ n , which is of order ∆ n h -1 n . We infer sup t∈[hn,T ] E IV 2 ∆ n h -1 n .
Step 5. From the estimates established in Steps 3. and 4. we derive

sup t∈[hn,T ] E (V n (t)) 2 ∆ n h -1 n , sup t∈[hn,T ] E B n (t) 2 h 2α n + ∆ n h -1 n .
The choice

h n = ∆ 1/(2α+1) n
implies that the two error terms h 2α n and ∆ n h -1 n are of the same order, namely ∆ 2α/(2α+1) n , which ends the proof concerning σ.

Step 6. The proof is the same for σ 2 . We split σ 2 n,t -σ 2 t as follows

σ 2 n,t -σ 2 t = e -2 θ2,nT2 e -2 θ2,nT1 -e -2 θ2,nT2 - e -2ϑT2 e -2ϑT1 -e -2ϑT2 n i=1 h -1 n K t -t i-1 h n (∆ n i X 1 ) 2 + e -2 θ2,nT1 e -2 θ2,nT1 -e -2 θ2,nT2 - e -2ϑT1 e -2ϑT1 -e -2ϑT2 n i=1 h -1 n K t -t i-1 h n (∆ n i X 2 ) 2 + n i=1 h -1 n K t-ti-1 hn (e -2ϑ(T1-t) (∆ n i X 2 ) 2 -e -2ϑ(T2-t) (∆ n i X 1 )
2 ) e -2ϑ(T1-t) -e -2ϑ(T2-t) -σ 2 t and proceed analogously. The proof of Theorem 2 is complete.

5.4. Proof of Theorem 3. With no loss of generality, we may (and will) assume that b 1 = b 2 = 0.

Preliminaries on efficient semiparametric estimation. We refer to Sections 25.3-25.4 of [START_REF] Van Der | Asymptotic Statistics[END_REF] for a comprehensive presentation of efficient semiparametric estimation, that we need to adapt to our framework. Assuming (σ , σ) to be deterministic, the data

(∆ n i X 1 , ∆ n i X 2 ), i = 1, . . . , n generate a product experiment E n = ⊗ n i=1 P i,n
, where

P i,n = f i,n ϑ,σ,σ , (ϑ, σ, σ) ∈ [0, ∞) × Σ(c, c ,
where f i,n ϑ,σ,σ is the density on R 2 of the Gaussian vector (∆ n i X 1 , ∆ n i X 2 ), see Section 2.3. For ϑ ∈ (0, ∞), let ε > 0 and ι ∈ R be such that ϑ + ιε > 0. Pick a path t ; (η u t , η u t ) 0≤u≤ε , such that (η 0 t , η 0 t ) = (σ t , σ t ) for every t ∈ [0, T ],

for two regular functions t ; η u t and t ; η u t satisfying moreover

c < inf t∈[0,T ],u∈[0,ε] min(η u t , η u t ) ≤ sup t∈[0,T ],u∈[0,ε] max(η u t , η u t ) < c.
We obtain a parametric submodel of P i,n around t ; (σ 2 t , σ 2 t ) by setting

P i,n 0 = {f i,n ϑ+ιu,η u ,η u , 0 ≤ u ≤ ε},
noting that P i,n 0 passes through the true distribution at u = 0. We consider only submodels that are differentiable in quadratic mean at u = 0, with score function g i,ι,η,η ∈ L 2 (P ϑ,σ,σ ). If we let P i,n 0 range over all admissible submodels as (η, η) varies, we obtain a collection of score functions that define in turn the tangent set Ṗi,n ϑ,σ,σ of the model P i,n at the true distribution. Any score function g i,n ι,η,η ∈ Ṗi,n ϑ,σ,σ admits the representation [START_REF] Heath | Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation[END_REF] g i,n ι,η,η = ι i,n ϑ,σ,σ + g i,n η,η , where i,n ϑ,σ,σ is the score function of the original model defined in [START_REF] Genon | On the estimation of the diffusion coefficient for multi-dimensional diffusion processes[END_REF] when σ and σ are known, and g i,n η,η is the score function obtained from a parametric submodel at ι = 0, to be interpreted as the score relative to the nuisance parameter, while i,n ϑ,σ,σ corresponds to the score relative to the parameter of interest ϑ.

Completion of proof of Theorem 3. From ( 6), and the explicit representation

f i,n ϑ,σ,σ (x, y) = exp - i∆n (i-1)∆n σ 2 t dt (x-y) 2 + i∆n (i-1)∆n e -2ϑ(T 1 -t) σ 2 t dt y-e -ϑ(T 2 -T 1 ) x 2 2 i∆n (i-1)∆n e -2ϑ(T 1 -t) σ 2 t dt i∆n (i-1)∆n σ 2 t dt 1-e -ϑ(T 2 -T 1 ) 2 2π i∆n (i-1
)∆n e -2ϑ(T1-t) σ 2 t dt 1/2 i∆n (i-1)∆n σ 2 t dt 1/2 1 -e -ϑ(T2-T1) , we derive

∂ ϑ log f i,n ϑ,σ,σ (∆ n i X 1 , ∆ n i X 2 ) = i∆n (i-1)∆n (T 1 -t)e -2ϑ(T1-t) σ 2 t dt i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t dt - e -ϑ(T2-T1) (T 2 -T 1 ) 1 -e -ϑ(T2-T1) + (∆ n i X 2 -∆ n i X 1 ) 2 i∆n (i-1)∆n (e -ϑ(T2-T1) (T 2 -t) -(T 1 -t))e -2ϑ(T1-t) σ 2 t dt i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t dt) 2 (1 -e -ϑ(T2-T1) ) 3 + (∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 ) 2 (T 2 -T 1 )e -ϑ(T2-T1) i∆n (i-1)∆n σ 2 t dt(1 -e -ϑ(T2-T1) ) 3 -∆ n i X 1 (∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 )
e -ϑ(T2-T1) (T 2 -T 1 )

i∆n (i-1)∆n σ 2 t dt(1 -e -ϑ(T2-T1) ) 2
.

We pick a path (η u t , η u t ) 0≤u≤ε of the form η u t = (1+uk(t))σ t and η u t = (1+uk(t))σ t so that (η u , η u ) ∈ Σ(c, c). The submodel is differentiable in quadratic mean at u = 0, with score function having representation

g i,n ι,k,k = ι i ϑ,σ,σ + g i,n k,k .
according to [START_REF] Heath | Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation[END_REF] and parametrised by (k, k). Formally,

ι i,n ϑ,σ,σ = d du log f i,n ϑ+ιu,σ,σ u=0 and g i,n k,k = d du log f i,n ϑ,η u ,η u u=0 , so that g i,n k,k = - i∆n (i-1
)∆n e -2ϑ(T1-t) σ 2 t k(t)dt i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t dt

- i∆n (i-1)∆n σ 2 t k(t)dt i∆n (i-1)∆n σ 2 t dt + (∆ n i X 2 -∆ n i X 1 ) 2 i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t k(t)dt i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t dt 2 (1 -e -ϑ(T2-T1) ) 2 + (∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 ) 2 i∆n (i-1)∆n σ 2 t k(t)dt i∆n (i-1)∆n σ 2 t dt 2 (1 -e -ϑ(T2-T1) ) 2 .
Introduce the orthogonal projection Π onto (the closure of) of Span{g i,n k,k , for all admissible (k, k)}. Then i,n ϑ,σ,σ = i,n ϑ,σ,σ -Π i,n ϑ,σ,σ is the efficient score for ϑ and I i,n ϑ,σ,σ = E ϑ,σ,σ ( i,n ϑ,σ,σ ) 2 is the best achievable information bound, see Sections 25.3-25.4 of [START_REF] Van Der | Asymptotic Statistics[END_REF] for details. By orthogonality,

E ϑ,σ,σ ( i,n ϑ,σ,σ -Π i,n ϑ,σ,σ )g i,n k,k = 0, for all admissible (k, k),
and anticipating further the representation Π i,n ϑ,σ,σ = g i,n k ,k for some admissible (k , k ), it suffices to solve

0 = E ϑ,σ,σ l i,n ϑ,σ,σ -g i,n k ,k g i,n k,k
for all admissible (k, k).

Elementary computations yield k (t) = (T2-t)e -ϑ(T 2 -T 1 ) t(T1-t)

1-e -ϑ(T 2 -T 1 )

and k (t) = 0. We conclude

i,n ϑ,σ,σ = i,n ϑ,σ = (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 )e -ϑ(T2-T1) (T 2 -T 1 ) (1 -e -ϑ(T2-T1) ) 3 i∆n (i-1)∆n σ 2 t dt
and is independent of σ. Furthermore, the best achievable information bound becomes

I i,n ϑ,σ,σ = (T 2 -T 1 ) 2 (e ϑ(T2-T1) -1) 2 i∆n (i-1)∆n e -2ϑ(T1-t) σ 2 t dt i∆n (i-1)∆n σ 2 t dt
.

By independence of the increments (∆ n i X 1 , ∆ n i X 2 ), it remains to piece together the results for each P i,n using the product structure of E n . We find the asymptotically equivalent bound

n i=1 I i,n ϑ,σ,σ ∼ n (T 2 -T 1 ) 2 T (e ϑ(T2-T1) -1) 2 T 0 e -2ϑ(T1-t) σ 2 t σ 2 t dt
as n → ∞. Taking the inverse and dividing by ∆ n we obtain the desired bound. The proof of Theorem 3 is complete.

5.5. Proof of Theorem 4. The first assertion was obtained in Section 5.4 in the course of the proof of Theorem 3. With no loss of generality, we may (and will) assume that b i = 0 and that sup t max(σ t , σ t ) ≤ M . We further abbreviate i∆ n by t i .

Step 1. Let ϑ n be a deterministic sequence such that √ n(ϑ n -ϑ) is bounded. We first prove

(10) ∆ 1/2 n i∈In i,n
ϑn,σ -i,n ϑn, σn → 0 in probability, as n → ∞. We have

∆ 1/2 n i∈In i,n ϑn,σ -i,n ϑn, σn = ∆ 1/2 n i∈In (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) 1 ti ti-1 σ 2 t dt - 1 ∆ n σ 2 n,ti-1 = I + II, with I = ∆ -1/2 n i∈In (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) ∆nσ 2 t i-1 - t i t i-1 σ 2 t dt σ 2 t i-1 t i t i-1 σ 2 t dt , II = ∆ -1/2 n i∈In (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) σ 2 n,t i-1 -σ 2 t i-1 σ 2 t i-1 σ 2 n,t i-1
.

For the term I, by Cauchy-Schwarz inequality and the fact that P((σ, σ) ∈ Σ(c, c)) = 1, we have

E ∆ -1/2 n (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) ∆nσ 2 t i-1 - t i t i-1 σ 2 t dt σ 2 t i-1 t i t i-1 σ 2 t dt ≤ ∆ -3/2 n c-4 E (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) 2 1/2 E ∆ n σ 2 ti-1 - ti ti-1 σ 2 t dt 2 1/2 .
Combining Cauchy-Schwarz and Burckholder-Davis-Gundy inequalities and the smoothness Assumption 2 we successively obtain

E (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) 2 ∆ 2 n , E ∆ n σ 2 ti-1 - ti ti-1 σ 2 t dt 2 ∆ 2(1+α) n . We infer E[|I|] i∈In ∆ -3/2 n ∆ n ∆ 1+α n ∆ α-1/2 n
→ 0 since α > 1/2 by assumption. For the term II, since the kernel K used for the nonparametric estimation has support included in [0, ∞), we have that σ

2 n,ti-1 is F i-1 -measurable. Conditioning on F i-1 , we set χ n i = E ∆ -1/2 n (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) σ 2 n,t i-1 -σ 2 t i-1 σ 2 t i-1 σ 2 n,t i-1 F i-1 = ∆ -1/2
n (e -ϑ(T2-T1) -e -ϑn(T2-T1) )(e -ϑ(T2-T1) -1)ξ n i , say, with

ξ n i = E ti ti-1 e -2ϑ(T1-t) σ 2 t dt F i-1 σ 2 n,t i-1 -σ 2 t i-1 σ 2 t i-1 σ 2 n,t i-1 . It follows that n i=1 E |ξ n i | F i-1 ≤ ∆ n M 2 c-4 n i=1 sup i∈In σ 2 n,ti-1 -σ 2 ti-1 → 0 in probability by Theorem 2. Since ∆ -1/2 n
e -ϑ(T2-T1) -e -ϑn(T2-T1) is bounded, we use Lemma 3.4 in [14] applied to variables ξ n i to conclude

t/∆n i=1 E[χ n i | F i-1 ] → 0 in probability, locally uniformly in t. Moreover, E χ n i 2 F i-1 ∆ -1 n E (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑn(T2-T1) ∆ n i X 1 ) 2 F i-1 sup i∈In | σ 2 n,ti-1 -σ 2 ti-1 | which is of order ∆ -1 n ∆ 2 n ∆ α/(2α+1) n so that i∈In E χ n i 2 F i-1 ∆ α/(2α+1) n
→ 0 in probability. Applying Lemma 3.4 in [START_REF] Jacod | Statistics and high-frequency data[END_REF] to the sequence χ n i enables us to conclude that II converges to 0 in probability and (10) follows.

Step 2. Since ϑ ; i,n ϑ,σ is smooth (at least twice differentiable) and ϑ n -ϑ is of order n -1/2 a second-order Taylor expansion of i,n ϑn,σ at ϑ implies that

(11) √ n i,n ϑn,σ -i,n ϑ,σ - √ n(ϑ n -ϑ)∂ ϑ i,n ϑ,σ → 0 in probability. Since |I n | ∼ n(1 -h n ) ∼ n, it is not difficult to check that (12) ∆ n i∈In ∂ ϑ i,n ϑ,σ ∼ -I ϑ,σ,σ = - (T 2 -T 1 ) 2 (e ϑT2 -e ϑT1 ) 2 T 0 e 2ϑt σ 2 t σ 2 t dt
in probability under P ϑ,σ,σ , that is the total Fisher information associated to the efficient scores i,n ϑ,σ . Summing each term in [START_REF] Hoffmann | Minimax estimation of the diffusion coefficient through irregular samplings[END_REF] for i ∈ I n , using [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF] and the fact that ∆ -1 n and n are of the same order, we further infer

(13) ∆ 1/2 n i∈In i,n ϑn, σn -i,n ϑ,σ + ∆ -1 n (ϑ n -ϑ) I ϑ,σ,σ → 0
in probability, using [START_REF] Hinz | Pricing electricity risk by interest rate methods[END_REF] in order to substitute σ by σ n in the first term. Moreover, (13) remains true if we replace ϑ n by the discretised version θ2,n of θn , using moreover that √ n( θn -ϑ) is bounded in probability thanks to Theorem 1. We refer to the proof of Theorem 5.48 in [START_REF] Van Der | Asymptotic Statistics[END_REF] for the details.

Step 3. We establish [START_REF] Jacod | Statistics and high-frequency data[END_REF] ∆ n i∈In i,n θ2,n, σn

2 → I ϑ,σ,σ
in probability under P ϑ,σ,σ . The computations are similar to Step 1, combining Theorems 1 and 2. We briefly give the mains steps. Observe that

∆ n i∈In i,n ϑn, σn 2 -∆ n i∈In i,n ϑ,σ 2 = (T 2 -T 1 ) i∈In (I i + II i + III i ),
with

I i = ∆ n (∆ n i X 2 -∆ n i X 1 ) 2 ∆n σ 2 n,t i-1 2 (∆ n i X 2 -e -ϑn (T 2 -T 1 ) ∆ n i X 1 ) 2 e -2ϑn (T 2 -T 1 ) (1-e -ϑn(T 2 -T 1 ) ) 6 - (∆ n i X 2 -e -ϑ(T 2 -T 1 ) ∆ n i X 1 ) 2 e -2ϑ(T 2 -T 1 ) (1-e -ϑ(T 2 -T 1 ) ) 6 , II i = ∆ n (∆ n i X 2 -∆ n i X 1 ) 2 (∆ n i X 2 -e -ϑ(T 2 -T 1 ) ∆ n i X 1 ) 2 e -2ϑ(T 2 -T 1 ) (1-e -ϑ(T 2 -T 1 ) ) 6 1 ∆n σ 2 n,t i-1 2 - 1 ∆nσ 2 t i-1 2 , III i = ∆ n (∆ n i X 2 -∆ n i X 1 ) 2 (∆ n i X 2 -e -ϑ(T 2 -T 1 ) ∆ n i X 1 ) 2 e -2ϑ(T 2 -T 1 ) (1-e -ϑ(T 2 -T 1 ) ) 6 1 ∆nσ 2 t i-1 2 - 1 ti ti-1 σ 2 t dt 2 .
For the term I i we use a Taylor expansion of ϑ n near ϑ in order to obtain E[|T Step 4. By definition of ϑ 2,n , we have

∆ -1/2 n ϑ 2,n -ϑ I ϑ,σ,σ =∆ -1/2 n ( θ2,n -ϑ) I ϑ,σ,σ + ∆ -1/2 n ∆ n I ϑ,σ,σ i∈In i,n ϑ2,n, σn ∆ n i∈In i,n ϑ2,n, σn 2 ∼ ∆ 1/2 n i∈In i,n ϑ,σ
in probability under P ϑ,σ,σ thanks to ( 13) and ( 14) established in the two previous steps. We further write in probability. We conclude the proof using the following limit theorem, proof of which is delayed until Appendix 6.2. stably in law, where, conditional on F, the random variable N (0, I ϑ,σ,σ ) is centred Gaussian with conditional variance I ϑ,σ,σ .

∆ 1/2 n i∈In i,n ϑ,σ = ∆ 1/2 n n i=1 i,n ϑ,σ -∆ 1/2 n hn∆ -1 n i=1 i,
In view of Lemma 2 we obtain Theorem 4.

Step 5. It remains to prove [START_REF] Jacod | Discretization of processes[END_REF]. Write ∆ 1/2 n i ϑ,σ,σ = (T2-T1)e -ϑ(T 2 -T 1 )

(1-e -ϑ(T 2 -T 1 ) ) 3 (I i + II i ), with

I i = ∆ 1/2 n (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑ(T 2 -T 1 ) ∆ n i X 1 ) ∆nσ 2 t i-1 , II i = ∆ 1/2 n (∆ n i X 2 -∆ n i X 1 )(∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 ) t i t i-1 (σ 2 t i-1 -σ 2 t )dt ∆nσ 2 t i-1 t i t i-1 σ 2 t dt
.

We readily have in probability. Let ϕ(x) = 1 [0,1) be the Haar function, and ϕ j,k (x) = 2 j/2 ϕ(2 j x -k) = 2 j/2 1 [k2 -j ,(k+1)2 -j ) for any j ≥ 0, k ∈ Z. We prove the result under the restriction that n = 2 j and that the t i are of the form k2 -j . The general case of a regular mesh t i = i∆ n is slightly more intricate but follows the same ideas. We have

E I 2 i ] ≤ c-2 ∆ -1 n E (∆ n i X 2 -∆ n i X 1 ) 2 (∆ n i X 2 -e -ϑ(T2-T1) ∆ n i X 1 ) 2 ∆ n , so that E[( hn∆ -1 n i=1 I i ) 2 ] = hn∆ -1 n i=1 E[I 2 i ] h n ∆ -1 n ∆ n = h n → 0.
n i=1 ∆ -1 n ti ti-1 (Y t -Y ti-1 )dt 2 = 1 T 2 2 j k=1 2 j t k t k-1 (Y t -Y t k-1 )dt 2 = 2 j -1 k=0 (P j (Y •T )(k2 -j ) -Y k2 -j T 2 
where P j (f ) = 2 j -1 k=0 ( ϕ j,k f )ϕ j,k is the orthogonal projection on Span{ϕ j,k , k = 1, . . . , 2 j }. For large enough j, there exists some constant C > 0 such that E and this term converges to 0 since s > 1/2 by assumption. The proof of Lemma 1 is complete.

6.2. Proof of Lemma 2. First we establish the result for

T 2 -T 1 e ϑ(T2-T1) -1 ∆ 1/2 n n i=1 χ n i , with χ n i = σ ti-1 ∆ n i B
ti ti-1 e -ϑ(T1-t) dB t ∆ n σ (i-1)∆n , by applying Lemma 3.7 in [START_REF] Jacod | Statistics and high-frequency data[END_REF]. To do so, we check conditions (3.43)-(3.46) in [START_REF] Jacod | Statistics and high-frequency data[END_REF] for χ n i . We keep up with the notation of [START_REF] Jacod | Statistics and high-frequency data[END_REF]. ] → 0 in probability. This is condition (3.45) in [START_REF] Jacod | Statistics and high-frequency data[END_REF]. Finally, E χ n i ∆ n i B F i-1 = E χ n i ∆ n i B F i-1 = 0 by independence which ensures condition (3.46) in [START_REF] Jacod | Statistics and high-frequency data[END_REF]. We subsequently apply Lemma 3.7 in [START_REF] Jacod | Statistics and high-frequency data[END_REF] to conclude that 

e

  -ϑ(Tj -s) σ s dB s + t 0 σ s dB s , 1

, 3 .

 3 in probability. The function ϑ ; ψ T1,T2 (ϑ) maps (0, ∞) onto (-1, 0) and this leads to a first ∆ The case d = 3. Since X is driven by two Brownian motions, the underlying statistical model becomes degenerate. Indeed, assume first that b 1 = b 2 = b 3 . Then, we readily obtain

  and we still write θ2,n for simplicity. Likewise, we implicitly replace the estimators σ 2 n,t defined in (3) by max( σ 2 n,t , c2 ), where c is the lower bound associated to Σ(c, c) in the definition of the experiment E

•

  2 processes (1 month-ahead and 2 month-ahead) observed on n = 100 dates, with T = T 1 = 150 and T 2 = 181 days. • 3 processes (1 month-ahead to 3 month-ahead) observed on n = 80 dates, with T = T 1 = 120, T 2 = 150 and T 3 = 181 days. • 4 processes (1 month-ahead to 4 month-ahead) observed on n = 60 dates, with T = T 1 = 90, T 2 = 120, T 3 = 151 and T 4 = 181 days. • 5 processes (1 month-ahead to 5 month-ahead) observed on n = 40 dates, with T = T 1 = 59, T 2 = 90, T 3 = 120, T 4 = 151 and T 5 = 181 days. • 6 processes (1 month-ahead to 6 month-ahead) observed on n = 20 dates, with T = T 1 = 31, T 2 = 59, T 3 = 90, T 4 = 120, T 5 = 151 and T 6 = 181 days.
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 123443 Figure 1. Quantiles for the square of the equivalent volatility, with 2 processes, ϑ = 10 y -1 and deterministic constant volatilities
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 5 Figure 5. Quantiles for the square of the long-term volatility, with 2 processes, ϑ = 10 y -1 and the CIR-like specification for volatility processes
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 21 Work under Assumptions 1 and 2 with α > 1/2. Then ∆ → N (0, I ϑ,σ,σ )

since α ≥ 1 / 2 ,. Appendix 6 . 1 . 2 ,IIE 1 ( 1 (

 1261211 The term II i is similar to the term I in Step 1. We readily obtain obtain E[|II i |] ∆ and[START_REF] Jacod | Discretization of processes[END_REF] follows. The proof of Theorem 4 is complete.6Proof of Lemma 1.The first part of the result.Since sup t∈[0,T ] t -s ω(Y ) t < ∞ for some s > 1/2, we have that Y is continuous in probability on [0, T ]. Write (Y t -Y (i-1)∆n )dt (Y t -Y (i-1)∆n )dt.First, fix > 0. There exists some η > 0 such that E[|Y t -Y s |] < as soon as |t -s| < η. Moreover, by localisation we may (and will) assume that there is someM > 0 such that sup t |Y t | ≤ M . It follows that (i-1)∆n -Y t |]dt ≤ 2T M εas soon as ∆ ≤ η which is true for large enough n. Thus I → 0 in probability. The proof is similar for II and III.The second part of the result. WriteY t Z t dB t = I + II, i-1)∆n -Y t )Z t dB t ) -∆ n Y (i-1)∆n i∆n (i-1)∆n Z t dB t . Fix > 0 and η > 0 such that E[|Y t -Y s |] <as soon as |t -s| < η. By localisation, we may assume that Z is such that sup t max(|Z t |, |Y t |) ≤ M . By the martingale property, i-1)∆n -Y t )Z t dB t 2 = (Y (i-1)∆n -Y t ) 2 Z 2 t dt ≤ 2T M 3 as soon as ∆ n ≤ η which is true for large enough n. For II, by Cauchy-Schwarz inequality, Y t -Y ti-1 )dt Y t -Y ti-1 )dt 2 1/2

2 j - 1 k=0P 2 j -Y k 2 j T 2 ≤ C2 j E 1 0( 1 ( 1 0(2 j 1 du 2 j 1 0ω 2

 122111112 j (Y •T ) k P j (Y •T )(u) -Y uT ) 2 du . Y t -Y ti-1 )dt 2 ≤ C2 j E P j (Y •T )(u) -Y uT ) |u-y|∈[0,2 -j ) (Y yT -Y uT )dy 2 -j xT (Y )dx 2 2 j(1-2s) 

2 ( 2 4 2 by

 2242 First, we have E[χ n i |F i-1 ] = 0, which ensures (3.43) with A t = 0. Next,E[(χ n i ) 2 |F i-1 ] = ∆ n σ |F i-1 ]E[( i∆n (i-1)∆n e -ϑ(T1-t) dB t ) 2 |F i-1 ] This is Condition (3.44) in [14] with C t = |F i-1 )E[( i∆n (i-1)∆n e -ϑ(T1-t) dB t ) 4 |F i-1] independence of the two Wiener integrals. Therefore n i=1 E[(χ n i ) 4 |F i-1
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Table 1 .

 1 Data available on a daily basis.

	Product	Example: May 23 rd , 2015 Name of the product Begin of delivery End of delivery
	1 Month Ahead	June 2015	2015-06-01	2015-06-30
	2 Month Ahead	July 2015	2015-07-01	2015-07-31
	3 Month Ahead	August 2015	2015-08-01	2015-08-31
	4 Month Ahead	September 2015	2015-09-01	2015-09-30
	5 Month Ahead	October 2015	2015-10-01	2015-10-31
	6 Month Ahead	November 2015	2015-11-01	2015-11-30
	1 Quarter Ahead	3 rd quarter 2015	2015-07-01	2015-09-30
	2 Quarter Ahead	4 th quarter 2015	2015-10-01	2015-12-31
	3 Quarter Ahead	1 st quarter 2016	2016-01-01	2016-03-31
	1 Year Ahead	Year 2016	2016-01-01	2016-12-31

d t and σ t = 0.15Σ d t ,

Table 2 .

 2 Results of the estimation on simulated data with ϑ = 1.4 y -1 .

	Processes Estimator Instances that converged Average Quantile interval
	2	θ2,n	100,000	1.4216	[1.2697,1.6048]
	2	θ2,n	100,000	1.4217	[1.2697,1.6048]
	3	θ3,n	99,962	1.3799	[0.77864,1.9250]
	4	θ4,n	100,000	1.3840	[1.0752,1.7646]
	5	θ5,n	100,000	1.3807	[1.1274,1.6864]
	6	θ6,n	100,000	1.3849	[1.0989,1.7644]
	Processes Estimator Instances that converged Average Quantile interval
	2	θ2,n	85,677	21.145	[10.677,47.124]
	2	θ2,n	85,677	21.130	[10.673,47.047]
	3	θ3,n	100,000	19.672	[18.198,20.247]
	4	θ4,n	100,000	19.567	[18.233,20.204]
	5	θ5,n	100,000	19.518	[18.247,20.202]
	6	θ6,n	100,000	19.699	[18.739,20.362]

Table 3 .

 3 Results of the estimation on simulated data with ϑ = 20 y -1 .

	Processes Estimator Instances that converged Average Quantile interval
	2	θ2,n	55,248	24.747	[10.215,56.650]
	2	θ2,n	55,248	24.716	[10.210,56.663]
	3	θ3,n	100,000	33.904	[22.598,40.060]
	4	θ4,n	100,000	32.162	[22.204,39.689]
	5	θ5,n	100,000	31.075	[22.046,38.832]
	6	θ6,n	100,000	33.901	[26.134,39.320]
	Table				

  For the term II i we use the convergence of σ n,ti-1 and the conditioning argument in a similar way as in Step 1 to obtain i∈In II i → 0 in probability. For the term III i , an analysis of the convergence of σ n,ti-1 using Assumption 2 shows that E[ i∈In |III i |] ∆ α n . This proves

						1 i,n |] |ϑ n -ϑ|∆ -1 n ∆ 2 n and
	in turn E	i∈In I i	|ϑ n -ϑ|. ∆ n	i,n ϑn, σn ) 2 -∆ n	i,n ϑ,σ	2 → 0
			i∈In	i∈In		
	in probability and the result remains true with θ2,n in place of ϑ n . Since ∆ n i∈In	i,n ϑ,σ

2 ∼ I ϑ,σ,σ in probability under P ϑ,σ,σ we obtain

[START_REF] Jacod | Statistics and high-frequency data[END_REF]

.

We must notice that some occurrences may not lead to a solution in the estimation procedure because Ψ n T 1 ,T

and Ψn T 1 ,T 2 ,T

, defined in Section 2.1, can sometimes take values outside the supports of ψ -1 T 1 ,T 2 and ψ -1 T 1 ,T 2 ,T 3 .

converges stably in law to a random variable, which, conditional on F, is Gaussian with variance I ϑ,σ,σ . In order to complete the proof, we write

χ n i and it remains to show the convergence of ∆

e ϑ(T 2 -T 1 ) -1 n i=1 χ n i → 0 in probability. This is done using similar arguments as used in the proof of Theorem 2. We omit the details. e -αx -1 and g(x) = e -γx -e -βx e -βx -e -αx are decreasing on (0, ∞).

Proof. Both f and g are smooth. For x > 0, we have f (x) = -βe -βx (e -αx -1)+αe -αx (e -βx -1)

Assume on the contrary that f is increasing on a given subinterval of (0, ∞). Since lim x→0+ f (x) = β α (-β + α) < 0, there exists 0 < x 1 < x 2 such that f (x 1 ) ≤ f (x 2 ), and f (x 1 ) = f (x 2 ) = 0. Thus, writing the previous equation for x = x 1 and x = x 2 and substracting the first equation to the second one leads to

The LHS is negative and RHS is positive, a contradiction. It follows that g(x) = e -γx -e -αx e -βx -e -αx -1 = e -(γ-α)x -1 e -(β-α)x -1 -1. Using the first part of the lemma we obtain that g is decreasing too.