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EFFICIENT VOLATILITY ESTIMATION IN A TWO-FACTOR MODEL

OLIVIER FÉRON, PIERRE GRUET, AND MARC HOFFMANN

Abstract. We statistically analyse a multivariate HJM diffusion model with stochastic volatility. The
volatility process of the first factor is left totally unspecified while the volatility of the second factor is
the product of an unknown process and an exponential function of time to maturity. This exponential
term includes some real parameter measuring the rate of increase of the second factor as time goes to
maturity. From historical data, we efficiently estimate the time to maturity parameter in the sense of
constructing an estimator that achieves an optimal information bound in a semiparametric setting. We
also identify nonparametrically the paths of the volatility processes and achieve minimax bounds. We
address the problem of degeneracy that occurs when the dimension of the process is greater than two, and
give in particular optimal limit theorems under suitable regularity assumptions on the drift process. We
consistently analyse the numerical behaviour of our estimators on simulated and real datasets of prices of
forward contracts on electricity markets.

Mathematics Subject Classification (2010): 62M86, 60J75, 60G35, 60F05.
Keywords: HJM models, time-to-maturity factor, Financial statistics, Discrete observations, semipara-

metric efficient bounds, nonparametric estimation, Electricity market modelling.

1. Introduction

1.1. Motivation and setting. We address statistical estimation for multidimensional diffusion processes
from historical data, with a volatility structure including both a parametric and a nonparametric components.
We aim at achieving efficient estimation of a scalar parameter in the volatility, in presence of nonparametric
nuisance, while providing point estimates of nonparametric components simultaneously. The processes of
interest follow the multiple Brownian factor representation, as in the Heath-Jarrow-Morton (HJM) frame-
work for forward rates, for instance in Heath et al. [9], or for electricity forward contracts in Benth and
Koekebakker [1].

Our setting is motivated by the context of prices of specific forward contracts, which are available on the
electricity market. Interest rate models have been applied to the pricing of such contracts: see for instance
Hinz et al. [10], in which an analogy between interest rate models and forward contracts prices models
is performed, the maturity in the former framework being a date of delivery in the latter. The factorial
representation of the HJM framework has been precisely studied in Benth and Koekebakker [1] to model the
electricity forward curve, giving constraints in the volatility terms to ensure no arbitrage. Koekebakker and
Ollmar [19] perform a Principal Component Analysis to point out that two factors can explain 75% of the
electricity forward contracts in the Norwegian market, and more than 10 factors are needed to explain 95%.
They argue that, due to the non-storability of electricity, there is a weak correlation between short-term
and long-term events. In Keppo et al. [17], a one-factor model is designed for each maturity date, having
correlations between the Brownian motions for distinct dates. In Kiesel et al. [18], a two-factor model is
described, with a specification of the volatility terms allowing to reproduce the classical behaviour of prices,
especially the empirical evidence of the Samuelson effect (the volatility of prices increases as time to maturity
decreases) and to ensure non-zero volatility for long-term forward prices.

On some filtered probability space (Ω,F , (Ft)t≥0,P), we consider a d-dimensional Itô semimartingale
X = (Xt)t≥0 with components Xj , for j = 1, . . . , d, of the form

(1) Xj
t = Xj

0 +

∫ t

0

bjsds+

∫ t

0

e−ϑ(Tj−s)σsdBs +

∫ t

0

σsdBs,

1



where Xj
0 ∈ R is an initial condition, B = (Bt)t≥0 and B = (Bt)t≥0 are two independent Brownian motions,

ϑ and Tj are positive numbers and σ = (σt)t≥0, σ = (σt)t≥0, bj = (bjt )t≥0 are càdlàg adapted processes. To
avoid trivial situations, we assume that for some T > 0, we have

T ≤ T1 < . . . < Td

and that the Tj are known. Moreover, we observe X at times

0,∆n, 2∆n, . . . , n∆n = T.

Asymptotics are taken as n → ∞. In this setting, it is impossible to identify the components bi, so we are
left with trying to estimate the parameter ϑ and the random components t; σt (or rather σ2

t ) and t; σt
(or σ2

t ) over the time interval [0, T ] with the best possible rate of convergence. This is not always possible
and will require regularity assumptions.

The statistical estimation of the volatility of a diffusion process observed over some period [0, T ] has long
been studied for asymptotic regimes in which observation times asymptotically recover the whole observation
period. This carries over to the setting, considered here, where the unknown volatility – as a parameter –
is random w.r.t. the filtration generated by the observation itself, see for instance [6, 7, 11, 12, 13] and the
references therein for a comprehensive study in both parametric and nonparametric settings. Concerning
estimating a functional of the trajectory of the diffusion process the chapters of Mykland and Zhang [20]
and Jacod [14] present the most advanced problems related to the estimation of diffusion processes, together
with important estimation results, stated in a general way. As integrated volatility can be estimated with
the usual n1/2-rate of convergence, the quality of its estimators may be assessed by looking at the limit
law that one can get when writing a central limit theorem, and by looking at a minimal variance in some
sense (usually, the limiting distribution is a mixture of a centred Gaussian variable, with random variance).
Clément et al. [4] estimated some functionals of the volatility; in the diffusion model that they introduced,
they prove an extension of Hájek convolution theorem, and are able to define some notion of efficiency, which
is somehow related to our setting. The present paper is in line with these results from a methodological
point of view.

1.2. Main results and organization of the paper. In Section 2.1, we provide an estimator of ϑ, based
on quadratic variation, in the above observation scheme. We will explain that while we cannot perform
estimation when the number of observed processes d is equal to 1, the case d = 2 is statistically regular, and
by approaching the quadratic variation of X1, X2 and X2 − X1, we derive an estimator ϑ̂2,n of ϑ, which
is ∆

−1/2
n -consistent. Using the theory of statistics for diffusion processes and relying on the tools of stable

convergence in law, which are for instance summarized in [14, 20], we show that

∆−1/2
n (ϑ̂2,n − ϑ)→ N (0, Vϑ(σ, σ)),

stably in law, where, conditional on F , the random variable N (0, Vϑ(σ, σ)) is centred Gaussian, with condi-
tional variance Vϑ(σ, σ), and possibly defined on an extension of the original probability space. When d ≥ 3,
the model is somehow degenerate, as it had been reported by Jeffrey et al. [16] in a similar context, because
the d marginal components of the process are driven by less than d Brownian motions. The remaining source
of randomness is the drift process, and while we shall find a ∆−1

n -consistent estimator ϑ̂d,n for ϑ, we will
need that b has some integrated regularity in expectation, reminiscent of the so-called Besov regularity, as
will be made precise by Assumption 1, in order to establish a satisfying limit theorem for ∆−1

n (ϑ̂3,n − ϑ),
namely that it converges in probability to some F-measurable random variable. All our results in dimension
d = 2, 3 will be stated in Theorem 1. In Section 2.2, we perform a relatively classical nonparametric esti-
mation procedure to get point estimates of σ2

t and σ2
t when d = 2. Note however that this is not an usual

nonparametric problem, since
(1) σ and σ are random themselves, so that we do not estimate them pointwise, instead we estimate the

trajectories
(
σ2
t (ω)

)
t
and

(
σ2
t (ω)

)
t
pointwise, as realisations of the volatility processes;

(2) an increment ∆n
i X is the sum of two stochastic integrals, in which the volatility processes have

different regularities.
2



We have to separate, in some way, the parts of the random increments that are linked to each of the Brownian
integrals, to be able to get estimates of each process. We shall then derive estimators σ̂2

n and σ̂
2

n of σ2 and
σ2 and in Theorem 2, adding Assumption 2 stating that the volatility processes are Hölder in expectation,
it will be shown that each of those point estimators is ∆

−α/(2α+1)
n -consistent, where α is the lowest of two

values of the Hölder regularities of σ2 and σ2. In Section 2.3, referring to the theory of semiparametric
estimation, reported for instance in [21], we compute a lower bound V opt

ϑ (σ, σ) for the limit variance while
estimating ϑ with d = 2 observed processes, for deterministic volatility functions, in Theorem 3. As soon as
σ is not constant, this bound is lower than Vϑ(σ, σ). Then, we derive an estimator ϑ̃2,n such that

∆−1/2
n (ϑ̃2,n − ϑ)→ N (0, V opt

ϑ (σ, σ))

stably in law, where conditional on F , the random variable N (0, V opt
ϑ (σ, σ)) is centred Gaussian with con-

ditional variance V opt
ϑ (σ, σ). This estimator is efficient in the sense that it achieves the minimal conditional

variance V opt
ϑ (σ, σ) among all possible

√
n-consistent estimators that are asymptotically centred mixed nor-

mal. In Section 3, we discuss the case d > 3 and also present a possible extension of our setting, that puts
additive model error terms in the observables in order to break the degeneration of the model. We perform
some numerical experiments in Section 4, using both simulated and real data from the electricity forward
markets in order to compare the behaviours of the estimators in various configurations. The proofs are
delayed until Section 5.

2. Construction of the estimators and convergence results

2.1. Rate-optimal estimation of ϑ.

2.1.1. The case d = 1. In that setting, it is impossible to identify ϑ from data Xi∆n
, i = 1, . . . , n asymptot-

ically when t ; σt and t ; σt are unknown. Indeed X has the same law under the choice of (ϑ, σ, σ) and
(ϑ+ 1, eT1−·σ, σ).

2.1.2. The case d = 2. This is the statistically most regular case. Set, as usual ∆n
i X = Xi∆n − X(i−1)∆n

(componentwise). From the convergences
n∑
i=1

(∆n
i X

j)2 →
∫ T

0

(
e−2ϑ(Tj−t)σ2

t + σ2
t

)
dt, j = 1, 2

and
n∑
i=1

(∆n
i X

2 −∆n
i X

1)2 →
∫ T

0

(e−ϑT2 − e−ϑT1)2e2ϑtσ2
t dt

in probability, we also obtain the convergence of the ratio

Ψn
T1,T2

=

∑n
i=1(∆n

i X
2 −∆n

i X
1)2∑n

i=1

(
(∆n

i X
2)2 − (∆n

i X
1)2
) → (

e−ϑT2 − e−ϑT1
)2

e−2ϑT2 − e−2ϑT1
= ψT1,T2

(ϑ),

in probability. The function ϑ; ψT1,T2(ϑ) maps (0,∞) onto (−1, 0) and this leads to a first ∆
−1/2
n -consistent

estimation strategy by setting
ϑ̂2,n = ψ−1

T1,T2

(
Ψn
T1,T2

)
whenever Ψn

T1,T2
∈ (−1, 0) and 0 otherwise.

2.1.3. The case d = 3. Since X is driven by two Brownian motions, the underlying statistical model becomes
degenerate. Indeed, assume first that b1 = b2 = b3. Then, we readily obtain

∆n
i X

2 −∆n
i X

1

∆n
i X

3 −∆n
i X

2
=
e−ϑT2 − e−ϑT1

e−ϑT3 − e−ϑT2

which is invertible as a function of ϑ. It is thus possible to identify ϑ exactly from the observation of a
single increment of X! When the bj are not all equal, the situation is still somehow degenerate, as we can
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eliminate all volatility components by taking linear combinations of the observed increments. The lowest-
order remaining term is the drift process, so that we could expect to find ∆−1

n -consistent estimators instead
of ∆

−1/2
n -consistent ones. We then have

Ψn
T1,T2,T3

=

∑n
i=1(∆n

i X
3 −∆n

i X
2)2∑n

i=1(∆n
i X

2 −∆n
i X

1)2
→
(e−ϑT3 − e−ϑT2

e−ϑT2 − e−ϑT1

)2

= ψT1,T2,T3
(ϑ),

say. The function ϑ ; ψT1,T2,T3
(ϑ) maps (0,∞) onto

(
0,
(
T3−T2

T2−T1

)2) and is also invertible (see Lemma 3),
leading to the estimator

ϑ̂3,n = ψ−1
T1,T2,T3

(
Ψn
T1,T2,T3

)
whenever Ψn

T1,T2,T3
∈
(
0,
(
T3−T2

T2−T1

)2) and 0 otherwise.

2.1.4. Convergence results. We need some assumption about the regularity of the processes b, σ and σ. For
a random process X = (Xt)0≤t≤T , introduce the following modulus of continuity:

ω(X)t = sup
|h|≤t

(∫ T

0

E
[
(Xs+h −Xs)

2
]
ds
)1/2

.

Assumption 1. The processes σ and σ are almost surely positive. Moreover, for some s > 1/2, we have
supt∈[0,T ] t

−sω(bj)t <∞ for every j = 1, . . . , d.

To state the convergence results, we need some notation. Set

bt = 2(e−ϑT2 − e−ϑT1)(e−ϑT3 − e−ϑT2)
(
(e−ϑT2 − e−ϑT1)(b3t − b2t )− (e−ϑT3 − e−ϑT2)(b2t − b1t )

)
and

b̃T = (e−ϑT2 − e−ϑT1)2

∫ T

0

(b3t − b2t )2dt− (e−ϑT3 − e−ϑT2)2

∫ T

0

(b2t − b1t )2dt.

Define also

D3 = (e−ϑT3 − e−ϑT2)
(
(e−ϑT3 − e−ϑT2)(T2e

−ϑT2 − T1e
−ϑT1)− (e−ϑT2 − e−ϑT1)(T3e

−ϑT3 − T2e
−ϑT2)

)
.

Theorem 1. Work under Assumption 1.
(1) For d = 2, we have

∆−1/2
n (ϑ̂2,n − ϑ)→ N

(
0, Vϑ(σ, σ)

)
in distribution as n → ∞, where N

(
0, Vϑ(σ, σ)

)
is a random variable which, conditionally on F , is

centred Gaussian with variance

Vϑ(σ, σ
)

=
1

(T2 − T1)2
(eϑT2 − eϑT1)2

∫ T
0
e2ϑtσ2

t σ
2
tdt( ∫ T

0
e2ϑtσ2

t dt
)2 .

(2) For d = 3 we have

∆−1
n (ϑ̂3,n − ϑ)→

b̃T +
∫ T

0
b̄te

ϑtσtdBt

2(e−ϑT2 − e−ϑT1)D3

∫ T
0
e2ϑtσ2

t dt

in probability as n→∞.

2.2. Rate-optimal estimation of the volatility processes.

2.2.1. Construction of an estimator. We start with the observation that for any sufficiently regular test
function g : [0, T ]→ R, we have, for any j = 1, . . . , d,

(2)
n∑
i=1

g((i− 1)∆n)
(
∆n
i X

j
)2 → ∫ T

0

g(s)d〈Xj〉s =

∫ T

0

g(s)
(
e−2ϑ(Tj−s)σ2

s + σ2
s

)
ds

in probability as n→∞. Therefore, picking a function g that mimics a Dirac mass at t, we can asymptotically
identify

e−2ϑ(T1−t)σ2
t + σ2

t and e−2ϑ(T2−t)σ2
t + σ2

t

4



by applying (2) for j = 1, 2 for a sequence gn that converges to δt weakly. We thus identify σ2
t and σ2

t as
well by inverting a 2× 2 linear system, namely(

σ2
t

σ2
t

)
=M(ϑ)t

(
e−2ϑ(T1−t)σ2

t + σ2
t

e−2ϑ(T2−t)σ2
t + σ2

t

)
where

M(ϑ)t =
1

e−2ϑ(T1−t) − e−2ϑ(T2−t)

(
1 −1

−e−2ϑ(T2−t) e−2ϑ(T1−t)

)
.

For a threshold $n > 0 and a bandwidth hn > 0, define the estimators

(3)

(
σ̂2
n,t

σ̂
2

n,t

)
= h−1

n M(max(ϑ̂2,n, $n))t
∑

t−hn≤(i−1)/n<t

(
(∆n

i X
1)2

(∆n
i X

2)2

)
.

The bandwidth hn is set below to balance both bias and variance, while $n > 0 garantees the well-posedness
of the estimator.

2.2.2. Convergence result. We need an additional regularity assumption on the volatility processes σ and σ.

Assumption 2. There exists a constant c > 0 and α ≥ 1/2 such that for every t, s ∈ [0, T ], we have

(4) E
[
(σ2
t − σ2

s)2
]

+ E
[
(σ2
t − σ2

s)
2
]
≤ c|t− s|2α.

Theorem 2. Work under Assumptions 1 and 2. Specify hn = ∆
1/(2α+1)
n and let $n → 0. Then the sequences

∆−α/(2α+1)
n

(
σ̂2
n,t − σ2

t ) and ∆−α/(2α+1)
n (σ̂

2

n,t − σ2
t )

are tight, uniformly in t over compact sets included in (0, T ].

2.3. Efficient estimation of ϑ when d = 2. We look for the best attainable variance among rate-optimal
estimators of ϑ that are asymptotically Gaussian. However, we do not have a statistical model in the classical
sense, with parameters (ϑ, σ, σ) since t; σt and t; σt are random processes themselves. In order to bypass
this difficulty, we first restrict our attention to the case where σ and σ are deterministic functions, which
enables us to identify our data within a semiparametric regular statistical model. Thanks to classical bounds
on semiparametric estimation, we can explicitly compute the optimal (best achievable) variance V opt

ϑ (σ, σ).
In a second step, allowing σ and σ to be random again, we build a one-step correction of our preliminary
estimator ϑ̂2,n which has the property of being asymptotically mixed Gaussian, with (conditional) variance
equal to V opt

ϑ (σ, σ), i.e. thus achieving the optimal variance along deterministic paths.

Lower bounds. Consider the statistical experiment En generated by data (∆n
i X

1,∆n
i X

2, i = 1, . . . , n) with

(5) Xi
t = Xi

0 +

∫ t

0

e−ϑ(Ti−s)σsdBs +

∫ t

0

σsdBs, i = 1, 2,

with parameter (ϑ, σ, σ) ∈ Θ×Σ(c, c̃), with Θ = (0,∞) and Σ(c, c̃) being the space of positive (deterministic)
functions (σ, σ) defined on [0, T ], satisfying (4) of Assumption 2 with constant c and satisfying moreover
c̃ ≤ inft σt ≤ supt σt ≤ c for some c̃ > 0.

Theorem 3. Let ϑ̂n be an estimator of ϑ in the experiment En such that ∆
−1/2
n (ϑ̂n − ϑ) converges to

N
(
0, Vϑ(σ, σ)

)
in distribution as n→∞. Then

Vϑ(σ, σ) ≥ V opt
ϑ (σ, σ) =

1

(T2 − T1)2
(eϑT2 − eϑT1)2

(∫ T

0

e2ϑtσ2
t

σ2
t

dt
)−1

.
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Construction of an efficient procedure. This is the most delicate part of the paper. By representation (5),
we see that the (∆n

i X
1,∆n

i X
2) are independent for i = 1, . . . , n. Moreover, (∆n

i X
1,∆n

i X
2) is a centred

Gaussian, with explicit covariance structure

E
[
(∆n

i X
1)2
]

=

∫ i∆n

(i−1)∆n

e−2ϑ(T1−t)σ2
t dt+

∫ i∆n

(i−1)∆n

σ2
tdt,

E
[
(∆n

i X
2)2
]

=

∫ i∆n

(i−1)∆n

e−2ϑ(T2−t)σ2
t dt+

∫ i∆n

(i−1)∆n

σ2
tdt,

E
[
∆n
i X

1∆n
i X

2
]

=

∫ i∆n

(i−1)∆n

e−ϑ(T1+T2−2t)σ2
t dt+

∫ i∆n

(i−1)∆n

σ2
tdt.

Let us further denote by f i,nϑ,σ,σ its density function w.r.t. the Lebesgue measure on R2. If the nuisance pa-
rameters (σ, σ) were known, then an optimal (efficient) procedure could be obtained by a one-step correction
of the type

ϑ̂n = ϑ̂2,n +

∑n
i=1 `

i
ϑ=ϑ̂2,n,σ,σ

(∆n
i X

1,∆n
i X

2)∑n
i=1

(
`i
ϑ=ϑ̂2,n,σ,σ

(∆n
i X

1,∆n
i X

2)
)2

where

(6) `i,nϑ,σ,σ(∆n
i X

1,∆n
i X

2) = ∂ϑ log f i,nϑ,σ,σ(∆n
i X

1,∆n
i X

2)

is the score function associated to (∆n
i X

1,∆n
i X

2), see for instance Section 8.9 in [21]. However, this oracle
procedure is not achievable and we need to invoke the theory of semiparametric efficiency (see for instance
Chapter 25 of [21]). In the presence of an extra nuisance parameter (σ, σ), we consider instead the so-called
efficient score ˜̀i,n

ϑ,σ,σ = `i,nϑ,σ,σ −Π`i,nϑ,σ,σ,

where Π is the projection operator onto the tangent space associated to a one-dimensional perturbation
around the true (unknown) value (σ, σ). It turns out that we indeed have a simple and explicit formula for˜̀i,n
ϑ,σ,σ which enables us to derive a one-step correction formula using ˜̀i,nϑ,σ,σ and plug-in estimators in order
to achieve the optimal bound.

For technical reason, we replace ϑ̂2,n by ∆
1/2
n b∆−1/2

n ϑ̂2,nc and we still write ϑ̂2,n for simplicity. Likewise,
we implicitly replace the estimators σ̂

2

n,t defined in (3) by max(σ̂
2

n,t, c̃
2), where c̃ is the lower bound associated

to Σ(c, c̃) in the definition of the experiment En. Set

˜̀i,n
ϑ,µ(∆n

i X
1,∆n

i X
2) =

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑ(T2−T1)∆n
i X

1)e−ϑ(T2−T1)(T2 − T1)

(1− e−ϑ(T2−T1))3∆nµ

for i = 1, . . . , n and (ϑ, µ) ∈ (0,∞)× [c̃, c].

Theorem 4. Work under Assumptions 1 and 2 with α > 1/2. For i = 1, . . . , n, the efficient score for
the parameter ϑ associated to (∆n

i X
1,∆n

i X
2) is given by ˜̀i,n

ϑ,∆−1
n

∫ i∆n
(i−1)∆n

σ2
tdt

(∆n
i X

1,∆n
i X

2). Moreover, the

estimator ϑ̃2,n defined by

ϑ̃2,n = ϑ̂2,n +

∑
i∈In

˜̀i,n
ϑ̂2,n,σ̂

2

n,(i−1)∆n

(∆n
i X

1,∆n
i X

2)∑
i∈In

(˜̀i,n
ϑ̂2,n,σ̂

2

n,(i−1)∆n

(∆n
i X

1,∆n
i X

2)
)2

with In = {i = 1, . . . , n, hn ≤ (i− 1)∆n < T} satisfies

∆−1/2
n

(
ϑ̃2,n − ϑ

)
→ N

(
0, V opt

ϑ (σ, σ)
)

in distribution as n → ∞. Finally, the result is still valid if σ and σ are random processes such that
P
(
(σ, σ) ∈ Σ(c, c̃)

)
= 1. In that case, the limiting distribution is, conditionally on F , centred Gaussian with

(conditional) variance V opt
ϑ (σ, σ).
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This result shows that the lower bound V opt
ϑ (σ, σ) can be attained, and therefore that efficient estimation

can be performed (which has a sense only for deterministic volatility functions). Using Cauchy-Schwarz
inequality, it is easy to prove that the expression of the limit variance is equal to the one we got in Theorem 1
for ∆

−1/2
n (ϑ̂2,n − ϑ) if and only if σ is constant over the interval [0, T ]. Otherwise, efficient estimation is

more accurate than the one in the first part of Theorem 1.

3. Discussion on possibly richer observation schemes

3.1. Discussion on the case d > 3. In Section 2.1, we built estimators of ϑ for d = 2, 3. When d > 3,
we meet the same problem of degeneracy as when d = 3: the d processes are driven by 2 Brownian motions
only. We may therefore build an estimator similar to the one with three processes. We have

Ψn
T1..d

=

d∑
j=3

∑n
i=1(∆n

i X
j −∆n

i X
j−1)2∑n

i=1(∆n
i X

2 −∆n
i X

1)2
→

d∑
j=3

(e−ϑTj − e−ϑTj−1

e−ϑT2 − e−ϑT1

)2

= ψT1..d
(ϑ).

The function ϑ ; ψT1..d
(ϑ) maps (0,∞) onto

(
0,
∑d
j=3

(Tj−Tj−1

T2−T1

)2) and is invertible as the sum of d − 2

monotone functions (see Lemma 3). We can thus propose the estimator

ϑ̂d,n = ψ−1
T1..d

(
Ψn
T1..d

)
whenever Ψn

T1..d
∈
(
0,
∑d
j=3

(Tj−Tj−1

T2−T1

)2) and 0 otherwise.

Using the notation

b
d

t =2(e−ϑT2 − e−ϑT1)

d∑
j=3

(e−ϑTj − e−ϑTj−1)
[
(e−ϑT2 − e−ϑT1)(bjt − b

j−1
t )

− (e−ϑTj − e−ϑTj−1)(b2t − b1t )
]
,

b̃dT =(e−ϑT2 − e−ϑT1)2

∫ T

0

d∑
j=3

(bjt − b
j−1
t )2dt−

d∑
j=3

(e−ϑTj − e−ϑTj−1)2

∫ T

0

(b2t − b1t )2dt,

Dd =

d∑
j=3

(e−ϑTj − e−ϑTj−1)
[
(e−ϑTj − e−ϑTj−1)(T2e

−ϑT2 − T1e
−ϑT1)

− (e−ϑT2 − e−ϑT1)(Tje
−ϑTj − Tj−1e

−ϑTj−1)
]
,

it is possible to prove that under Assumption 1, we have

∆−1
n (ϑ̂d,n − ϑ)→

b̃dT +
∫ T

0
b̄dt e

ϑtσtdBt

2(e−ϑT2 − e−ϑT1)Dd

∫ T
0
e2ϑtσ2

t dt

in probability as n→∞.

A natural question arises while defining this new estimator: are we able to determine if using d > 3
processes is better than using d = 3 processes only? As the convergence rate is the same, the criterion
should be the comparison of the limits in probability of ∆−1

n (ϑ̂3,n − ϑ) and ∆−1
n (ϑ̂d,n − ϑ). The question

of finding sufficient conditions so that one of those limits is closer to zero than the other one remains
theoretically open. In numerical experiments however, we shall compute all the estimators and compare
them.

3.2. Incorporating model errors. Since the HJM model certainly cannot fit a dataset perfectly, we may
consider including model errors that somehow fill the gap between the observables and the outputs of the
mathematical model. Indeed and as reported earlier, as soon as the dimension of the process is greater than
two, the model is degenerate: this is a common feature of HJM models, introduced in Heath et al. [9]. Jeffrey
et al. [16] calls this phenomenon stochastic singularity. In the absence of drift processes, arbitrage would
be possible as some linear combination of processes would be zero; this is not a feature of empirical data.
The classical approach to avoid it is to add another source of randomness, as is done in Jeffrey et al. [16],
Bhar and Chiarella [2] and Bhar et al. [3]. In the latter, estimation bearing on the prices of interest rates
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products is performed (in a parametric setting) with the addition of a measurement error to face stochastic
singularity. We may introduce a shrinking noise, standing for model errors. We consider again the context
of Section 1.1, as we are modeling a multidimensional diffusion process driven by two independent Brownian
motions, with the same volatility structure. Yet, at time ti = i∆n, we have observations Y jti , j = 1, . . . , d,
with

Y jti = Xj
ti + κnj ε

j
i ,

where κnj > 0 are deterministic, and εji are iid centred random variables.
Asymptotics are again taken as n→∞, and in this high-frequency framework, we would like to estimate ϑ
and the random components t ; σ2

t and t ; σ2
t . Depending on the structure of the error terms κnj ε

j
i , the

properties of the estimators we have derived may change, in terms of asymptotic behaviour.

The estimation of processes contaminated by noise has been paid some attention, inspired in finance
by the issues arising in microstructure noise modelling (although the context is quite different here). See
for instance Zhang et al. [23, 22]. Jacod and Protter, in Chapter 16 of [15] obtain laws of large numbers
and central limit theorems under a very general specification of error terms. In the present setting, while
considering noise around the diffusion process, we would like to extend our previous results in order to be
able to perform estimation of the parametric and nonparametric components of the volatility when data
are noisy; to do so, we need the noise not to be asymptotically bigger than the process of interest, in the
sense that we want it to be OP(n−1/2). Such a specification should allow us to give simple extensions of
the previous results, based on approximation of quadratic variation. Estimation at the rate n1/2 should be
possible, while the best rate should be lower when errors are bigger and tools based on quadratic variation
are usually not suitable. See Gloter and Jacod [8] for the attainable rate in a simple model with shrinking
errors.

4. Numerical implementation

4.1. Electricity forward contracts. The prices of existing forward contracts in the electricity markets are
characterised by three time components: the quotation date t and the dates Ts and Te of respectively starting
and ending power delivery. Therefore, a forward contract F (t, Ts, Te) will deliver to the holder 1 MWh of
electricity continuously between dates Ts and Te. Such a contract may be bought during a quotation period
[t0, T ] with T < Ts and it is no more available once t > T . Typical observed contracts are of various delivery
periods: one week, one month, one quarter (three months), one season (6 months) or one year. Table 1
shows an example of available forward contracts in the French Market on May 23rd, 2015. For example, the
contract called “June 2015” will deliver to the holder 1 MWh of electricity, with a constant power, between
the first hour of June 1st (this is Ts) and the last hour of June 30th of 2015 (Te). This table also introduces
the contracts of relative maturity (denoted by the “ahead” formulation). A “ahead” contract is a contract
with constant delivery period but with changing delivery dates. For example, the 2-month-ahead contract is
the forward contract “July 2015” when it is quoted on May 31th, 2015 (2 months ahead from the quotation
date), and becomes the forward contract “August 2015” on June 1st, 2015 (a jump of contract to stay 2
months ahead from the quotation date). In this study we only consider the 6 observable monthly contracts
(i.e. Te−Ts = 1 month) to estimate ϑ and the volatility processes σ and σ. Also, for simplicity, we will drop
Te from the notation. In the context of simulated data, we will simulate prices of F (t, Ts) = F (t, Ts, Te),
the forward delivering continuously 1 MWh during the period [Ts, Te]. In the context of real data, the price
F (t, Ts) is observable.

4.2. Results on simulated data. The objective of this section is to study the estimators’ behaviour on a
simulated data set, where the log-prices of the forward contracts are simulated according to the two-factor
model described in (1). The parameter values are chosen to be close to values estimated on real data: in
[18], the volatility processes are constant, and the estimated values are σ = 0.37 y−1/2 and σ = 0.15 y−1/2.
Here we use a CIR-like model (the Cox-Ingersoll-Ross model for interest rates has been introduced in [5], in
1985), to emphasize the fact that our model may also be used in the context of interest rates modeling (this
is indeed where it comes from, see [10]). Our parameters are

bjt = 3.65 · 10−1(log(30)−Xj
t ), σt = 0.37Σdt and σt = 0.15Σdt ,
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Product Example: May 23rd, 2015
Name of the product Begin of delivery End of delivery

1 Month Ahead June 2015 2015-06-01 2015-06-30
2 Month Ahead July 2015 2015-07-01 2015-07-31
3 Month Ahead August 2015 2015-08-01 2015-08-31
4 Month Ahead September 2015 2015-09-01 2015-09-30
5 Month Ahead October 2015 2015-10-01 2015-10-31
6 Month Ahead November 2015 2015-11-01 2015-11-30
1 Quarter Ahead 3rd quarter 2015 2015-07-01 2015-09-30
2 Quarter Ahead 4th quarter 2015 2015-10-01 2015-12-31
3 Quarter Ahead 1st quarter 2016 2016-01-01 2016-03-31
1 Year Ahead Year 2016 2016-01-01 2016-12-31

Table 1. Data available on a daily basis.

with Σdt =
√

1
d

∑d
j=1X

j
t , which is the square root of the average of the d quoted log-prices. We adopt

various values of ϑ (values in y−1): 1.4, 10, 20, 40. The first value is the estimated parameter shown in
[18] and the others are chosen to cover a wide range of possible values to observe different behaviours of
our estimators. Finally, the initial value of each simulated log-price series is the logarithm of a random
variable taken uniformly over the interval [20, 40], which is an usual range for prices in the market of forward
contracts on electricity (see also the constant 30 in the drift, in the center of that interval). We consider
different simulation configurations, all related to the situations we are facing on real data.

• 2 processes (1 month-ahead and 2 month-ahead) observed on n = 100 dates, with T = T1 = 150 and
T2 = 181 days.

• 3 processes (1 month-ahead to 3 month-ahead) observed on n = 80 dates, with T = T1 = 120,
T2 = 150 and T3 = 181 days.

• 4 processes (1 month-ahead to 4 month-ahead) observed on n = 60 dates, with T = T1 = 90,
T2 = 120, T3 = 151 and T4 = 181 days.

• 5 processes (1 month-ahead to 5 month-ahead) observed on n = 40 dates, with T = T1 = 59, T2 = 90,
T3 = 120, T4 = 151 and T5 = 181 days.

• 6 processes (1 month-ahead to 6 month-ahead) observed on n = 20 dates, with T = T1 = 31, T2 = 59,
T3 = 90, T4 = 120, T5 = 151 and T6 = 181 days.

The decreasing number of observations corresponds to the configuration observed with real data: 2 monthly
contracts with fixed delivery dates are jointly observed on working days during 5 months (around 100 quota-
tion dates) whereas 6 monthly contracts can be jointly observed only during 1 month (around 20 quotation
dates). The number of observations is a bit low, as we are relying on asymptotic results.

For each configuration, we perform 100,000 simulations. Recall that we denote by ϑ̂j,n the estimator of ϑ
from the configuration where j processes are observed, and also by ϑ̃2,n the efficient estimator as described
in Section 2.3, available in the configuration of 2 observed processes. Although we have not proved that the
estimator ϑ̃2,n is ∆

−1/2
n -consistent and that it reaches the lower bound for the limit variance when α = 1/2,

we have not got any numerical evidence against that possibility. Tables 2, 3 and 4 give the estimation results
for ϑ = 1.4, 20 and 40 y−1, respectively. In each configuration, these tables give the number of converging
instances1 of the estimator and their average, and the empirical confidence interval at 95% (issued from
taking the quantiles of the sample of estimated values). We observe that the estimators perform quite well:
except in three lines in Table 4, the true value of ϑ is always in the confidence interval. Finally, we empirically
observe that adding new maturities does not improve the quality of estimation in all configurations. For
instance, increasing the number of maturities may increase or decrease the length of the confidence interval,

1We must notice that some occurrences may not lead to a solution in the estimation procedure because Ψn
T1,T2

and Ψn
T1,T2,T3

,
defined in Section 2.1, can sometimes take values outside the supports of ψ−1

T1,T2
and ψ−1

T1,T2,T3
.
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and it may shift it away from the true value of ϑ. Notice also that the one-step correction from ϑ̂2,n to ϑ̃2,n

never led to very different values.

Processes Estimator Instances that converged Average Quantile interval
2 ϑ̂2,n 100,000 1.4216 [1.2697,1.6048]
2 ϑ̃2,n 100,000 1.4217 [1.2697,1.6048]
3 ϑ̂3,n 99,962 1.3799 [0.77864,1.9250]
4 ϑ̂4,n 100,000 1.3840 [1.0752,1.7646]
5 ϑ̂5,n 100,000 1.3807 [1.1274,1.6864]
6 ϑ̂6,n 100,000 1.3849 [1.0989,1.7644]

Table 2. Results of the estimation on simulated data with ϑ = 1.4 y−1.

Processes Estimator Instances that converged Average Quantile interval
2 ϑ̂2,n 85,677 21.145 [10.677,47.124]
2 ϑ̃2,n 85,677 21.130 [10.673,47.047]
3 ϑ̂3,n 100,000 19.672 [18.198,20.247]
4 ϑ̂4,n 100,000 19.567 [18.233,20.204]
5 ϑ̂5,n 100,000 19.518 [18.247,20.202]
6 ϑ̂6,n 100,000 19.699 [18.739,20.362]

Table 3. Results of the estimation on simulated data with ϑ = 20 y−1.

Processes Estimator Instances that converged Average Quantile interval
2 ϑ̂2,n 55,248 24.747 [10.215,56.650]
2 ϑ̃2,n 55,248 24.716 [10.210,56.663]
3 ϑ̂3,n 100,000 33.904 [22.598,40.060]
4 ϑ̂4,n 100,000 32.162 [22.204,39.689]
5 ϑ̂5,n 100,000 31.075 [22.046,38.832]
6 ϑ̂6,n 100,000 33.901 [26.134,39.320]

Table 4. Results of the estimation on simulated data with ϑ = 40 y−1.

Concerning the estimation results of the volatility processes σ2
t and σ2

t , we use the causal kernel K(x) =
1(0,1](x), and the bandwidth hn for the two volatility functions is selected by cross validation and visual
inspection: as the number of data is quite poor, the empirical criterion to be minimised in the cross validation
method does not always admit a minimum. We therefore retain a value of hn close to the values that are
given by cross validation when the minimisation is well defined, and we check that it does not lead to obvious
under- or oversmoothing. The retained value is 14 days. We also set $n = 3.65 · 10−2 y−1. In the following
we show the estimators σ̂2

n and σ̂
2

n for the configuration where 2 processes are simulated on a period of 5
months (approximately 150 days), which means T = T1 = 150 and T2 = 181 days, with n = 100 dates and
ϑ = 10 y−1. First we keep the specification bjt = 3.65 ·10−1(log(30)−Xj

t ) for the drift process, but we use the
constant volatility processes of [18], that is σ = 0.37 y−1/2 and σ = 0.15 y−1/2. A deterministic specification
allows us to compare the curve of point estimates with the deterministic function that was used to simulate
the processes. Remember that the nonparametric estimation result, Theorem 2, gives convergence uniformly
on [hn, T ]. Therefore we expect that the fit is not good for values ot t being less than hn. We perform
simulation and estimation 10,000 times, and then take the average and the quantiles of the 10,000 curves
(that is, at each point t of the discretisation grid, we take the average and the quantiles at 2.5% and 97.5%
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of the 10,000 occurrences of σ̂2
n,t and σ̂

2

n,t). Figure 1 gives the square of the estimated equivalent volatility
function

e−2ϑ̂2,n(T1−t)σ̂2
n,t + σ̂

2

n,t,

together with the true function e−2ϑ(T1−t)σ2
t + σ2

t . It shows a good estimation of this equivalent volatility,
the error (between the average of the 10,000 estimators and the true value) being maximal in the two ends of
the curve. The estimation of σ2

t , given in Figure 2, also performs well. However, we can observe in Figure 3
a bad performance of estimation of σ2

t , especially for large values of T − t, even when t > hn. This can
be explained by the fact that, due to the presence of the exponential term e−ϑ(T·−t), the short term factor
e−2ϑ(T·−t)σ2

t is low when T − t is large. Also, if ϑ happens to be overestimated, the estimator of σ2
t has

to take a very high value so that the product σ2
t e
−2ϑ(T·−t) may fit the curve. Therefore, the estimation of

σt should reasonably be taken into account only for small times to maturity T − t, where the estimation
procedure seems to work well.

0 10020 40 60 80 120 140 16010 30 50 70 90 110 130 150
0

0.2

0.1

0.3

0.05

0.15

0.25
Average estimated value

Quantile 0.025

Quantile 0.975

Figure 1. Quantiles for the square of the equivalent volatility, with 2 processes, ϑ = 10
y−1 and deterministic constant volatilities
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Figure 2. Quantiles for the square of the long-term volatility, with 2 processes, ϑ = 10
y−1 and deterministic constant volatilities

Now, we are back to the specification σt = 0.37Σdt , σt = 0.15Σdt . As the volatility processes depend on the
path of X, we cannot compare visually the real volatility and its point estimators. Yet, we plot the average
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Figure 3. Quantiles for the square of the short-term volatility, with 2 processes, ϑ = 10
y−1 and deterministic constant volatilities

and the quantile curves of the 10,000 estimators for the two volatility processes and for the equivalent square
volatility process, in Figures 4, 5 and 6. The behaviours of the series of point estimators are very similar to
the ones we described while considering deterministic volatility functions.
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Figure 4. Quantiles for the square of the equivalent volatility, with 2 processes, ϑ = 10
y−1 and the CIR-like specification for volatility processes

4.3. Results on real data from the French electricity market. The data used for estimation are
the 6 available month-ahead forward contracts on the French market (www.eex.com) from December 6th,
2001 to December 31st, 2013. On this history, we get 125 periods of 1 month (n ' 20) where 6 processes
(the 6 month-ahead contracts) are jointly observed with no missing data, whereas we get 141 periods of
5 months (n ' 100) where 2 processes (the 1 month-ahead and the 2 month-ahead contracts) are jointly
observed. These numbers of periods are given in Table 5 for all the configurations described in Section 4.2.
In the same column, Table 5 also precises the number of periods on which the estimator converges. And
the same table gives the estimation results of ϑ for all the possible configurations, with the average value
and the standard deviation of the estimators. The main message about these results is that, contrary to the
results on simulated data, the values of the estimators are different from one configuration to another. More
precisely, the estimators from 2 processes are higher (of a factor between 5 and 8) than the ones from 3 to 6
processes. This can be explained by two different causes. First, the estimators from 3 to 6 processes present

12
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Figure 5. Quantiles for the square of the long-term volatility, with 2 processes, ϑ = 10
y−1 and the CIR-like specification for volatility processes
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Figure 6. Quantiles for the square of the short-term volatility, with 2 processes, ϑ = 10
y−1 and the CIR-like specification for volatility processes

Estimator Per. with convergence/ Number of per. Average Standard deviation
ϑ̂2,n 49/141 26.065 11.788
ϑ̃2,n 49/141 26.081 11.779
ϑ̂3,n 100/142 4.3707 3.5329
ϑ̂4,n 111/143 3.1333 2.6758
ϑ̂5,n 111/139 2.0936 2.4969
ϑ̂6,n 105/125 3.3881 2.8221

Table 5. Estimators of ϑ on real data in France (unit: y).

a theoretical bias, of which value is unknown: this was stated in Theorem 1 and in Section 3.1. Second,
these differences may be due to the presence of errors linked to measurement or to the model.

5. Proofs

5.1. Preliminaries: localisation. With no loss of generality, we may (and will) assume that the processes
bj , σ and σ are bounded, relying on a so-called localisation argument. For an integer p ≥ 1, introduce the
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stopping time τp = inf{t ∈ [0, T ],min(bjt , σt, σt) > p}. Replacing Xj
t by Xt∧τp , we have bounded processes

bj , σ and σ. Moreover since these processes are at least locally bounded, we have P(τp > T )→ 1 as p→∞.
We refer to Section 3.6.3 in [14] for details.

5.2. Proof of Theorem 1.

Proof of Theorem 1 (1). Step 1. We first consider the case bj = 0 for j = 1, 2. For notational simplicity,
we set e`,k(ϑ) = e−ϑTk − e−ϑT` . Let us define

ζni = (∆n
i X

2)2 − (∆n
i X

1)2

and
ξni =

(
∆n
i X

2 −∆n
i X

1
)2
.

Clearly(∫ i∆n

(i−1)∆n

e−ϑ(T2−t)σtdBt +

∫ i∆n

(i−1)∆n

σtdBt

)2

−
(∫ i∆n

(i−1)∆n

e−ϑ(T1−t)σtdBt +

∫ i∆n

(i−1)∆n

σtdBt

)2

=(e−2ϑT2 − e−2ϑT1)
(∫ i∆n

(i−1)∆n

eϑtσtdBt

)2

+ 2e1,2(ϑ)

∫ i∆n

(i−1)∆n

eϑtσtdBt

∫ i∆n

(i−1)∆n

σtdBt,

therefore, setting χni = 2e1,2(ϑ)
∫ i∆n

(i−1)∆n
eϑtσtdBt

∫ i∆n

(i−1)∆n
σtdBt, we obtain the following representation

(7) ζni =
1

ψT1,T2
(ϑ)

ξni + χni .

By standard convergence of the quadratic variation (see for instance Section 2.1.5 in [20]),
n∑
i=1

ξni → e1,2(ϑ)2

∫ T

0

e2ϑtσ2
t dt

in probability. Note that the limit is almost surely positive by Assumption 1. Also, since B and B are
independent, and since σ2

t ≤M and σ2
t ≤M for some constant M > 0 by localization, we have that

E
[( n∑

i=1

∫ i∆n

(i−1)∆n

eϑtσtdBt

∫ i∆n

(i−1)∆n

σtdBt

)2]
=

n∑
i=1

E
[( ∫ i∆n

(i−1)∆n

eϑtσtdBt
)2]E[( ∫ i∆n

(i−1)∆n

σtdBt
)2] ≤ ∆ne

2ϑTM2 → 0.

Therefore
∑n
i=1 ζ

n
i converges in probability as well, with the same limit as 1

ψT1,T2
(ϑ)

∑n
i=1 ξ

n
i . It follows that

Ψn
T1,T2

=

∑n
i=1

(
∆n
i X

2 −∆n
i X

1
)2∑n

i=1(∆n
i X

2)2 − (∆n
i X

1)2
=

∑n
i=1 ξ

n
i∑n

i=1 ζ
n
i

→ ψT1,T2
(ϑ)

in probability. We derive the convergence

ψT1,T2(ϑ̂2,n)→ ψT1,T2(ϑ)

in probability on the event {Ψn
T1,T2

∈ (−1, 0)}, hence the convergence ϑ̂2,n → ϑ in probability as well since
{Ψn

T1,T2
∈ (−1, 0)} has asymptotically probability 1 and that ϑ ; ψT1,T2

(ϑ) is invertible with continuous
inverse.

Step 2. Using (7), we readily obtain

∆−1/2
n

(
Ψn
T1,T2

− ψT1,T2
(ϑ)
)

= ∆−1/2
n

(∑n
i=1 ξ

n
i∑n

i=1 ζ
n
i

− ψT1,T2
(ϑ)
)

= −ψT1,T2
(ϑ)

∆
−1/2
n

∑n
i=1 χ

n
i∑n

i=1 ζ
n
i

.

Consider next the sequence of 1-dimensional processes

χn(t) = ∆1/2
n

bt∆−1
n c∑

i=1

f
(
∆−1/2
n ∆n

i Y
1,∆−1/2

n ∆n
i Y

2
)
,

14



where Yt = (Y 1
t , Y

2
t ) =

( ∫ t
0
eϑsσsdBs,

∫ t
0
σsdBs

)
. By Theorem 3.21, p. 231 in [14] applied to the martingale

Y with f(x, y) = xy which has vanishing integral under the standard 2-dimensional-Gaussian measure, we
have that the process χn(t) converges stably in law to a continuous process χ(t) defined on an extension of
the original probability space and given by

χ(t) =

∫ t

0

eϑsσsσsdWs,

where W is a Brownian motion independent of F . Using successively ∆
−1/2
n

∑n
i=1 χ

n
i = 2e1,2(ϑ)χn(T ), the

fact that the convergence χn → χ holds stably in law and the convergence
n∑
i=1

ζni → (e−2ϑT2 − e−2ϑT1)

∫ T

0

e2ϑtσ2
t dt,

in probability, we derive

−∆−1/2
n ψT1,T2(ϑ)

∑n
i=1 χ

n
i∑n

i=1 ζ
n
i

→− ψT1,T2(ϑ)
2(e−ϑT2 − e−ϑT1

)
χ(T )

(e−2ϑT2 − e−2ϑT1)
∫ T

0
e2ϑtσ2

t dt

=− 2(e−ϑT2 − e−ϑT1)3

(e−2ϑT2 − e−2ϑT1)2
∫ T

0
e2ϑtσ2

t dt
χ(T )

in distribution. Conditional on F , the limiting variable is centred Gaussian, with conditional variance
vϑ(σ, σ) = 4 (e−ϑT2−e−ϑT1 )2

(e−ϑT2+e−ϑT1 )4

∫ T
0
e2ϑtσ2

tσ
2
tdt

(
∫ T
0
e2ϑtσ2

t dt)
2
.

Step 3. On the event {Ψn
T1,T2

∈ (−1, 0)}, we have

∆−1/2
n

(
ϑ̂2,n − ϑ

)
= ∆−1/2

n

(
Ψn
T1,T2

− ψT1,T2
(ϑ)
)
∂ϑψ

−1
T1,T2

(Zn)

for some Zn that converges to ψT1,T2
(ϑ) in probability by Step 1. The conclusion follows from(

∂ϑψ
−1
T1,T2

(ψT1,T2(ϑ))
)2
vϑ(σ, σ) = Vϑ(σ, σ)

together with the fact that {Ψn
T1,T2

∈ (−1, 0)} has asymptotically probability 1.

Step 4. It remains to relax the restriction bj = 0. When bj is non-zero, by localization again, we may assume
it is bounded. Then, by Girsanov theorem, we apply a change of measure which is F-measurable. Since the
convergence in distribution in Step 2 holds stably in law, we may work under this change of measure (see
Section 2.4.4 in [20] for a simple explanation)). Finally, relaxing the boundedness assumption on σ, σ and bj
is standard, see Section 5.1 above.

Proof of Theorem 1 (2). Step 1. We have

Ψn
T1,T2,T3

=

∑n
i=1

(
∆n
i (X3 −X2)

)2∑n
i=1

(
∆n
i (X2 −X1)

)2
By standard convergence of the quadratic variation

n∑
i=1

(
∆n
i (X2 −X1)

)2 → e1,2(ϑ)2

∫ T

0

e2ϑtσ2
t dt,(8)

n∑
i=1

(
∆n
i (X3 −X2)

)2 → e2,3(ϑ)2

∫ T

0

e2ϑtσ2
t dt

in probability. Since ψT1,T2,T3
(ϑ) =

e2,3(ϑ)2

e1,2(ϑ)2 , we derive ψT1,T2,T3

(
ϑ̂n,3

)
→ ψT1,T2,T3

(ϑ) in probability on the

event
{

ΨT1,T2,T3
∈
(
0,
(
T3−T2

T2−T1

)2)} which has asymptotically probability 1, hence the convergence ϑ̂n,3 → ϑ
in probability.
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Step 2. We further have

Ψn
T1,T2,T3

− ψT1,T2,T3
(ϑ) =

∑n
i=1

(
∆n
i (X3 −X2)

)2∑n
i=1

(
∆n
i (X2 −X1)

)2 − e2,3(ϑ)2

e1,2(ϑ)2
=

∑n
i=1 η

n
i∑n

i=1

(
∆n
i (X2 −X1)

)2 ,
with

ηni =
(
∆n
i (X3 −X2)

)2 − e2,3(ϑ)2

e1,2(ϑ)2

(
∆n
i (X2 −X1)

)2
.

Write ∆
n

i f =
∫ i∆n

(i−1)∆n
f(t)dt. One readily checks that the following decomposition holds: ηni = (η′)

n
i +(η′′)

n
i ,

with

(η′)ni =
(
∆
n

i (b3 − b2)
)2 − e2,3(ϑ)2

e1,2(ϑ)2

(
∆
n

i (b2 − b1)
)2

and

(η′′)ni = 2e2,3(ϑ)
(

∆n
i

(
(b3 − b2)− e2,3(ϑ)

e1,2(ϑ)
(b2 − b1)

)) ∫ i∆n

(i−1)∆n

eϑtσtdBt.

We will need the following lemma, proof of which is relatively straightforward yet technical and given in
Section 6.1.

Lemma 1. Let (Yt)t≥0 and (Zt)t≥0 be two càdlàg and progressively measurable processes. Assume that for
some s > 1/2, we have supt∈[0,T ] t

−sω(Y )t <∞. Then

∆−1
n

n∑
i=1

(
∆
n

i Y
)2 → ∫ T

0

Y 2
t dt

and

∆−1
n

n∑
i=1

∆
n

i (Y )

∫ i∆n

(i−1)∆n

ZtdBt →
∫ T

0

YtZtdBt

in probability.

We successively have

∆−1
n

n∑
i=1

(η′)ni →
∫ T

0

µϑ(bt)dt

with µϑ(bt) = (b3t − b2t )2 − e2,3(ϑ)2

e1,2(ϑ)2 (b2t − b1t )2 and

∆−1
n

n∑
i=1

(η′′)ni → 2

∫ T

0

λϑ(bt)e
ϑtσtdBt

in probability, by Lemma 1 applied to Yt = (b3t − b2t ) −
e2,3(ϑ)
e1,2(ϑ) (b2t − b1t ) and Zt = eϑtσt, and Assumption 1,

where λϑ(bt) = e2,3(ϑ)Yt. This, together with (8), implies the convergence

∆−1
n

(
Ψn
T1,T2,T3

− ψT1,T2,T3
(ϑ)
)
→
∫ T

0
µϑ(bt)dt+ 2

∫ T
0
λϑ(bt)e

ϑtσtdBt

e1,2(ϑ)2
∫ T

0
e2ϑtσ2

t dt

in probability.

Step 3. Finally, we have

∆−1
n

(
ϑ̂3,n − ϑ

)
= ∆−1

n

(
Ψn
T1,T2,T3

− ψT1,T2,T3
(ϑ)
)
∂ϑψ

−1
T1,T2,T3

(Zn),

for some Zn that converges to ψT1,T2,T3(ϑ) by Step 1. Hence

∆−1
n

(
ϑ̂3,n − ϑ

)
→
∫ T

0
µϑ(bt)dt+ 2

∫ T
0
λϑ(bt)e

ϑtσtdBt

∂ϑψT1,T2,T3
(ϑ)e1,2(ϑ)2

∫ T
0
e2ϑtσ2

t dt

and we conclude by noting that ∂ϑψT1,T2,T3
(ϑ) = 2D3

e1,2(ϑ)3 .
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5.3. Proof of Theorem 2. We may (and will) assume that bj = 0. For ease of notation, we write ϑ̂2,n for
max(ϑ̂2,n, $n) and set ti = i∆n for i = 1, . . . , n. We also define K(t) = 1(0,1](t) and Kh(t) = h−1K(th−1)
for h > 0. We have

σ̂2
n,t − σ2

t =

∑n
i=1Khn

(
t− ti−1

)(
(∆n

i X
1)2 − (∆n

i X
2)2
)

e−2ϑ̂2,n(T1−t) − e−2ϑ̂2,n(T2−t)
− σ2

t = I + II,

with

I =
( 1

e−2ϑ̂2,n(T1−t) − e−2ϑ̂2,n(T2−t)
− 1

e−2ϑ(T1−t) − e−2ϑ(T2−t)

)
×

n∑
i=1

Khn

(
t− ti−1

)(
(∆n

i X
1)2 − (∆n

i X
2)2
)

and

II =

∑n
i=1Khn

(
t− ti−1

)(
(∆n

i X
1)2 − (∆n

i X
2)2
)

e−2ϑ(T1−t) − e−2ϑ(T2−t)
− σ2

t .

Step 1. Since E[
(
∆n
i X

j
)2

] is of order ∆n by Burkholder-Davis-Gundy inequality, we have that E[
∣∣(∆n

i X
1)2−

(∆n
i X

2)2
∣∣] is of order ∆n as well and therefore

E
[∣∣∣ n∑
i=1

Khn(t− ti−1)
(
(∆n

i X
1)2 − (∆n

i X
2)2
)∣∣∣] . n∑

i=1

Khn(t− ti−1)∆n . 1

since Khn(t − ti−1) is of order h−1
n for a number of terms that are at most of order ∆−1

n hn. Therefore∑n
i=1Khn

(
t − ti−1

)(
(∆n

i X
1)2 − (∆n

i X
2)2
)
is tight, and we conclude that I is of order ∆

1/2
n in probability

by applying Theorem 1 (1).

Step 2. The term II further splits into II = (e−2ϑ(T1−t) − e−2ϑ(T2−t))−1
(
Bn(t) + Vn(t)

)
, having

Vn(t) =

n∑
i=1

Khn(t− ti−1)
(
(∆n

i X
1)2 − (∆n

i X
2)2 − E

[
(∆n

i X
1)2 − (∆n

i X
2)2
∣∣Fi−1

])
and

Bn(t) =

n∑
i=1

E
[
Khn(t− ti−1)

(
(∆n

i X
1)2 − (∆n

i X
2)2
)∣∣Fi−1

]
−
(
e−2ϑ(T1−t) − e−2ϑ(T2−t)

)
σ2
t .

Hereafter, we abbreviate Fi∆n
by Fi.

Step 3. We first prove an upper bound for E[Vn(t)2]. We have

sup
t∈[hn,T ]

E
[( n∑

i=1

Khn(t− ti−1)
(
(∆n

i X
1)2 − (∆n

i X
2)2 − E

[
(∆n

i X
1)2 − (∆n

i X
2)2
∣∣Fi−1

]))2]
= sup
t∈[hn,T ]

h−2
n

n∑
i=1

K
( t− ti−1

hn

)2

E
[(

(∆n
i X

1)2 − (∆n
i X

2)2 − E
[
(∆n

i X
1)2 − (∆n

i X
2)2
∣∣Fi−1

])2]
because cross-terms in the development are zero due to conditioning. By compactness of the support of K,
there are at most of order ∆−1

n hn nonvanishing terms in the sum and the estimate is uniform in t ∈ [hn, T ].
Finally, since

E
[(

(∆n
i X

1)2 − (∆n
i X

2)2 − E
(
(∆n

i X
1)2 − (∆n

i X
2)2
∣∣Fi−1

))2]
. ∆2

n,

we obtain supt∈[hn,T ] E
[
Vn(t)2

]
. ∆nh

−1
n .

Step 4. In order to bound the bias we use the decomposition

Bn(t) =
(
e−2ϑ(T1−t) − e−2ϑ(T2−t)

)
(III + IV )),

where

III =

∫ T

0

h−1
n K

( t− u
hn

)
e−2ϑ(t−u)σ2

udu− σ2
t

17



and

IV =

∑n
i=1 E

[
h−1
n K

(
t−ti−1

hn

)(
(∆n

i X
1)2 − (∆n

i X
2)2
)∣∣∣Fi−1

]
e−2ϑ(T1−t) − e−2ϑ(T2−t)

−
∫ T

0

h−1
n K

( t− u
hn

)
e−2ϑ(t−u)σ2

udu.

For every t ∈ [hn, T ] we have
∫ t
hn
t−T
hn

K(x)dx = 1 hence

E
[
III2

]
= E

[( ∫ t
hn

t−T
hn

K(x)e−2ϑhnxσ2
t−hnxdx− σ

2
t

)2]
= E

[( ∫
supp(K)

K(x)
(
e−2ϑhnxσ2

t−hnx − σ
2
t

)
dx
)2]

≤
∫

supp(K)

K(x)2E
[(
e−2ϑhnxσ2

t−hnx − σ
2
t

)2]
dx

by Jensen inequality since supp(K) ⊂
[
t−T
h , th

]
that integrates to 1. By convexity,

(e−2ϑhnxσ2
t−hnx − σ

2
t )2 ≤ 2(e−2ϑhnxσ2

t−hnx − σ
2
t−hnx)2 + 2(σ2

t−hnx − σ
2
t )2

follows. Bounding further the remainder in the expansion of x; e−2ϑhnx at the point 0, we obtain |e−2ϑhnx−
1| ≤M |2ϑhnx| for some M > 0. By localization, we find some Mσ > 0 such that σt < Mσ. It follows that

E
[
III2

]
≤
∫

supp(K)

K2(x)
(
2M4

σ(2ϑhnxM)2 + 2E
((
σ2
t−hnx − σ

2
t

)2))
dx

≤
∫

supp(K)

K2(x)
(
2M4

σ(2ϑhnxM)2 + 2c|hnx|2α
)
dx,

using Assumption 2. This estimate is uniform in t ∈ [hn, T ], therefore supt∈[hn,T ] E
[
III2

]
. h2α

n . Next, we
write IV =

∑n
i=1 h

−1
n δi(t), with

δi(t) = E
(
K
( t− ti−1

hn

)∫ ti

ti−1

e−2ϑ(t−u)σ2
udu

∣∣∣Fi−1

)
−
∫ ti

ti−1

K
( t− u
hn

)
e−2ϑ(t−u)σ2

udu,

since the term
n∑
i=1

h−1
n K

( t− ti−1

hn

)
E
[((∆n

i X
1)2 − (∆n

i X
2)2
)

e−2ϑ(T1−t) − e−2ϑ(T2−t)
−
∫ ti

ti−1

e−2ϑ(t−u)σ2
udu

∣∣∣Fi−1

]
=

n∑
i=1

h−1
n K

( t− ti−1

hn

)
e−2ϑtE

[( ∫ ti

ti−1

eϑuσudBu

)2

−
∫ ti

ti−1

e2ϑuσ2
udu

∣∣∣Fi−1

]
= 0

vanishes. Therfore, writing E[IV 2] =
∑n
i=1 E

(
h−2
n (δi(t))

2
)

+ 2
∑

1≤i<j≤n E
[
h−2
n δi(t)δj(t)

]
, we successively

obtain

E[h−2
n (δSi (t))2] ≤ ∆n

h2
n

∫ ti

ti−1

e−4ϑ(t−u)E
[(
K
( t− ti−1

hn

)
E[σ2

u|Fi−1]−K
( t− u
hn

)
σ2
u

)2]
by Jensen inequality, so that

∑n
i=1 E

[
h−2
n (δSi (t))2

]
. ∆nh

−1
n uniformly in t, since there are at most of order

∆nhn nonvanishing terms in the sum. Finally, conditioning on Fj−1,

E
[
h−2
n δi(t)δj(t)

]
= h−2

n E
[
δi(t)E

( ∫ tj

tj−1

(
K
( t− tj−1

hn

)
−K

( t− u
hn

))
e−2ϑ(t−u)σ2

udu
∣∣Fj−1

]]
,

and the difference K
(
t−tj−1

hn

)
−K

(
t−u
hn

)
is non-zero only if t ∈ (tj−1, u] or t ∈ (tj−1 + hn, u + hn], which

can be the case for j in some set Jt, which contains at most three indexes. Therefore,∣∣∣ ∑
1≤i<j≤n

E
[
h−2
n δi(t)δj(t)

]∣∣∣ =
∣∣∣ n−1∑
i=1

∑
j∈Jt

E
[
h−2
n δi(t)δj(t)

]∣∣∣ ≤ 3h−2
n

n−1∑
i=1

E
[∣∣δi(t)∣∣]M2

σe
2ϑT∆n,

which is of order ∆nh
−1
n . We infer supt∈[hn,T ] E

[
IV 2

]
. ∆nh

−1
n .
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Step 5. From the estimates established in Steps 3. and 4. we derive

sup
t∈[hn,T ]

E
[
(Vn(t))2

]
. ∆nh

−1
n , sup

t∈[hn,T ]

E
[
Bn(t)2

]
. h2α

n + ∆nh
−1
n .

The choice hn = ∆
1/(2α+1)
n implies that the two error terms h2α

n and ∆nh
−1
n are of the same order, namely

∆
2α/(2α+1)
n , which ends the proof concerning σ.

Step 6. The proof is the same for σ̂
2
. We split σ̂

2

n,t − σ2
t as follows

σ̂
2

n,t − σ2
t =
( e−2ϑ̂2,nT2

e−2ϑ̂2,nT1 − e−2ϑ̂2,nT2

− e−2ϑT2

e−2ϑT1 − e−2ϑT2

) n∑
i=1

h−1
n K

( t− ti−1

hn

)
(∆n

i X
1)2

+
( e−2ϑ̂2,nT1

e−2ϑ̂2,nT1 − e−2ϑ̂2,nT2

− e−2ϑT1

e−2ϑT1 − e−2ϑT2

) n∑
i=1

h−1
n K

( t− ti−1

hn

)
(∆n

i X
2)2

+

∑n
i=1 h

−1
n K

(
t−ti−1

hn

)
(e−2ϑ(T1−t)(∆n

i X
2)2 − e−2ϑ(T2−t)(∆n

i X
1)2)

e−2ϑ(T1−t) − e−2ϑ(T2−t)
− σ2

t

and proceed analogously. The proof of Theorem 2 is complete.

5.4. Proof of Theorem 3. With no loss of generality, we may (and will) assume that b1 = b2 = 0.

Preliminaries on efficient semiparametric estimation. We refer to Sections 25.3–25.4 of [21] for a com-
prehensive presentation of efficient semiparametric estimation, that we need to adapt to our framework.
Assuming (σ,σ) to be deterministic, the data (∆n

i X
1,∆n

i X
2), i = 1, . . . , n generate a product experiment

En = ⊗ni=1Pi,n, where

Pi,n =
{
f i,nϑ,σ,σ, (ϑ, σ, σ) ∈ [0,∞)× Σ(c, c̃

}
,

where f i,nϑ,σ,σ is the density on R2 of the Gaussian vector (∆n
i X

1,∆n
i X

2), see Section 2.3.
For ϑ ∈ (0,∞), let ε > 0 and ι ∈ R be such that ϑ+ ιε > 0. Pick a path(

t; (ηut , η
u
t )
)

0≤u≤ε, such that (η0
t , η

0
t ) = (σt, σt) for every t ∈ [0, T ],

for two regular functions t; ηut and t; ηut satisfying moreover

c̃ < inf
t∈[0,T ],u∈[0,ε]

min(ηut , η
u
t ) ≤ sup

t∈[0,T ],u∈[0,ε]

max(ηut , η
u
t ) < c.

We obtain a parametric submodel of Pi,n around
(
t; (σ2

t , σ
2
t )
)
by setting

Pi,n0 = {f i,nϑ+ιu,ηu,ηu , 0 ≤ u ≤ ε},

noting that Pi,n0 passes through the true distribution at u = 0. We consider only submodels that are
differentiable in quadratic mean at u = 0, with score function gi,ι,η,η ∈ L2(Pϑ,σ,σ). If we let Pi,n0 range over
all admissible submodels as (η, η) varies, we obtain a collection of score functions that define in turn the
tangent set Ṗi,nϑ,σ,σ of the model Pi,n at the true distribution. Any score function gi,nι,η,η ∈ Ṗ

i,n
ϑ,σ,σ admits the

representation

(9) gi,nι,η,η = ι`i,nϑ,σ,σ + gi,nη,η,

where `i,nϑ,σ,σ is the score function of the original model defined in (6) when σ and σ are known, and gi,nη,η is
the score function obtained from a parametric submodel at ι = 0, to be interpreted as the score relative to
the nuisance parameter, while `i,nϑ,σ,σ corresponds to the score relative to the parameter of interest ϑ.
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Completion of proof of Theorem 3. From (6), and the explicit representation

f i,nϑ,σ,σ(x, y) =

exp
(
−
( ∫ i∆n

(i−1)∆n
σ2
tdt
)

(x−y)2+
( ∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt
)(
y−e−ϑ(T2−T1)x

)2

2
( ∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt
)( ∫ i∆n

(i−1)∆n
σ2
tdt
)(

1−e−ϑ(T2−T1)
)2

)
2π
( ∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt
)1/2( ∫ i∆n

(i−1)∆n
σ2
tdt
)1/2(

1− e−ϑ(T2−T1)
) ,

we derive

∂ϑ log f i,nϑ,σ,σ(∆n
i X

1,∆n
i X

2) =

∫ i∆n

(i−1)∆n
(T1 − t)e−2ϑ(T1−t)σ2

t dt∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt
− e−ϑ(T2−T1)(T2 − T1)

1− e−ϑ(T2−T1)

+ (∆n
i X

2 −∆n
i X

1)2

∫ i∆n

(i−1)∆n
(e−ϑ(T2−T1)(T2 − t)− (T1 − t))e−2ϑ(T1−t)σ2

t dt( ∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt)
2(1− e−ϑ(T2−T1))3

+ (∆n
i X

2 − e−ϑ(T2−T1)∆n
i X

1)2 (T2 − T1)e−ϑ(T2−T1)∫ i∆n

(i−1)∆n
σ2
tdt(1− e−ϑ(T2−T1))3

−∆n
i X

1(∆n
i X

2 − e−ϑ(T2−T1)∆n
i X

1)
e−ϑ(T2−T1)(T2 − T1)∫ i∆n

(i−1)∆n
σ2
tdt(1− e−ϑ(T2−T1))2

.

We pick a path (ηut , η
u
t )0≤u≤ε of the form ηut = (1+uk(t))σt and ηut = (1+uk(t))σt so that (ηu, ηu) ∈ Σ(c, c̃).

The submodel is differentiable in quadratic mean at u = 0, with score function having representation

gi,n
ι,k,k

= ι`iϑ,σ,σ + gi,n
k,k
.

according to (9) and parametrised by (k, k). Formally,

ι`i,nϑ,σ,σ =
(
d
du log f i,nϑ+ιu,σ,σ

)
u=0

and gi,n
k,k

=
(
d
du log f i,nϑ,ηu,ηu

)
u=0

,

so that

gi,n
k,k

=−

∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t k(t)dt∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt
−

∫ i∆n

(i−1)∆n
σ2
tk(t)dt∫ i∆n

(i−1)∆n
σ2
tdt

+ (∆n
i X

2 −∆n
i X

1)2

∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t k(t)dt( ∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt
)2

(1− e−ϑ(T2−T1))2

+ (∆n
i X

2 − e−ϑ(T2−T1)∆n
i X

1)2

∫ i∆n

(i−1)∆n
σ2
tk(t)dt( ∫ i∆n

(i−1)∆n
σ2
tdt
)2

(1− e−ϑ(T2−T1))2
.

Introduce the orthogonal projection Π onto (the closure of) of Span{gi,n
k,k
, for all admissible (k, k)}. Then˜̀i,n

ϑ,σ,σ = `i,nϑ,σ,σ − Π`i,nϑ,σ,σ is the efficient score for ϑ and Ĩi,nϑ,σ,σ = Eϑ,σ,σ
[
(˜̀i,nϑ,σ,σ)2

]
is the best achievable

information bound, see Sections 25.3–25.4 of [21] for details. By orthogonality,

Eϑ,σ,σ
[
(`i,nϑ,σ,σ −Π`i,nϑ,σ,σ)gi,n

k,k

]
= 0, for all admissible (k, k),

and anticipating further the representation Π`i,nϑ,σ,σ = gi,n
k?,k

? for some admissible (k?, k
?
), it suffices to solve

0 = Eϑ,σ,σ
[(
li,nϑ,σ,σ − g

i,n

k?,k
?

)
gi,n
k,k

]
for all admissible (k, k).

Elementary computations yield k?(t) = (T2−t)e−ϑ(T2−T1)t(T1−t)
1−e−ϑ(T2−T1) and k

?
(t) = 0. We conclude

˜̀i,n
ϑ,σ,σ = ˜̀i,n

ϑ,σ =
(∆n

i X
2 −∆n

i X
1)(∆n

i X
2 − e−ϑ(T2−T1)∆n

i X
1)e−ϑ(T2−T1)(T2 − T1)

(1− e−ϑ(T2−T1))3
∫ i∆n

(i−1)∆n
σ2
tdt
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and is independent of σ. Furthermore, the best achievable information bound becomes

Ĩi,nϑ,σ,σ =
(T2 − T1)2

(eϑ(T2−T1) − 1)2

∫ i∆n

(i−1)∆n
e−2ϑ(T1−t)σ2

t dt∫ i∆n

(i−1)∆n
σ2
tdt

.

By independence of the increments (∆n
i X

1,∆n
i X

2), it remains to piece together the results for each Pi,n
using the product structure of En. We find the asymptotically equivalent bound

n∑
i=1

Ĩi,nϑ,σ,σ ∼ n
(T2 − T1)2

T (eϑ(T2−T1) − 1)2

∫ T

0

e−2ϑ(T1−t)σ2
t

σ2
t

dt

as n→∞. Taking the inverse and dividing by ∆n we obtain the desired bound. The proof of Theorem 3 is
complete.

5.5. Proof of Theorem 4. The first assertion was obtained in Section 5.4 in the course of the proof of
Theorem 3. With no loss of generality, we may (and will) assume that bi = 0 and that supt max(σt, σt) ≤M .
We further abbreviate i∆n by ti.

Step 1. Let ϑn be a deterministic sequence such that
√
n(ϑn − ϑ) is bounded. We first prove

(10) ∆1/2
n

∑
i∈In

(˜̀i,n
ϑn,σ
− ˜̀i,n

ϑn,σ̂n

)
→ 0

in probability, as n→∞. We have

∆1/2
n

∑
i∈In

(˜̀i,n
ϑn,σ
− ˜̀i,n

ϑn,σ̂n

)
= ∆1/2

n

∑
i∈In

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
( 1∫ ti

ti−1
σ2
tdt
− 1

∆nσ̂
2

n,ti−1

)
= I + II,

with

I = ∆−1/2
n

∑
i∈In

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
∆nσ

2
ti−1
−
∫ ti
ti−1

σ2
tdt

σ2
ti−1

∫ ti
ti−1

σ2
tdt

,

II = ∆−1/2
n

∑
i∈In

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
σ̂

2

n,ti−1
−σ2

ti−1

σ2
ti−1

σ̂
2

n,ti−1

.

For the term I, by Cauchy-Schwarz inequality and the fact that P((σ, σ) ∈ Σ(c, c̃)) = 1, we have

E
[∣∣∆−1/2

n (∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
∆nσ

2
ti−1
−
∫ ti
ti−1

σ2
tdt

σ2
ti−1

∫ ti
ti−1

σ2
tdt

∣∣]
≤∆−3/2

n c̃−4E
[(

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
)2]1/2E[(∆nσ

2
ti−1
−
∫ ti

ti−1

σ2
tdt
)2]1/2

.

Combining Cauchy-Schwarz and Burckholder-Davis-Gundy inequalities and the smoothness Assumption 2
we successively obtain

E
[(

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
)2]
. ∆2

n,

E
[(

∆nσ
2
ti−1
−
∫ ti

ti−1

σ2
tdt
)2]
. ∆2(1+α)

n .

We infer E[|I|] .
∑
i∈In ∆

−3/2
n ∆n∆1+α

n . ∆
α−1/2
n → 0 since α > 1/2 by assumption. For the term II, since

the kernel K used for the nonparametric estimation has support included in [0,∞), we have that σ̂
2

n,ti−1
is
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Fi−1-measurable. Conditioning on Fi−1, we set

χni = E
[
∆−1/2
n (∆n

i X
2 −∆n

i X
1)(∆n

i X
2 − e−ϑn(T2−T1)∆n

i X
1)
σ̂

2

n,ti−1
−σ2

ti−1

σ2
ti−1

σ̂
2

n,ti−1

∣∣Fi−1

]
= ∆−1/2

n (e−ϑ(T2−T1) − e−ϑn(T2−T1))(e−ϑ(T2−T1) − 1)ξni ,

say, with ξni = E
[ ∫ ti
ti−1

e−2ϑ(T1−t)σ2
t dt
∣∣Fi−1

] σ̂2

n,ti−1
−σ2

ti−1

σ2
ti−1

σ̂
2

n,ti−1

. It follows that

n∑
i=1

E
[
|ξni |

∣∣Fi−1

]
≤ ∆nM

2c̃−4
n∑
i=1

sup
i∈In

∣∣σ̂2

n,ti−1
− σ2

ti−1

∣∣→ 0

in probability by Theorem 2. Since ∆
−1/2
n

(
e−ϑ(T2−T1) − e−ϑn(T2−T1)

)
is bounded, we use Lemma 3.4 in [14]

applied to variables ξni to conclude
∑bt/∆nc
i=1 E[χni | Fi−1]→ 0 in probability, locally uniformly in t. Moreover,

E
[(
χni
)2∣∣Fi−1

]
. ∆−1

n E
[(

(∆n
i X

2 −∆n
i X

1)(∆n
i X

2 − e−ϑn(T2−T1)∆n
i X

1)
)2∣∣Fi−1

]
sup
i∈In
|σ̂2

n,ti−1
− σ2

ti−1
|

which is of order ∆−1
n ∆2

n∆
α/(2α+1)
n so that

∑
i∈In E

[(
χni
)2∣∣Fi−1

]
. ∆

α/(2α+1)
n → 0 in probability. Applying

Lemma 3.4 in [14] to the sequence χni enables us to conclude that II converges to 0 in probability and (10)
follows.

Step 2. Since ϑ; ˜̀i,n
ϑ,σ is smooth (at least twice differentiable) and ϑn − ϑ is of order n−1/2 a second-order

Taylor expansion of ˜̀i,nϑn,σ at ϑ implies that

(11)
√
n
(˜̀i,n
ϑn,σ
− ˜̀i,nϑ,σ)−√n(ϑn − ϑ)∂ϑ ˜̀i,nϑ,σ → 0

in probability. Since |In| ∼ n(1− hn) ∼ n, it is not difficult to check that

(12) ∆n

∑
i∈In

∂ϑ ˜̀i,nϑ,σ ∼ −Ĩϑ,σ,σ = − (T2 − T1)2

(eϑT2 − eϑT1)2

∫ T

0

e2ϑtσ2
t

σ2
t

dt

in probability under Pϑ,σ,σ, that is the total Fisher information associated to the efficient scores ˜̀i,nϑ,σ. Sum-
ming each term in (11) for i ∈ In, using (12) and the fact that ∆−1

n and n are of the same order, we further
infer

(13) ∆1/2
n

( ∑
i∈In

(˜̀i,n
ϑn,σ̂n

− ˜̀i,nϑ,σ)+ ∆−1
n (ϑn − ϑ)Ĩϑ,σ,σ

)
→ 0

in probability, using (10) in order to substitute σ by σ̂n in the first term. Moreover, (13) remains true if we
replace ϑn by the discretised version ϑ̂2,n of ϑ̂n, using moreover that

√
n(ϑ̂n − ϑ) is bounded in probability

thanks to Theorem 1. We refer to the proof of Theorem 5.48 in [21] for the details.

Step 3. We establish

(14) ∆n

∑
i∈In

(˜̀i,n
ϑ̂2,n,σ̂n

)2 → Ĩϑ,σ,σ

in probability under Pϑ,σ,σ . The computations are similar to Step 1, combining Theorems 1 and 2. We
briefly give the mains steps. Observe that

∆n

∑
i∈In

(˜̀i,n
ϑn,σ̂n

)2 −∆n

∑
i∈In

(˜̀i,n
ϑ,σ

)2
= (T2 − T1)

∑
i∈In

(Ii + IIi + IIIi),
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with

Ii = ∆n
(∆n

i X
2−∆n

i X
1)2(

∆nσ̂
2

n,ti−1

)2

( (∆n
i X

2−e−ϑn(T2−T1)∆n
i X

1)2e−2ϑn(T2−T1)

(1−e−ϑn(T2−T1))6 − (∆n
i X

2−e−ϑ(T2−T1)∆n
i X

1)2e−2ϑ(T2−T1)

(1−e−ϑ(T2−T1))6

)
,

IIi = ∆n(∆n
i X

2 −∆n
i X

1)2 (∆n
i X

2−e−ϑ(T2−T1)∆n
i X

1)2e−2ϑ(T2−T1)

(1−e−ϑ(T2−T1))6

(
1(

∆nσ̂
2

n,ti−1

)2 − 1(
∆nσ2

ti−1

)2

)
,

IIIi = ∆n(∆n
i X

2 −∆n
i X

1)2 (∆n
i X

2−e−ϑ(T2−T1)∆n
i X

1)2e−2ϑ(T2−T1)

(1−e−ϑ(T2−T1))6

(
1(

∆nσ2
ti−1

)2 −
1( ∫ ti

ti−1
σ2
tdt
)2 ).

For the term Ii we use a Taylor expansion of ϑn near ϑ in order to obtain E[|T 1
i,n|] . |ϑn − ϑ|∆−1

n ∆2
n and

in turn E
[∣∣∑

i∈In Ii
∣∣] . |ϑn − ϑ|. For the term IIi we use the convergence of σ̂n,ti−1 and the conditioning

argument in a similar way as in Step 1 to obtain
∑
i∈In IIi → 0 in probability. For the term IIIi, an analysis

of the convergence of σ̂n,ti−1
using Assumption 2 shows that E[

∑
i∈In |IIIi|] . ∆α

n. This proves

∆n

∑
i∈In

(˜̀i,n
ϑn,σ̂n

)2 −∆n

∑
i∈In

(˜̀i,n
ϑ,σ

)2 → 0

in probability and the result remains true with ϑ̂2,n in place of ϑn. Since ∆n

∑
i∈In

(˜̀i,n
ϑ,σ

)2 ∼ Ĩϑ,σ,σ in
probability under Pϑ,σ,σ we obtain (14).

Step 4. By definition of ϑ̃2,n, we have

∆−1/2
n

(
ϑ̃2,n − ϑ

)
Ĩϑ,σ,σ =∆−1/2

n (ϑ̂2,n − ϑ)Ĩϑ,σ,σ + ∆−1/2
n

∆nĨϑ,σ,σ
∑
i∈In

˜̀i,n
ϑ̂2,n,σ̂n

∆n

∑
i∈In

(˜̀i,n
ϑ̂2,n,σ̂n

)2 ∼ ∆1/2
n

∑
i∈In

˜̀i,n
ϑ,σ

in probability under Pϑ,σ,σ thanks to (13) and (14) established in the two previous steps. We further write

∆1/2
n

∑
i∈In

˜̀i,n
ϑ,σ = ∆1/2

n

n∑
i=1

˜̀i,n
ϑ,σ −∆1/2

n

bhn∆−1
n c∑

i=1

˜̀i,n
ϑ,σ,

and we claim that

(15) ∆1/2
n

bhn∆−1
n c∑

i=1

˜̀i,n
ϑ,σ → 0

in probability. We conclude the proof using the following limit theorem, proof of which is delayed until
Appendix 6.2.

Lemma 2. Work under Assumptions 1 and 2 with α > 1/2. Then

∆1/2
n

n∑
i=1

˜̀i,n
ϑ,σ → N (0, Ĩϑ,σ,σ)

stably in law, where, conditional on F , the random variable N (0, Ĩϑ,σ,σ) is centred Gaussian with conditional
variance Ĩϑ,σ,σ.

In view of Lemma 2 we obtain Theorem 4.

Step 5. It remains to prove (15). Write ∆
1/2
n
˜̀i
ϑ,σ,σ = (T2−T1)e−ϑ(T2−T1)

(1−e−ϑ(T2−T1))3 (Ii + IIi), with

Ii = ∆1/2
n

(∆n
i X

2−∆n
i X

1)(∆n
i X

2−e−ϑ(T2−T1)∆n
i X

1)

∆nσ2
ti−1

,

IIi = ∆1/2
n (∆n

i X
2 −∆n

i X
1)(∆n

i X
2 − e−ϑ(T2−T1)∆n

i X
1)

∫ ti
ti−1

(σ2
ti−1
−σ2

t )dt

∆nσ2
ti−1

∫ ti
ti−1

σ2
tdt
.

We readily have

E
[
I2
i ] ≤ c̃−2∆−1

n E
(
(∆n

i X
2 −∆n

i X
1)2(∆n

i X
2 − e−ϑ(T2−T1)∆n

i X
1)2
)
. ∆n,
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so that E[(
∑bhn∆−1

n c
i=1 Ii)

2] =
∑bhn∆−1

n c
i=1 E[I2

i ] . hn∆−1
n ∆n = hn → 0. The term IIi is similar to the term I

in Step 1. We readily obtain obtain E[|IIi|] . ∆
1/2+α
n . It follows that

E
[∣∣ bhn∆−1

n c∑
i=1

IIi
∣∣] . hn∆−1

n ∆1/2+α
n = hn∆α−1/2

n → 0

since α ≥ 1/2, and (15) follows. The proof of Theorem 4 is complete.

6. Appendix

6.1. Proof of Lemma 1.

The first part of the result. Since supt∈[0,T ] t
−sω(Y )t < ∞ for some s > 1/2, we have that Y is continuous

in probability on [0, T ]. Write

∆−1
n

n∑
i=1

(
∆
n

i (Y )
)2 − ∫ T

0

Y 2
t dt = I + II + III,

with

I =

n∑
i=1

∫ i∆n

(i−1)∆n

(Y 2
(i−1)∆n

− Y 2
t )dt,

II = ∆−1
n

n∑
i=1

(∫ i∆n

(i−1)∆n

(Yt − Y(i−1)∆n
)dt
)2

,

III = 2

n∑
i=1

Yti−1

∫ i∆n

(i−1)∆n

(Yt − Y(i−1)∆n
)dt.

First, fix ε > 0. There exists some η > 0 such that E[|Yt − Ys|] < ε as soon as |t − s| < η. Moreover, by
localisation we may (and will) assume that there is some M > 0 such that supt |Yt| ≤M . It follows that

E[|I|] ≤
n∑
i=1

∫ i∆n

(i−1)∆n

E[|Y 2
(i−1)∆n

− Y 2
t |]dt ≤ 2M

n∑
i=1

∫ i∆n

(i−1)∆n

E[|Y(i−1)∆n
− Yt|]dt ≤ 2TMε

as soon as ∆ ≤ η which is true for large enough n. Thus I → 0 in probability. The proof is similar for II
and III.

The second part of the result. Write

∆−1
n

n∑
i=1

∆
n

i (Y )

∫ i∆n

(i−1)∆n

ZtdBt −
n∑
i=1

∫ i∆n

(i−1)∆n

YtZtdBt = I + II,

with

I =

n∑
i=1

∫ i∆n

(i−1)∆n

(Y(i−1)∆n
− Yt)ZtdBt

II = ∆−1
n

n∑
i=1

(
∆
n

i (Y )−∆nY(i−1)∆n

) ∫ i∆n

(i−1)∆n

ZtdBt.

Fix ε > 0 and η > 0 such that E[|Yt − Ys|] < ε as soon as |t− s| < η. By localisation, we may assume that
Z is such that supt max(|Zt|, |Yt|) ≤M . By the martingale property,

E[I2] =

n∑
i=1

E
[( ∫ i∆n

(i−1)∆n

(Y(i−1)∆n
− Yt)ZtdBt

)2]
=

n∑
i=1

∫ i∆n

(i−1)∆n

E
[
(Y(i−1)∆n

− Yt)2Z2
t

]
dt ≤ 2TM3ε

as soon as ∆n ≤ η which is true for large enough n. For II, by Cauchy-Schwarz inequality,

II ≤
( n∑
i=1

(
∆−1
n

∫ ti

ti−1

(Yt − Yti−1
)dt
)2)1/2( n∑

i=1

( ∫ ti

ti−1

ZtdBt
)2)1/2

.
( n∑
i=1

(
∆−1
n

∫ ti

ti−1

(Yt − Yti−1
)dt
)2)1/2
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in probability. Let ϕ(x) = 1[0,1) be the Haar function, and ϕj,k(x) = 2j/2ϕ(2jx − k) = 2j/21[k2−j ,(k+1)2−j)

for any j ≥ 0, k ∈ Z. We prove the result under the restriction that n = 2j and that the ti are of the form
k2−j . The general case of a regular mesh ti = i∆n is slightly more intricate but follows the same ideas. We
have

n∑
i=1

(
∆−1
n

∫ ti

ti−1

(Yt − Yti−1)dt
)2

=
1

T 2

2j∑
k=1

(
2j
∫ tk

tk−1

(Yt − Ytk−1
)dt
)2

=

2j−1∑
k=0

(
(Pj(Y·T )(k2−j)− Yk2−jT

)2
where Pj(f) =

∑2j−1
k=0 (

∫
ϕj,kf)ϕj,k is the orthogonal projection on Span{ϕj,k, k = 1, . . . , 2j}. For large

enough j, there exists some constant C > 0 such that

E
[ 2j−1∑
k=0

(
Pj(Y·T )

( k
2j
)
− Y k

2j
T

)2] ≤ C2jE
[ ∫ 1

0

(Pj(Y·T )(u)− YuT )2du
]
.

It follows that

E
[ n∑
i=1

(
∆−1
n

∫ ti

ti−1

(Yt − Yti−1
)dt
)2] ≤ C2jE

[ ∫ 1

0

(Pj(Y·T )(u)− YuT )2du
]

. 2jE
[ ∫ 1

0

( ∫ 1

0

2j1|u−y|∈[0,2−j)(YyT − YuT )dy
)2
du
]

. 2j
( ∫ 1

0

ω2−jxT (Y )dx
)2
. 2j(1−2s)

and this term converges to 0 since s > 1/2 by assumption. The proof of Lemma 1 is complete.

6.2. Proof of Lemma 2. First we establish the result for

T2 − T1

eϑ(T2−T1) − 1
∆1/2
n

n∑
i=1

χni , with χni =
σti−1

∆n
i B
∫ ti
ti−1

e−ϑ(T1−t)dBt

∆nσ(i−1)∆n

,

by applying Lemma 3.7 in [14]. To do so, we check conditions (3.43)–(3.46) in [14] for χni . We keep up with
the notation of [14]. First, we have E[χni |Fi−1] = 0, which ensures (3.43) with At = 0. Next,

E[(χni )2|Fi−1] = ∆n
σ2

(i−1)∆n

∆2
nσ

2
(i−1)∆n

E[(∆n
i B)2|Fi−1]E[(

∫ i∆n

(i−1)∆n

e−ϑ(T1−t)dBt)
2|Fi−1]

=
σ2

(i−1)∆n

σ2
(i−1)∆n

∫ i∆n

(i−1)∆n

e−2ϑ(T1−t)dt,

so that
bt/∆nc∑
i=1

E[(χni )2|Fi−1]→
∫ t

0

e−2ϑ(T1−s)σ2
s

σ2
s

ds

in probability. This is Condition (3.44) in [14] with Ct =
∫ t

0
e−2ϑ(T1−s)σ2

s

σ2
s

ds. It follows that

E[(χni )4|Fi−1] = ∆2
n

σ4
(i−1)∆n

∆4
nσ

4
(i−1)∆n

E[(∆n
i B)4|Fi−1)E[(

∫ i∆n

(i−1)∆n

e−ϑ(T1−t)dBt)
4|Fi−1]

≤ 9∆2
n

σ4
(i−1)∆n

σ4
(i−1)∆n

(∫ i∆n

(i−1)∆n

e−2ϑ(T1−t)dt
)2

by independence of the two Wiener integrals. Therefore
∑n
i=1 E[(χni )4|Fi−1] → 0 in probability. This is

condition (3.45) in [14]. Finally, E
[
χni ∆n

i B
∣∣Fi−1

]
= E

[
χni ∆n

i B
∣∣Fi−1

]
= 0 by independence which ensures

condition (3.46) in [14]. We subsequently apply Lemma 3.7 in [14] to conclude that

T2 − T1

eϑ(T2−T1) − 1
∆1/2
n

n∑
i=1

χni
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converges stably in law to a random variable, which, conditional on F , is Gaussian with variance Ĩϑ,σ,σ. In
order to complete the proof, we write

∆1/2
n

n∑
i=1

˜̀i,n
ϑ,σ = ∆1/2

n

n∑
i=1

(˜̀i,n
ϑ,σ −

T2 − T1

eϑ(T2−T1) − 1

n∑
i=1

χni

)
+

T2 − T1

eϑ(T2−T1) − 1
∆1/2
n

n∑
i=1

χni

and it remains to show the convergence of ∆
1/2
n
∑n
i=1

(˜̀i,n
ϑ,σ −

T2−T1

eϑ(T2−T1)−1

∑n
i=1 χ

n
i

)
→ 0 in probability. This

is done using similar arguments as used in the proof of Theorem 2. We omit the details.

6.3. Further technical results.

Lemma 3. Let 0 < α < β < γ. The functions f(x) = e−βx−1
e−αx−1 and g(x) = e−γx−e−βx

e−βx−e−αx are decreasing on
(0,∞).

Proof. Both f and g are smooth. For x > 0, we have f ′(x) = −βe−βx(e−αx−1)+αe−αx(e−βx−1)
(e−αx−1)2 and f ′(x) = 0

is equivalent to
β
αe
−(β−α)x = f(x).

Assume on the contrary that f is increasing on a given subinterval of (0,∞). Since limx→0+
f ′(x) = β

α (−β+
α) < 0, there exists 0 < x1 < x2 such that f(x1) ≤ f(x2), and f ′(x1) = f ′(x2) = 0. Thus, writing the
previous equation for x = x1 and x = x2 and substracting the first equation to the second one leads to

β
α

(
e−(β−α)x2 − e−(β−α)x1

)
= f(x2)− f(x1).

The LHS is negative and RHS is positive, a contradiction. It follows that g(x) = e−γx−e−αx
e−βx−e−αx−1 = e−(γ−α)x−1

e−(β−α)x−1
−

1. Using the first part of the lemma we obtain that g is decreasing too. �
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