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ESTIMATING FAST MEAN-REVERTING JUMPS IN ELECTRICITY

MARKET MODELS

THOMAS DESCHATRE, OLIVIER FÉRON AND MARC HOFFMANN

Abstract. Based on empirical evidence of fast mean-reverting spikes, we model electricity price

processes X + Zβ as the sum of a continuous Itô semimartingale X and a a mean-reverting

compound Poisson process Zβt =
∫ t
0

∫
R xe

−β(t−s)p(ds, dt) where p(ds, dt) is Poisson random

measure with intensity λds ⊗ dt. In a first part, we investigate the estimation of (λ, β) from
discrete observations and establish asymptotic efficiency in various asymptotic settings. In a

second part, we discuss the use of our inference results for correcting the value of forward

contracts on electricity markets in presence of spikes. We implement our method on real data
in the French, Greman and Australian market over 2015 and 2016 and show in particular the

effect of spike modelling on the valuation of certain strip options. In particular, we show that

some out-of-the-money options have a significant value if we incorporate spikes in our modelling,
while having a value close to 0 otherwise.

Mathematics Subject Classification (2010): 62M86, 60J75, 60G35, 60F05.
Keywords: Financial statistics, Discrete observations, Electricity market modelling, Deriva-

tives pricing.

1. Introduction

1.1. Motivation. A striking empirical feature of electricity spot prices is the presence of spikes,
that can be described by a jump in the price process immediately followed by a fast mean reversion
(see Figure 1 showing the behaviour of electricity spot prices in different markets over one year
of historical data). These spikes are due to the non-storability of electricity, an abrupt change in
the demand or the offer (due to weather conditions, outages and so on) having a direct impact on
prices. For risk management purposes, the modelling of these extreme events is essential. And, due
to the non-storability of electricity, the modelling of forward contracts (used as hedging products)
are also needed. If (St)t≥0 denotes the electricity spot price, the forward price f(t, T ) at time t
delivering 1 megawatt hour (MWh) at time T can be defined as

(1) f(t, T ) = E
[
ST
∣∣Ft], t ≥ 0

where Ft is the available information up to time t and the expectation is taken under a risk-neutral
probability. In this context, one usually faces two major issues: first and prior to data analysis, a
stochastic model that captures the main characteristics of spot prices, and especially the presence
of fast mean-reverting spikes has to be set, however simple enough to give tractable formulas for
the forward prices f(t, T ). Second, the chosen model must be calibrated with efficient statistical
procedures to show its adequacy to the data, and to properly quantify risk measures. The main
difficulty is the estimation of the characteristics of the spikes. To this end, Cartea and Figueroa [8]
extend the popular and tractable approach of Lucia et al. [16] by introducing jumps in the price
process, resulting in the model

logSt = ρ(t) + Yt, dYt = −βYtdt+ σ(t)dWt + log JdNt, t ≥ 0,
1
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where ρ(t) and σ(t) are deterministic components, (Wt) is a Wiener process, (Nt) is a Poisson
process and J is the jump size drawn proportional to a log-normal distribution. A similar model
is proposed in Geman and Roncoroni [12], adding up a threshold parameter that determines the
sign of the jumps.
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(b) German spot price.
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(c) Australian spot price.

Figure 1. Series of the spot price during the year 2016 for France, Germany
and Australia. The frequency of the data is 1 hour for France and Germany and
30 minutes for Australia. Spot jumps are estimated using a threshold of 5σ̂∆−0.01

n

where σ̂ is the multi-power variation of order 20.

In these approaches, the mean reverting coefficient β > 0 is the same for the continuous compo-
nent and for the spike component. However, statistical evidence shows that the mean reversion of
the spike component is much stronger than the one of the Brownian component, see for instance
Benth et al. [6]. The estimated β then underestimates the mean reversion of the spike component
and overestimates the one of the continuous component. A similar model slightly more realistic
is also proposed by Geman and Roncoroni [12] but this one does not provide explicit formulas
for deriving f(t, T ). Yet another approach is undertaken in Benth et al. [5, 6] with multi-factor
models:

St =

m∑
i=1

wiY
i
t , dY it = −βiY it dt+ dLit, t ≥ 0, i = 1, . . . ,m,

for some weights wi, and where (Lit)t≥0 are independent time-inhomogeneous subordinators en-
suring that (St)t≥0 remains nonnegative. Benth and collaborators establish in [5, 6] that m = 2
is sufficient for modelling purposes, each factor (Y it )t≥0 having its own mean reverting parameter,
allowing for a fast mean reversion and a slower one. However, the use of subordinators implies
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that the volatility of the process seems to be underestimated. Finally, multi-factor models with a
Brownian component and a spike component are studied in Meyer and Tankov [19], Schmidt [23]
and Gonzales et al. [13]. Meyer and Tankov estimate the mean-reverting parameters using spectral
methods and the jumps are detected by filtering. In Schmidt [23], the parameters of the model are
estimated using maximum likelihood with the EM algorithm, implying an approximation of the
process with its Euler scheme. Gonzales and co-authors develop a Bayesian framework and recover
the parameters of the model by MCMC. In a more general context than electricity price modelling,
Moreno et al. [20] use a method of moments to estimate the parameters of a jump diffusion model
when the log-price is the sum of an arithmetic Brownian motion and a mean reverting compound
Poisson process.

In this paper, we mostly focus on the estimation of the characteristics of the spike process in
the case of a wide and unifying range of models, including the aforementioned ones and allowing
us to get analytical formulas of forward prices. More precisely, the goal of the paper is at least
threefold:

i) Introduce a general electricity spot price model consistent with historical data that encom-
passes the previous approaches and overcomes their limitations.

ii) Develop within this model efficient and robust statistical procedures that estimate the
spikes’ characteristics.

iii) Derive an explicit correction formula for the value f(t, T ) of forward contracts revealing
the effect of spikes along maturities.

Therefore, our proposed approach can be easily used in practice, solving both estimation and
pricing issues.

1.2. Main results. We consider an extended framework that encompasses [19], [23] and [13].
In particular, our approach does not require that the continuous part of the price process is an
Ornstein-Uhlenbeck, a necessary condition in the aforementioned models.

A semimartingale model with fast mean-reverting jumps. On a rich enough filtered probability
space (Ω,F , (Ft)t≥0,P) that will accommodate all the considered random quantities, we model the
electricity spot price Xt = St or Xt = logSt by

(2) Xt = Xc
t + Zβt , t ≥ 0,

where (Xc
t )t≥0 is a continuous Itô semimartingale and (Zβt )t≥0 is the so-called spike process, gov-

erned by a mean-reverting factor β > 0. More specifically, we assume that

(3) Xc
t = Xc

0 +

∫ t

0

µsds+

∫ t

0

σsdWs, t ≥ 0

where (σt)t≥0 and (µt)t≥0 are two adapted càdlàg processes, (Wt)t≥0 a (Ft)-standard Brownian
motion and

(4) Zβt =

∫ t

0

∫
R
xe−β(t−s)p (ds, dx) , t ≥ 0,

with p a random Poisson measure on [0,∞)× R independent of (Wt)t≥0, with intensity

q = λ dt⊗ ν(dx),

for some λ > 0 and a probability measure ν(dx) on R. We thus model the electricity spot price as
a classical continuous Itô semimartingale (Xc

t )t≥0 allowing for the usual financial fluctuations and
usual models (factor models, mean-reverting models and so on) to which we add a perturbation
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(Zβt )t≥0 of “spikes” or “jumps”, triggered by exogenous physical hazard, at intensity λ and magni-
tude ν(dx), but with a relaxation period 1/β comparable to λ that accounts for the absorption of
such events by the market toward resulting in stable prices at large scales. The term comparable
is a bit vague at this stage, and will be assessed precisely in Section 2.1, enabling us to speak of
fast mean-reversion. In this setting, model (2)-(3)-(4) is well posed and can reproduce, at least
visually, the general shape of electricity spot markets, compare historical data from Figure 1 and
sample paths simulations given in Figure 2 and detailed in the simulation Section 3.2.
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(a) λn = 10, βn = 300.

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

10

20

30

40

50

X

Jumps

(b) λn = 10, βn = 1000.
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(c) λn = 75, βn = 300.

Figure 2. Simulation of the process X in the case of a model having continuous
part defined in (12) and with jump sizes having law 0.4 (−E (40)) + 0.6E (30) for
different values of λn and βn.

Statistical setting. We assume that we observe the process (Xt)t≥0 given by (2)-(3)-(4) over the
time interval [0, T ] on a regular grid

0 = t0,n < t1,n < . . . , tn,n = T, ti,n = i∆n, for 0 ≤ i ≤ n,

with mesh ∆n. Thus we have n (or rather n+ 1) observations

(5) Xn = (X0, X∆n
, . . . , Xn∆n

= XT ).

In the following, for a given process Y , we use the classical notations ∆n
i Y = Yti,n − Yti−1,n and

∆Ys = Ys − Ys− .
Asymptotics are taken as n→∞. We assume that T is constant, and we take T = 1 with no loss
of generality. Equivalently, ∆n = 1/n→ 0 as n→∞. This asymptotic setting is usually referred
to as the “high-frequency” framework (for instance the classical textbook [3] by Aı̈t-Sahalia and
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Jacod), but this terminology is a bit misleading: our framework certainly belongs to statistical
finance, but it has no link to high-frequency finance or microstructure modelling of any sort. In
practice, we apply our methodology to three markets: the French EPEX, the German EPEX and
the Australian electricity spot in Queensland, see Section 3 below. We use data between 2015,
Jan. 01 and 2016, Dec. 31. with hourly data (even less in the case of Australian data), so that
n = 17064 is considered to be large. Equivalently, one hour is considered to be small in front of
2 years. In our setting, the important fact about the assumption that T is fixed is that we leave
out any stationarity or ergodicity of the underlying process. We thus make an implicit statistical
robustness assumption, which we believe is of importance when considering recent and changing
energy markets over such time horizons.

The parameters of interest are λ, β > 0 that govern our correction formulas (see the application
to forward contracts prices f(t, T ) below). In particular we leave out the issue of identifying the
continuous semimartingale part (Xc

t )t≥0 i.e. the drift (µt)t≥0 and the volatility process (σt)t≥0 as
well as the jump distribution ν(dx).

The mean-reversion factor over the observation increment [ti−1,n, ti,n] is of size β∆n, and by
requiring β∆n to be large compared to the order of magnitude

√
∆n of ∆n

i X
c , we may hope to

recover β asymptotically. We thus introduce the asymptotic setting β = βn with the requirement

(6) β = βn →∞ while βn
√

∆n →∞

Condition (6) becomes

(7) βn
√

∆nλn →∞

if we let λ = λn → ∞, another necessary condition that enough jumps are available over the
observation period [0, T ]. A second crucial assumption is

(8) βn∆n . 1,

since otherwise, the spikes caused by the jumps of p are absorbed by the Brownian fluctuations of
Xc due to the fast relaxation period 1/βn and therefore cannot be detected by Xn.

Statistical results. Heavily relying on classical techniques in high-frequency finance (for instance
[3, Theorem 10.26, p.374]), we estimate in a first step the times and sizes of the jumps which
are random quantities, taking into account the interplay between βn, λn and ∆n dictated by the
asymptotic regime (6)-(7)-(8), see Proposition 4. In a second step, we construct an estimator of

βn based on an estimator ŝn of the right-derivative or instantaneous slope of t 7→ Zβt right after
a jump is detected. The estimator ŝn is based on averaging of instantaneous slope proxies of the
form ∆XTq (1− e−βn∆n) that govern the relaxation effect after a jump of size ∆XTq has occurred
at time Tq and it enables us to consider

β̂n = − 1

∆n
log (1− ŝn)

as our estimator of βn. Since βn itself varies with n and grows to infinity, the notion of convergence
has to be considered carefully. Under suitable assumptions, we prove in Theorem 6 that the relative
error

(9) En =
β̂n − βn
βn

→ 0
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in probability as n→∞. The error En has two components: a first term of order 1/(βn
√
λn∆n) due

to Brownian oscillations, and a second term of order min{λn/βn, 1/
√
βn}+

√
λn/βn that accounts

for the effect of jumps that are still present in the price process despite the relaxation effect. When
βn
√

∆nλn → ∞ and λn/βn . 1, we have En converges to 0. If we assume further
√
βn/λn → 0,

we obtain a central limit theorem for En with a Gaussian limit and an explicit rate of convergence
that depends on the interplay between λn, βn and ∆n. We have an analogous result (although less
demanding) for the estimation of the jump intensity λn detailed in Proposition 5.

Application to pricing forward contracts. We show in Theorem 7 that in the model for the spot
price (with X = S) defined by (2)-(3)-(4), the price f(t, T ) of a forward contract is given by

f (t, T ) = f c (t, T ) + fβ (t, T ) ,

where

f c (t, T ) = E
[
Xc
T | Ft

]
and

fβ (t, T ) = e−β(T−t)Zβt +
λ

β

∫
R
xν(dx)

(
1− e−β(T−t)

)
.

The term f c (t, T ) corresponds to the price of the forward contract in a continuous case framework.
The computation of this value has been extensively studied for different continuous models and it
is known analytically for the most common models, see for instance [5, 6] among others. The term
fβ (t, T ) is a correction that follows from our approach. It is of order λ/β and is usually small for
the applications we have in mind, see the practical implementation Sections 3 and 4. On balance,
the presence of spikes does not significantly impact the price of forward contracts to within these
order of magnitudes. This is consistent with our data, for which spikes are not observed on forward
prices. By neglecting the term fβ (t, T ), we can calibrate the process Xc

t to the observed forward

prices and the process Zβt to the observed spot prices with the estimation procedure proposed in
this paper. The results are similar for the modelling of the logarithm of the spot price (i.e when
X = log(S)) by (2)-(3)-(4), see Theorem 8. We implement the prices of the forward contracts and
Call options from a model calibrated to historical data on electricity prices in Section 4 and we
show the impact of the spike modelling on the valuation of a strip of options with payoff of the

form
∑I
i=1

(
Sti,n −K

)+
for different times ti,n. As expected, the value of this option increases if

we add significant large spikes. In particular, we show that some out-of-the-money options have a
significant value if we incorporate spikes in our modelling, while having a value close to 0 otherwise.

1.3. Organisation of the paper. Section 2 develops a rigorous mathematical framework for
the stochastic model (2)-(3)-(4) and gives the explicit construction of the estimators described in
Section 1.2 above together with their asymptotic properties in Propositions 4, 5 and Theorem 6.
Section 3 establishes the numerical feasibility and consistency of our statistical estimation results
on simulated and real data, based over two years (2015 and 2016) of electricity spot prices in three
different markets (French, German and Australian). Section 4 is devoted to the application of our
model and statistical results to forward contracts. We establish in Theorem 7 a correction formula
to get analytical forward prices and study the valuation of a strip of European Call options. The
proofs are given in Section 5.

2. Statistical results

2.1. Model assumptions. We consider the process (Xt)t≥0 defined by (2)-(3)-(4) in Section 1.2.
Following closely the standard notation of Aı̈t-Sahalia and Jacod [3], if ν is a positive measure and
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f a ν-integrable function, we write f (x) ? ν =
∫
R f (x) ν (dx). Remember also that we work over

a finite time horizon T = 1.

Assumption 1. We have E[(Xc
t )2] <∞ for every t ≥ 0. Moreover, t 7→ σt is continuous on [0, 1]

and for some deterministic σ, σ̄, c0 > 0, we have 0 < σ2 ≤ inft σ
2
t ≤ supt σ

2
t ≤ σ̄2, supt |µt| ≤ c0,

ν({0}) = 0 and |x|2 ? ν <∞.

Since our asymptotic results will be given in distribution (see Theorem 6 below), the condi-
tions on the drift (µt)t≥0 and (σt)t≥0 can substantially be weakened (in order to accommodate
for instance diffusion coefficients of the form σt = Xc

t h(Xc
t ) with a bounded h or even locally

integrable) by standard localisation procedures, see for instance [14, Section 4.4.1]. We observe (5)
and asymptotics are taken as n → ∞ or equivalently ∆n = n−1 → 0. We also allow λ = λn and
β = βn to either grow to ∞ with n or remain bounded, compare Equations (6)-(7)-(8) and the
accompanying discussion in Section 1.2 above.

Assumption 2. We have

λn . βn, βn∆n . 1, and λn∆n → 0.

The condition λn . βn ensures the stability of Xt as n → ∞ since Var(Xt) = Var (Xc
t ) +

Var(Zβnt ) = Var (Xc
t )+|x|2?ν λnt

2βn

(
1− e−2βn

)
→∞ if supn λn/βn =∞. The condition βn∆n . 1 is

necessary to identify spikes (or jumps): otherwise, a spike that occurs in the interval ((i− 1) ∆n, i∆n]
will be absorbed by the relaxation effect before we observe Xi∆n

. Finally, the condition λn∆n → 0
controls the no accumulation of jumps within the rate of observation.

In order to estimate the times and sizes of the jumps, we need the following:

Assumption 3. We have either (I) or (II), where

(I) For some $ ∈ (0, 1/2):

(i) λ2
n∆n → 0, (ii) λn1{|x|>∆

1/2−$
n /(βn∆n)} ? ν → 0, and (iii) λn1{|x|<∆

1/2−$
n } ? ν → 0.

(II) For some $ ∈ (0, 1/2) and a sequence of integers kn ≥ 1:

(i) λ2
n∆nk

2
n → 0, (ii) λn1{|x|>eβn∆nkn∆

1/2−$
n } ? ν → 0, (iii) λn1{|x|<∆

1/2−$
n } ? ν → 0

and (iv) λne
−(βn∆1−$

n )2 → 0.

Assumption 3 (I) implies βn∆n = o (1). Condition (i) ensures that the number of jumps in a
interval of size ∆n is essentially 1. In the case where βn is bounded, (ii) is implied by (i) and we
have the usual conditions for the detection of jumps (see Mancini [17]). Condition (ii) controls the
size of the mean-reversion. Condition (iii) controls the size of the small jumps that cannot converge
too fast to 0. If the jumps are bounded below by some constant as Mancini [17] the condition is
automatically satisfied.

Assumption 3 (II) (iv) implies that βn∆1−$
n → ∞ and in particular βn∆

1/2
n → ∞, implying

that the mean reversion of order βn∆n is stronger than the order of magnitude ∆
1/2
n of Brownian

increments. It also allows for the case βn∆n ≈ 1. In the setting of Assumption 3 (II), the mean
reversion is more difficult to distinguish from the jumps and in the case βn∆n ≈ 1, the jumps and
the drift have the same size and are not distinguishable from their size solely. Condition (i) states
that there is at most one jump in an interval of size kn which is large enough for the spike to
vanish. Assumption 3 (II) also implies that λ2

n/βn → 0. Assumption 3 (II) allows for high values
of βn but the number of jumps needs then to be smaller than in case Assumption 3 (I) compared
to βn.
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2.2. Estimation of the jumps times and λn. We first construct estimators of the sequence of
the jumps and of their intensity λn. Assumption 3 is in force. Let

Nt =
∑
s≤t

1{∆Xs 6=0}, t ≥ 0,

denote the number of jumps of (Xt)t≥0 up to time t and let T1 < T2 < · · · < Tq < · · · denote
the random times at which jumps occur. By construction, the sizes of jumps

(
∆XTq

)
q≥1

form a

sequence of independent and identically distributed random variables independent of (Nt)t≥0. Let
in,q be the random integer such that

(i (n, q)− 1) ∆n < Tq ≤ i (n, q) ∆n.

Define the increasing sequence

In (1) < ... < In(λ̂n)

of indices i ∈ {1, . . . , n} defined by the realisation of the following successive events:{ |∆n
i X|√
∆n

> vn

}
under Assumption 3 (I)

and { |∆n
i X|√
∆n

> vn, ∆n
i X∆n

i+1X < 0
}

under Assumption 3 (II).

with vn � ∆−$n , following the notations of [3, Ch. 10].
Under Assumption 3 (II), we need the supplementary condition ∆n

i X∆n
i+1X < 0 for the fol-

lowing reason: whenever a jump occurs, the mean reverting is dominant in the next observation
interval and has a direction opposite to the sign of the jump. Furthermore, it enables us to discard
the increments caused by the mean reversion that are large enough to be detected as jumps. In-
deed, if we detect a false jump due to the mean reversion effect, the next increments will follow the
same dynamics and it will share the same sign with first increment. The property that no jump
lies within the next observation interval is ensured by the existence of kn. Let

Ωn =
{
λ̂n = N1,∀q ∈ {1, ..., N1} : Tq ∈

(
In(q)∆n −∆n, In(q)∆n

]}
.

Proposition 4. Work under Assumptions 1, 2 and 3. We have P (Ωn)→ 1.

The proof of Proposition 4 relies on a result of Aı̈t-Sahalia and Jacod [3, Theorem 10.26, p.374].

However, the presence of a drift term −βn
∫ t

0
Zβns ds that depends on n together with the fact that

λn → ∞ makes the extension not trivial. Proposition 4 also provides us with an estimator λ̂n of
λn. In the case λn →∞, we have the following asymptotic property:

Proposition 5. Work under Assumption 1, 2 and 3 and assume that λn →∞. We have

(10)
√
λn
λ̂n − λn
λn

→ N (0, 1)

in distribution as λn →∞.

This result is straightforward and asymptotically optimal: consider indeed the seemingly richer
experiment where one continuously observes a Poisson process (Pt)0≤t≤1 with intensity λ > 0. The
variable P1 is a sufficient statistic and the Cramer-Rao bound tells us that any unbiased estimator

λ̂ necessarily satisfies E[(λ̂ − λ)2] ≥ I(λ)−1, where I(λ) = 1 + λ−1 is the Fisher information
associated to the observation of P1, i.e. a Poisson random variable with parameter λ. Equivalently

E
[(
λ̂−λ
λ

)2] ≥ (λ−1 + λ−2) ∼ λ−1 as λ→∞ which is consistent with the convergence (10).



ESTIMATING FAST MEAN-REVERTING JUMPS 9

A natural estimator of the jump sizes is ∆n
In(q)X for q ∈ {1, ..., λ̂n}, see [3, Theorem 10.21, p.370].

In our case, ∆n
In(q)X is equal to ∆XTqe

−βn(Tq−In(q)∆n) plus a negligible term. If βn∆n → 0,

∆n
In(q)X is then equivalent to ∆XTq but if βn∆n � 1, the bias ∆XTq

(
1− e−βn(Tq−In(q)∆n)

)
remains and it is not possible to identify the size of the jump. However, if λn → ∞, one can
infer some statistical properties of the jumps size. Indeed, (Tq − In (q) ∆n)1≤q≤λ̂n has a known

distribution and this error can be averaged. We can easily prove the following result:

mβn∆n

(1− e−mβn∆n) λ̂n

λ̂n∑
q=1

(
∆In(q)X

)m → xm ? ν

in probability for every integer m > 0 such that xm ?ν <∞. The proof for the case m = 1 appears
in the proof of Theorem 6. Combining this result with our estimator of βn provided below enables
us to have an estimator for the moments of ν.

2.3. Estimation of βn. We are ready to construct an estimator of βn. Define the sign function

as sgn(x) = 1 if x ≥ 0 and −1 otherwise. On the event {λ̂n > 0}, define β̂n via

(11) exp(−∆nβ̂n) = max
{

1 +

∑λ̂n
q=1 sgn(∆n

In(q)X)
(
∆n
In(q)+1X + 2∆n

∑q−1
j=1 ∆n

In(j)X
)

∑λ̂n
q=1 |∆n

In(q)X|
,∆n

}
and set β̂n = 0 otherwise. Our main result describes precisely the behaviour of β̂n under the
different asymptotic regimes of interest.

Theorem 6. Work under Assumptions 1, 2 and 3. Let βn
√
λn∆n → ∞. On the set {λ̂n > 0},

we have ∣∣β̂n − βn∣∣
βn

. λn∆n +
1

βn
√
λn∆n

+ min

{
1√
βn
,
λn
βn

}
in probability. More precisely,

i) On {λ̂n > 0}, we have

β̂n − βn
βn

=Mn + VnJ Tn ,

where

Mn = eβn∆n
λn
βn

(x ? ν) (sgn(x) ? ν)

|x| ? ν
(eβn∆n − 1

βn∆n
− 1
)
,

Vn = (V(i)
n )1≤i≤4 ∈ R4 is such that

V(1)
n = eβn∆n

√
λn√

3βn|x|?ν

(
(sgn(x) ? ν)2(|x|2 ? ν) + (x ? ν)2 − 2(sgn(x) ? ν)(|x|2 ? ν)

)1/2
,

V(2)
n = eβn∆n min

{( |x|2?ν
(|x|?ν)2

1
2βn

(1−e−2βn∆n )
2βn∆n

)1/2
, λnβn

}
,

V(3)
n = eβn∆n

(
βn∆n

1−e−βn∆n

) √∫ 1
0
σ2
sds

|x|?ν
√
λnβn

√
∆n
,

V(4)
n = eβn∆n

√∫ 1
0
σ2
sds
√

∆n

|x|?ν
√
λn

,

and Jn = (J (i)
n )1≤i≤4 ∈ R4 is bounded in probability as n→∞.
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ii) If λn →∞, then

(J (3)
n ,J (4)

n )→ N (0, IdR2)

in distribution as n→∞.
iii) If λn →∞, |x|3 ? ν <∞ and (sgn(x) ? ν)2|x|2 ? ν + (x ? ν)2 − 2sgn(x) ? ν|x|2 ? ν 6= 0, we

have

(J (1)
n ,J (3)

n ,J (4)
n )→ N (0, IdR3)

in distribution as n→∞.
iv) If βn/λ

2
n → 0, the conditions of iii) and |x|4 ? ν <∞ hold together, we finally obtain

Jn → N (0, IdR4)

in distribution as n→∞.

Some remarks on the different error terms: 1) the term of order 1/(βn
√
λn∆n) accounts for the

presence of a Brownian motion in the term (Xc
t )t≥0. When λn is bounded, we need βn

√
∆n →∞

or equivalently
√

∆n = o (βn∆n): the size of the slope of (Zβt )t≥0 after a jump needs to dominate
the Brownian motion part which is of order

√
∆n. In the case where λn →∞, we can average the

error due to the Brownian martingale part and then diminish the order of the error. In that case,
we do not need the restriction

√
∆n = o (βn∆n) anymore but rather

√
∆n/λn = o (βn∆n). 2) The

error terms of order min{ 1√
βn
, λnβn },

√
λn
βn

and λn∆n account for the jumps that occur before the

observation increment used to estimate the slope of the process. 3) The term 2∆n

∑q−1
j=1 ∆n

In(j)X

introduced in the definition of β̂n in (11) is a bias correction that enables us to obtain a consistent
estimator in the case λn/βn ≈ 1.

3. Practical implementation

3.1. Choice of the threshold vn. The method to detect the jumps is based on the classical use
of the threshold which is proportional to ∆−$n . As for the choice of the threshold and $, no exact
method is provided in the literature. However, the threshold is recommended to be chosen of the
form vn = Cσ̂∆−$n in [2, Section 5.3] and [3, Section 6.2.2, p. 187] where C is a constant and σ̂

is an estimator of the integrated volatility
∫ 1

0
σ2
sds. A popular rule-of-thumb consists in picking $

close to 0. Moreover, [2] suggests to choose C between 3 and 5.

It remains to find an estimator of the integrated volatility. A natural choice is the multipower
variation estimator, see [4] and [25] for more details. The order of the multipower variation
estimator is set to 20 in the practical applications in this paper, which is high compared to the
orders typically chosen in the literature. This choice is justified by the strong mean reversion of
the spikes. As for the jumps, spikes have large increments that need to be compensated in the
multipower variation estimator and can be present during two or three time steps. We compensate
these large increments with a higher order of the multipower variation. Some simulations on simple
models show that an order of 20 looks reasonable.

3.2. Numerical illustration. In this section, we study the performances of our estimation pro-
cedures on simulated data of the process defined by (2)-(3)-(4). We tested a wide range of values
for (λn, βn) in order to illustrate the results of Theorem 6. To be consistent with real data, the
process is simulated with a step time ∆n = 10−4, which is the order of magnitude corresponding
to one year of hourly data observations. We pick

(12) dXc
t = Xc

t

(
( 1

222 − 100 log(Xc
t ))dt+ 2dWt

)
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corresponding to the logarithm of an Ornstein-Uhlenbeck process with the mean reverting pa-
rameter equal to 100 and volatility parameter equal to 2. The sizes of the jumps follow the law
0.4 (−E (15)) + 0.6E (10), with E(ρ) denoting the exponential distribution with parameter ρ > 0.
Figure 2 illustrates a sample paths of the process for different parameters λn and βn. We realize
10000 simulations. We use jump detection under Assumption 3 (I) as well as under Assumption
3 (II), the latter corresponding to filtering the previous jumps by keeping only increments that
have successive opposite signs.

Table 1, 2 and 3 show the different results of estimated (λ̂n, β̂n) using a threshold equal to
Cσ̂∆−0.01

n , for C = 3, 4, 5. As expected, for large βn, the estimation on filtered jumps gives

satisfactory results of β̂n, whatever the value of λn satisfying the different assumptions, and seems
to slightly underestimate λn, whereas the estimation under Assumption 3 (I) gives bad results

on β̂n and overestimates λn. For small values of βn, the estimation under Assumption 3 (I) is
more efficient for both λn and βn. The results for βn = 20 highlights, as expected, the need in
Assumption 3 (II) to have a small number of jumps (λn = 10) to get satisfactory results. Because
of the expected βn on real data, we will focus, in the next section, on the estimation procedure
on filtered jumps (i.e. under Assumption 3 (II)). This choice is also justified by the fact that

underestimating the numbers of spikes seems to have a lower impact on the quality of β̂n than
overestimating them. One also observes that the choice of C has an impact on the estimation of
λn: the threshold to select jumps increases with C and then the estimated λn which is the number
of jumps decreases. On the contrary, it has a low impact on the estimation of βn, except in the
case C = 3 for small λn where the number of spikes is overestimated, leading to a bad estimator
for βn. Finally, the impact of the order of the multipower estimator of the volatility is illustrated
in Figure 3. The impact is negligible from an order of 20, where the estimators mean of λn and βn
remain constant and give a good estimation. Before 20, it has only an impact on the estimation
of λn: the spike effect has not disappeared in the estimator and σ̂ is overestimated, inducing less
detected spikes and an underestimation for λn. This supports the choice of a high order for the
multipower estimator.
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(a) Estimation of λn.

20 40 60 80
Multipower order

19760

19770

19780

19790

19800

19810

19820

19830

19840

M
ea

n 
of

 
̀ β n

(b) Estimation of βn.

Figure 3. Estimation of (λ̂n, β̂n) for different values of the order of the mul-
tipower estimator of the volatility σ̂ under Assumption 3 (II), with continu-
ous part defined by (12), λn = 75, βn = 20000 and jump size distribution
0.4 (−E (15))+0.6E (10). The threshold vn is chosen equal to 5σ̂∆−0.01

n . The mean
of the estimators is computed with 104 Monte-Carlo simulations and ∆n = 10−4.
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(λn, βn)
Assumption 3 (I) Assumption 3 (II)

λ̂n β̂n λ̂n β̂n
Mean C. I. Mean C. I. Mean C. I. Mean C. I.

(10, 2) 27.0 [18, 36] 4.4 [−16.6, 25.8] 13.3 [8, 20] 86.5 [13.6, 179.6]
(10, 20) 21.3 [11, 35] -31.6 [−152.2, 23.7] 8.9 [5, 14] 37.1 [18.1, 66.8]
(10, 200) 95.1 [70, 117] -592.6 [−1839.0, 28.7] 9.4 [5, 15] 204.5 [186.5, 225.7]
(10, 2000) 94.1 [54, 137] -4430.1 [−5860.2,−2271.0] 9.7 [5, 15] 2003.0 [1978.9, 2026.2]
(10, 20000) 45.7 [31, 62] -727.9 [−1262.9,−77.7] 18.0 [12, 25] 19152.0 [17840.8, 19845.5]

(75, 2) 79.6 [66, 94] 2.2 [−2.3, 6.6] 42.1 [32, 53] 42.5 [−3.5, 232.1]
(75, 20) 73.0 [59, 88] 19.7 [12.4, 27.8] 49.5 [39, 60] 50.6 [24.4, 158.9]
(75, 200) 106.7 [82, 132] 147.0 [94.5, 190.7] 63.3 [52, 75] 226.2 [198.8, 289.4]
(75, 2000) 351.3 [290, 411] -2483.0 [−3471.0,−1566.8] 69.4 [56, 83] 2021.5 [1959.7, 2116.0]
(75, 20000) 229.2 [189, 271] -1158.3 [−1291.5,−1016.8] 80.4 [66, 96] 19717.3 [18745.8, 20257.2]

Table 1. Performance of (λ̂n, β̂n) for different values of (λn, βn) under Assump-
tion 3 (I) and (II), with continuous part defined by (12) and jump size distribution
0.4 (−E (15)) + 0.6E (10). The threshold vn is chosen equal to 3σ̂∆−0.01

n with σ̂ is
the multi-power variation estimator of order 20. The means and quantile intervals
5%-95% are computed with 104 Monte-Carlo simulations and ∆n = 10−4.

(λn, βn)
Assumption 3 (I) Assumption 3 (II)

λ̂n β̂n λ̂n β̂n
Mean C. I. Mean C. I. Mean C. I. Mean C. I.

(10, 2) 10.6 [6, 16] 2.0 [−9.7, 13.7] 5.8 [2, 10] 29.7 [4.6, 46.4]
(10, 20) 10.2 [5, 16] 18.4 [2.4, 32.4] 7.6 [4, 12] 29.0 [16.8, 41.3]
(10, 200) 54.8 [39, 69] -256.6 [−996.6, 114.1] 9.3 [5, 14] 203.8 [186.5, 224.9]
(10, 2000) 81.5 [47, 118] -4216.3 [−5908.7,−1902.0] 9.6 [5, 15] 2002.8 [1978.9, 2025.7]
(10, 20000) 30.9 [16, 48] -1151.6 [−1528.6,−742.1] 10.8 [5, 17] 19778.4 [19185.2, 20168.1]

(75, 2) 74.2 [61, 89] 2.0 [−2.4, 6.2] 40.2 [30, 51] 40.5 [−3.8, 221.3]
(75, 20) 72.3 [59, 87] 19.8 [12.8, 27.8] 49.2 [39, 60] 50.4 [24.4, 158.9]
(75, 200) 77.3 [61, 97] 178.8 [139.1, 212.2] 62.1 [51, 74] 225.4 [198.2, 287.8]
(75, 2000) 281.7 [231, 330] -1888.3 [−2843.5,−1004.8] 67.4 [55, 81] 2020.8 [1959.3, 2114.6]
(75, 20000) 216.7 [177, 257] -1200.1 [−1307.8,−1085.3] 76.6 [62, 91] 19760.4 [18778.1, 20302.9]

Table 2. Performance of (λ̂n, β̂n) for different values of (λn, βn) under Assump-
tion 3 (I) and (II), with continuous part defined by (12) and jump size distribution
0.4 (−E (15)) + 0.6E (10). The threshold vn is chosen equal to 4σ̂∆−0.01

n with σ̂ is
the multi-power variation estimator of order 20. The means and quantile intervals
5%-95% are computed with 104 Monte-Carlo simulations and ∆n = 10−4.

3.3. Practical implementation on real data. Electricity spot historical data do exhibit spikes
with strong mean reversion, see Figure 1. We expect to obtain relatively high values for βn,
a necessary condition in order to apply our estimation procedure, especially under Assumption
3 (II). The goal is then to estimate the parameters λn and βn of the process Zβn on a time series
of spot prices, assuming that the spot price is the sum of a continuous semimartingale and a spike
process. We dispose of the following data:
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(λn, βn)
Assumption 3 (I) Assumption 3 (II)

λ̂n β̂n λ̂n β̂n
Mean C. I. Mean C. I. Mean C. I. Mean C. I.

(10, 2) 9.95 [5, 15] 2.01 [−9.21, 12.85] 5.45 [2, 9] 19.5 [4.26, 39.4]
(10, 20) 9.9 [5, 15] 19.84 [7.6, 32.4] 7.5 [3, 12] 28.8 [16.9, 40.2]
(10, 200) 33.4 [17, 47] -76.7 [−540, 158] 9.3 [5, 14] 204 [188, 224]
(10, 2000) 72.5 [42, 105] -3968 [−5934,−1633] 9.6 [5, 15] 2002 [1979, 2023]
(10, 20000) 29.2 [15, 46] -1207 [−1508,−871] 10.2 [5, 16] 19861 [19337, 20207]

(75, 2) 73.7 [60, 88] 2 [−2.46, 6.17] 39.9 [30, 51] 39.2 [−4, 204]
(75, 20) 71.9 [59, 86] 19.8 [12.9, 27.6] 49.9 [39, 60] 49.9 [24.5, 155.6]
(75, 200) 68.7 [55, 83] 191 [157, 219] 61 [50, 73] 225 [198, 291]
(75, 2000) 234 [192, 273] -1403 [−2334,−556] 65.6 [54, 78] 2019 [1958, 2109]
(75, 20000) 207 [170, 247] -1216 [−1308,−1113] 74.2 [60, 89] 19785 [18790, 20310]

Table 3. Performance of (λ̂n, β̂n) for different values of (λn, βn) under Assump-
tion 3 (I) and (II), with continuous part defined by (12) and jump size distribution
0.4 (−E (15)) + 0.6E (10). The threshold vn is chosen equal to 5σ̂∆−0.01

n with σ̂ is
the multi-power variation estimator of order 20. The means and quantile intervals
5%-95% are computed with 104 Monte-Carlo simulations and ∆n = 10−4.

(1) French electricity EPEX spot prices between the first of January of 2015 (included) and
the first of January 2017 (not included) with data each hour 1,

(2) German electricity EPEX spot prices between the first of January of 2015 (included) and
the first of January 2017 (not included) with data each hour 1,

(3) Australian electricity spot prices in Queensland between the first of January of 2015 (in-
cluded) and the first of January 2017 (not included) with data each 30 minutes 2.

We estimate those parameters using a threshold vn = Cσ̂∆−0.01
n , with σ̂ the multi-power variation

of order 20 and C a constant set to 3, 4 or 5. Results are presented in Table 4. Figure 1 gives the
time series of these three sets of data with jumps time estimated in the case C = 5.

As expected, the estimated λ̂n is sensitive to the value of C, the number of detected jumps de-

creasing with C. The estimated β̂n is much less sensitive, although we can observe a slight increase
of values with C in the French and German markets. We will see in section 4.3 the sensitivity of
these estimators to the value of a strip of Call options.

Market C = 3 C = 4 C = 5
French (100, 19170) (51, 20259) (35, 21042.533)

German (145, 9848) (62, 13438) (34, 14531)
Australian (337, 22897) (227, 22883) (177, 22884)

Table 4. Estimation of (λn, βn) for different markets using a threshold of the
form vn = Cσ̂∆−0.01

n where σ̂ is the multi-power variation estimator of order 20
and C takes different values.

1Source: https://www.epexspot.com/
2Source: https://www.aemo.com.au/

https://www.epexspot.com/
https://www.aemo.com.au/
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4. Derivative pricing in the electricity market

4.1. Forward price formula. Due to the non-storability of electricity, the spot price is not an
asset. The modelling of (and then an analytical formula for) the forward prices (i.e. the real assets
and hedging products) is essential for risk management purposes. The question of the choice of the
risk-neutral probability is addressed in the next section. Here, we consider that the electricity spot

price (St)t≥0 (respectively the logarithm of the spot price (St)t≥0) is modelled by St = Xc
t + Zβt

(respectively log(St) = Xc
t + Zβt ), according to (2)-(3)-(4) under a risk-neutral probability Q.

The forward price f(t, T ) quoted at time t, delivering 1MWh at time T , is defined by:

f (t, T ) = EQ[ST | Ft].
The available contracts in the electricity markets are of the form f(t, T, θ): a contract that delivers
1MWh continuously from T to T + θ. The delivery period θ can be one week, one month, one
year and so on. For example, the contract called ”one-week-ahead” (1WAH) will deliver 1MWh
continuously from the first hour of next Monday to the last hour of the following Sunday; the
contract called ”one-month-ahead” (1MAH) will deliver 1MWh continuously between the first and
the last hour of next month. By classical no arbitrage arguments [5] the price of such a product is
defined by:

f (t, T, θ) =
1

θ

∫ T+θ

T

f (t, u) du.

Theorems 7 and 8 give analytic formulae for the forward price f (t, T ) respectively for the
modelling of the spot price and the modelling of the logarithm of the spot price by (2)-(3)-(4).

Theorem 7. Suppose that the spot price is modelled by St = Xc
t + Zβt , t ≥ 0, according to

(2)-(3)-(4) under a risk-neutral probability Q.

(1) We have an explicit representation of f (t, T ) = EQ[ST ∣∣Ft] given by

f (t, T ) = f c (t, T ) + fβ (t, T ) ,

with

f c (t, T ) = EQ[Xc
T

∣∣Ft]
and

fβ (t, T ) = e−β(T−t)Zβt +
λx ? ν

β

(
1− e−β(T−t)).

(2) We also have f (t, T, θ) = f c (t, T, θ) + fβ (t, T, θ), with f c (t, T, θ) = 1
θ

∫ T+θ

T
f c (t, u) du

and

fβ (t, T, θ) = e−β(T−t)
(

1− e−βθ

βθ

)
Zβt +

λx ? ν

β

[
1− e−β(T−t)

(
1− e−βθ

βθ

)]
.

The proof is straightforward. Theorem 7 has three major consequences.

(1) The proposed model (2)-(3)-(4) allows us to get analytical formulas for the forward prices
f(t, T ) and f(t, T, θ), provided that we have analytical formulas for the continuous part
f c (t, T ). This then covers a wide range of models.

(2) We can easily write the model (2)-(3)-(4) in its equivalent form on forward prices by
f(t, T ) = f c (t, T ) + fβ (t, T ) with

(13) fβ (t, T ) =

∫ t

0

∫
R
xe−β(T−t)p (ds, dx) .
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It is then easy to consider the proposed model as an extension of any classical (continuous)
model written on the forward prices, allowing to represent spikes in the spot price dynamics.

(3) If λ/β is small and β is large, the impact of fβ on the forward prices is negligible and the
additive spike process has only an impact on the spot prices. This is consistent with the
observations in the electricity markets, the forward prices showing no spikes.

These consequences are of significant importance. Especially in the case where λ/β is small and
β is large, this means that the spike process can be treated independently, both in parameter
estimation and in simulation. Indeed, consider any existing (continuous) model describing (or
simulating) f c(t, T ) and calibrated on forward prices, the proposed model then consists in adding
(simulations of) the spike process calibrated on spot prices following the estimation procedure
previously described.

Theorem 8. Suppose that the logarithm of the spot price is modelled by log(St) = Xc
t +Zβt , t ≥ 0,

according to (2)-(3)-(4) under a risk-neutral probability Q. Let assume that
∫
R e

uxν (dx) < ∞ for

all u ∈ [0, 1]. We have an explicit representation of f (t, T ) = EQ[ST ∣∣Ft] given by

f (t, T ) = f c (t, T ) fβ (t, T ) ,

with
f c (t, T ) = EQ[eXcT ∣∣Ft]

and

fβ (t, T ) = ee
−β(T−t)Zβt e

λ
β

∫ 1
0

(
∫
R e
uxν(dx)−

∫
R e
ue−β(T−t)xν(dx))du.

The proof is straightforward and comments for the results of Theorem 7 can be transposed to
the ones of Theorem 8. In particular, if λ/β is small and β is large, the term fβ (t, T ) is close to
1 and f(t, T ) to f c(t, T ).

4.2. Specific model and change of measure. We address the problem of choosing the risk
neutral probability which we illustrate with a specific and simple model: in the rest of this section,
we consider the model defined by

f (t, T ) =

∫ t

0

µsds+ f c (t, T ) + fβ (t, T ) ,

with fβ(t, T ) defined by (13) and where the continuous part f c(t, T ) follows the dynamics

df c (t, T ) = f c (t, T ) (σldW
l
t + σse

−α(T−t)dW s
t )

with (W l
t ,W

s
t )t≥0 a two-dimensional Brownian motion under the historical probability P with

correlation ρ. This dynamics corresponds to a classical two factors model for forward prices of
electricity [15] or gas [26]. The forward price is driven by a short term factor with volatility
σse
−α(T−t) and a long term factor with volatility σl. The short term volatility σse

−α(T−t) captures
the Samuelson effect: the volatility increases when T − t decreases. The spot price is then equal

to St =
∫ t

0
µsds+Xc

t + Zβt with

Xc
t = f c (0, t) exp

(
−1

2

[
σ2
l t+ σ2

s

1− e−2αt

2α
+ 2ρσlσs

1− e−αt

α

]
+ σldW

l
t + σs

∫ t

0

e−α(t−u)dW s
u

)
,

and the model then falls within the class of models (2)-(3)-(4).

We have seen that the forward products are not impacted by the spikes if λ/β is small and β is
large. However, it can have an important impact on options on the spot, for instance on a strip of

Call options, with payoff of the form
∑I
i=1

(
Sti,n −K

)+
for prescribed dates ti,n. If we consider
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an option with payoff having a single component (St −K)
+

, the jump process will have a weak
impact: the probability to have a jump at time t is equal to 0 and even if there is a jump before,
it disappears very quickly. However, the jump process may have a significant impact on the value

of options with payoff
∑I
i=1

(
Sti,n −K

)+
because the probability of having spikes on [0, 1] is non

zero. (Note that only upward spikes will have an impact on the price of these options.)

Unlike spot prices, forward contracts are tradable assets. In the following, we assume absence
of arbitrage opportunity. According to the fundamental theorem of asset pricing, there exists a
probability measure Q equivalent to the historical measure P such that f (t, T ) is a local martingale
under Q3. Because of the presence of jumps, the market is incomplete and Q is not unique.
According to [22, Theorem 2], there exists a predictable process (γt)t≥0 and a predictable process

(Y (., t, x))t≥0,x∈R such that:

1) µt + γtct +
∫ t

0

∫
R xλY (t, x) e−β(T−t)ν (dx) = 0 (P⊗ dt almost-surely),

2)
∫ 1

0
γ2
scsds <∞ almost surely,

3)
∫ 1

0

∫
R |x|

2 ∧ |x|Y (t, x) e−β(T−t)λν (dx) <∞ (P⊗ dt almost -surely).

with ct equal to f c (t, T )
(
σ2
l + σ2

se
−2α(T−t) + 2ρσlσse

−α(T−t))1/2 in our case. Under the equivalent
measure, f (t, T ) is an Itô semi-martingale with drift 0, volatility ct and jump measure p∗ = Y p
following

df (t, T ) = df c (t, T ) + dfβ (t, T )

with

df c (t, T ) = f c (t, T )
(
σldW

l,∗
t + σse

−α(T−t)dW s,∗
t

)
,

dfβ (t, T ) =

∫
R
xe−β(T−t) (p∗ (dt, dx)− λY (t, x) ν (dx) dt

)
for two Brownian motions (W s,∗,W l,∗) under the new measure. The volatility does not change
unlike the intensity and the law of jump sizes of the Poisson process.

In order to choose the change of martingale measure, one usually consider an optimisation
criterion. One of the most common used criterion is the local risk-minimisation introduced by
Föllmer and Schweizer (see [24] for details). The variance of the cost of the strategy is minimised
locally, infinitesimally at each time. This strategy corresponds to choose the minimal martingale
measure defined in [11]. Under certain assumptions, this measure is a true probability measure
and the asset is a local martingale under this measure. Furthermore, the intensity changes and
depends on the drift µ, which is also true for most common criteria. Since we work on a finite time
framework, the drift is not identifiable and it is not possible to estimate it.
In the following we choose the historical approach of Merton consisting in picking a change of
probability that does not affect the intensity and the jump sizes of the Poisson measure [18]. The
equivalent probability measure is defined by

dQM

dP
= exp

( ∫ 1

0

θud
σlW

l
u+σse

−β(T−u)W s
u

(σ2
l +σ2

se
−2α(T−u)+2ρσlσse−α(T−u))

1/2 −
1

2

∫ 1

0

θ2
udu

)
with θu = −(µu+e−β(T−u)

∫
R xν(dx))

fc(u,T )(σ2
l +σ2

se
−2α(T−u)+2ρσlσse−α(T−u))

1/2 . The Nikonikov condition is satisfied so it de-

fines in turn a genuine probability measure. Under QM , the price of the forward contract f (t, T )
follows the dynamics df (t, T ) = df c (t, T ) + dfβ (t, T ) with

df c (t, T ) = f c (t, T )
(
σldW

l,QM
t + σse

−α(T−t)dW s,QM
t

)
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and

dfβ (t, T ) =

∫
R
xe−β(T−t) (p (dt, dx)− λν (dx) dt

)
,

where W l,QM and W s,QM are two QM -Brownian motions. Merton chooses this probability consid-
ering that the risk associated to the jumps is diversifiable. As noticed in Tankov in [9, Section 10.1],
using this strategy leaves one exposed to the risk of the jumps. It only corrects the average effect
of jumps (provided that the jump component of the electricity price is independent of the other
assets, which is the case here: we understand the electricity spikes caused by physical exogenous
events; it can in particular be caused by the production capacity and the demand which are not
assets (see the structural model of Aid et al. [1] for instance). Finally, the price of an option with

payoff H (ST ) = H (f (T, T )) at time t is given by EQM [H (ST ) | Ft
]
.

4.3. Application to Call option pricing in the French market. In the following, we focus
on the French market and we work on the model of Section 4.2. We dispose of the hourly spot and
daily forward prices in 2015 and 2016.

Parameters of fβ . We use the parameters found in Table 4 to calibrate Zβ to the spot prices.
We model the size of the jumps by its empirical distribution, each jump being estimated with
∆n
In(q)X, knowing that a bias (mentioned in the end of section 2.2) is present.

Parameters of f c. We consider the following forward products in the French market: 1 to 4
Week-ahead, 1 to 3 Month-ahead, 1 to 4 Quarter-ahead and 1 and 2 Year-ahead products. As

λ̂n/β̂n is small and β̂n is large, we can neglect the jump part on the forward prices and consider
that the forward products have only a continuous part. We use the method of Féron and Daboussi
[10] to calibrate the parameters of f c to the observed forward prices. We find for the different

parameters α = 12.56 y−1, σs = 1.03 y−
1
2 , σl = 0.25 y−

1
2 and ρ = −0.11.

Forward products. In Figure 4, we display a simulation of the spot price, the 1WAH and the
1MAH with and in absence of spikes. The parameters of the spike component are the one of Table
4 with C = 5. We observe that the difference between the trajectory of the forward products with
and without spikes is very small but significant for the spot price.

Strip of Call options. We consider an option of payoff
∑I
i=1

(
Sti,n −K

)+
, with I = 8760 cor-

responding to possible exercises each hour of one year. This choice of payoff is motivated by the
valuation of a power plant: the produced electricity is sold on the market at S and the production
cost is K. A high strike corresponds to peaking power stations activated when other plants can

not satisfy the total load. The price of such an option is equal to EQM [∑I
i=1

(
Sti,n −K

)+ ]3.
We give in Table 5 confidence intervals at level 95% for the option price with the different strikes
100, 200 and 300, computed using Monte Carlo method with 10000 simulations. We consider the
case where there is no spikes and the cases with spikes using the different threshold of the form
vn = Cσ̂∆−0.01

n with C = 3, C = 4 and C = 5. Considering spikes leads to higher value for the
strip options. Furthermore, options valued at zero have now non negligible values. We notice that
the choice of the threshold have an impact on the price of the option. Indeed, a higher C leads
to less jumps and a smaller λ, see Table 4, and then to a lower price as most of the jumps are
positive. However, the impact is low since we keep the larger jumps when C is increased which are
the ones impacting the price for high strikes.

3For simplicity, we consider a risk-free rate equal to zero
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Figure 4. Simulation of different products in a two factor model with and without
spikes between the 27th of February 2017 and the 31st of March 2017. We illustrate
the spot, the 1WAH starting the 27th of February 2017 and the 1MAH starting
the 01st of March 2017.

Model/Strike 100 200 300
Without spike [1716.22, 1806.83] [0.0089, 0.063] [0, 0]
Spikes, C = 3 [2482.57, 2576.17] [434.21, 450.26] [264.14, 274.00]
Spikes, C = 4 [2442.66, 2536.26] [412.98, 428.44] [251.72, 262.29]
Spikes, C = 5 [2417.24, 2510.79] [397.74, 412.76] [242.04, 252.41]

Table 5. Confidence intervals at level 95% for the price of strip options com-
puted using Monte Carlo method with 10000 simulations for different strikes and
different models.

5. Proofs

In the following proofs, we set the drift (µt)t≥0 vanishes identically. Generalizing to the non-
null drift case is done using the usual argument based on Girsanov theorem. Also, we assume for
simplicity that (σt)t≥0 is a deterministic function, in order to simplify in particular the proofs for
central limit theorems.

5.1. Proof of Proposition 4. The proof follows the path of [3, Theorem 10.26, p.374] and is also
close to Mancini [17] in spirit. We will denote by ξν a random variable distributed according to ν.
Let

An =
{
i ∈ {1, . . . , n}, i 6= i (n, q) ∀q ≥ 1

}
be the set of indices i such that the interval ((i− 1)∆n, i∆n] contains no jump.
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Proof of Proposition 4 under Assumption 3 (I). We first need to show

(14) P
(

max
i∈An

|∆n
i X|√
∆n

> vn
)
→ 0,

(15) P
(

min
i∈Acn

|∆n
i X|√
∆n

< vn
)
→ 0

and

(16) P
(

max
1≤i≤n

∆n
i N ≥ 2

)
→ 0.

We have

∆n
i X√
∆n

=
−βn

∫ ti,n
ti−1,n

Zβs ds√
∆n

+
∆n
i X
′

√
∆n

,

with

X ′t =

∫ t

0

µsds+

∫ t

0

σsdWs +

∫ t

0

∫
R
xp (ds, dx) .

By [3, Equation (10.71), p.374] we have P
(

sup
i∈An

|∆n
i X
′|√

∆n
> vn

)
→ 0, Therefore, in order to prove

(14), we need to show that

(17) P
(

sup
i∈An

|βn
∫ ti,n
ti−1,n

Zβs ds|√
∆n

> vn
)
→ 0.

Since |βn
∫ ti,n
ti−1,n

Zβs ds| =
(
1− e−βn∆n

)
|Zβti−1,n

| for i ∈ An, we have

P
(

max
i∈An

|βn
∫ ti,n
ti−1,n

Zβs ds|√
∆n

> vn
)
≤ P

(
βn
√

∆n sup
t∈[0,1]

∣∣Zβt ∣∣ > vn
)

≤ P
(

sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx) >

vn

βn
√

∆n

)
≤ 2λnP

(
|ξν | >

vn

βn
√

∆n

)
by Markov’s inequality and [7, Equation (10)] on the expectation of the crossings of shot noise
processes. This last term converges to 0 by Assumption 3 (ii) and (17) follows which completes
the proof of (14).

We next turn to (16). The left hand side of (16) is equal to P (∪ni=1∆n
i N ≥ 2) . λ2

n∆n which
converges to 0 if λn

√
∆n → 0. With no loss of generality we may (and will) work on the set

{ max
1≤i≤n

∆n
i N ≤ 1}. In the interval ((i (n, q)− 1) ∆n, i (n, q) ∆n], there is only one jump and we

have

∆n
i(n,q)Z

β = −
(
1− e−βn∆n

)
Zti(n,q)−1,n

+ e−βn(i(n,q)∆n−Tq)∆XTq

for all q ≥ 1, therefore

|∆n
i(n,q)X|√

∆n

≥
e−βn∆n |∆XTq |√

∆n

−
|∆n

i(n,q)X
c|

√
∆n

−
|
(
1− e−βn∆n

)
Zβti(n,q)−1,n

|
√

∆n

≥ min
1≤q≤N1

e−βn∆n |∆XTq |√
∆n

− max
i∈Acn

|∆n
i X

c|√
∆n

− max
1≤i≤n

βn∆n|Zβti,n |√
∆n

.
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It follows that P
(

min
i∈Acn

|∆n
i X|√
∆n
≤ vn

)
is dominated by the sum of the three following terms:

(18) P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3vn
√

∆n

)
,

(19) P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3max
i∈Acn
|∆n

i X
c|
)

and

(20) P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3 max
1≤i≤n

βn∆n|Zβti,n |
)
.

The term (18) equals

E
[
1−

(
P
(
|ξν | > 3vn

√
∆ne

βn∆n
))N1

]
= 1− exp

(
− λnP(|ξν | ≤ 3vn

√
∆ne

βn∆n)
)

and converges to 0 under the assumption λnP
(
|ξν | ≤ ∆

1
2−$
n

)
→ 0. The term (19) is dominated by

(21) P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3vn
√

∆n

)
+ P

(
vn
√

∆n ≤ max
i∈Acn
|∆n

i X
c|
)
.

The left hand side of (21) is equal to (18) and converges to 0. According to [17, Corollary 3.3], for
i ∈ {1, ..., n},

P
(
∆n
i X

c > vn
√

∆n

)
≤ 2e−v

2
n/2σ̄

2

.

The right hand side of (21) is dominated by

E
[ N1∑
q=1

P
(
|∆n

i X
c| ≥ vn

√
∆n

)]
≤ E [N1] 2e−v

2
n/2σ̄

2

= 2λne
−v2

n/2σ̄
2

→ 0.

The term (20) is dominated by

(22) P
(

min
1≤q≤N1

|∆XTq |e−βn∆n ≤ 3vn
√

∆n

)
+ P

(
vn
√

∆n ≤ max
1≤i≤n

βn∆n|Zβti,n |
)
.

The left hand side of (21) is equal to (18) and converges to 0. The right hand side of (21) also
converges to 0 with the same argument as for (17).

Proof of Proposition 4 under Assumption 3 (II). Since

P
(

max
0≤i≤n−kn

|N(i+kn)∆n
−Ni∆n | ≥ 2

)
. λ2

n∆nk
2
n → 0,

therefore, we only need to prove the result on the set Bn = { max
0≤i≤n−kn

|N(i+kn)∆n
− Ni∆n

| ≤ 1}.
We need to show:

(23) P
(
∃i ∈ An,

|∆n
i X|√
∆n

> vn and ∆n
i X∆n

i+1X < 0 ∩ Bn
)
→ 0

and

(24) P
(
∃i ∈ Acn,

|∆n
i X|√
∆n

< vn or ∆n
i X∆n

i+1X > 0 ∩ Bn
)
→ 0.

We bound (23) above by the sum of

P
(
∃i ∈ An,

|∆n
i X

c|√
∆n

>
vn
2

and ∆n
i X∆n

i+1X < 0 ∩ Bn
)

and

P
(
∃i ∈ An,

|∆n
i Z

β |√
∆n

>
vn
2

and ∆n
i X∆n

i+1X < 0 ∩ Bn
)
.
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The first term is bounded by

P
(

max
1≤i≤n

|∆n
i X

c| > vn
√

∆n

2

)
≤ 2ne−v

2
n/8σ̄

2

and converges to 0. For the second term, we consider two cases: a jump occurs before i∆n or no
such jump occurs, which leads us to further consider

(25) P
(
∃i ∈ An,

|∆n
i Z

β |√
∆n

>
vn
2

, ∆n
i X∆n

i+1X < 0 and ∃q ∈ {1,min{kn−2, i−1}}, i−q ∈ Acn}∩Bn
)

and
(26)

P
(
∃i ∈ An,

|∆n
i Z

β |√
∆n

>
vn
2

, ∆n
i X∆n

i+1X < 0 and ∀q ∈ {1,min{kn − 2, i− 1}}, i− q ∈ An} ∩ Bn
)
.

For (25) since we work on Bn, we have i + 1 ∈ An hence ∆n
i+1Z

β = −(1 − e−βn∆n)Zβti,n =

e−βn∆n∆n
i Z

β and (25) is dominated by the probability of the event

{∃i ∈ An,−|∆n
i X

c||∆n
i+1X

c| − |∆n
i X

c||∆n
i Z

β |e−βn∆n − |∆n
i+1X

c||∆n
i Z

β |+ vn
√

∆n

2 |∆n
i Z

β |e−βn∆n < 0

and
|∆n

i Z
β |√

∆n

>
vn
2
}

equal to

P
(
∃i ∈ An, vn

√
∆n

2 |∆n
i Z

β |e−βn∆n < 2 max
1≤j≤n

|∆n
jX

c||∆n
i Z

β |+ ( max
1≤j≤n

|∆n
jX

c|)2 and
|∆n

i Z
β |√

∆n

>
vn
2

)
and dominated by

P
(
2 max

1≤j≤n
|∆n

jX
c| > vn

√
∆n

4

)
+ P

(
( max
1≤j≤n

|∆n
jX

c|)2 >
1

2
( vn
√

∆n

2 )2
)
→ 0.

Concerning (26), we have, if kn ≤ i+ 1, we have that |∆n
i Z

β | is equal to(
1− e−βn∆n

)
e−βn∆n(kn−2)|Zβ(i−kn+1)∆n

| ≤ βn∆n sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx) e−βn∆n(kn−2).

The inequality remains true if i+1 < kn as ∆n
i Z

β is equal to 0 in this case. Thus, (26) is dominated
by

P
(

sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx) > eβn∆n(kn−2) vn

βn
√

∆n

)
≤ λnP

(
|ξν | > eβn∆n(kn−1) vn

βn
√

∆n

)
→ 0

using the same argument as for (17) and the convergence (23) follows.

We now turn to (24). It suffices to show that both terms

P
(
∃i ∈ Acn,

|∆n
i X|√
∆n

≥ vn ∩ Bn
)
, and P

(
∃i ∈ Acn,∆n

i X∆n
i+1X ≥ 0 ∩ Bn

)
converge to 0. The proof for the first term is similar to the one of (15), the only difference

being ∆n
i(n,q)Z is equal to (1−e−βn∆n)e−βn∆n(kn−2)Zti(n,q)−kn+1,n

+e−βn(ti(n,q),n−Tq)∆XTq if kn ≤
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i+1 and e−βn(ti(n,q),n−Tq)∆XTq otherwise and that the term P(vn
√

∆n ≤ 3 max1≤i≤n βn∆n|Zβti,n |)
needs to be replaced by

P
(
vn
√

∆n ≤ 3 max
1≤i≤n

βn∆ne
−βn∆nkn |Zβti,n |

)
≤ λnP

(
|ξν | > eβn∆n(kn−2) vn

√
∆n

βn∆n

)
→ 0.

For the second term, it is sufficient to prove that ∆n
i(n,q)X has the same sign as ∆XTq and that

∆n
i(n,q)+1X has the opposite sign with probability one. We are thus led to show that

(27) P
(

min
1≤q≤N1

∆n
i(n,q)X∆XTq < 0

)
→ 0

and

(28) P
(

max
1≤q≤N1

∆n
i(n,q)+1X∆XTq > 0

)
→ 0.

We have that ∆n
i(n,q)X∆XTq dominates

− max
1≤q≤N1

|∆n
i(n,q)X

c||∆XTq | − (1− e−βn∆n)e−βn∆nkn sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx) |∆XTq |

+ e−βn∆n |∆XTq | min
1≤q≤N1

|∆XTq |.

We thus have that (27) is dominated by the probability of the event{
e−βn∆n inf

1≤q≤N1

|∆XTq | < sup
1≤q≤N1

|∆n
i(n,q)X

c|

+
(
1− e−βn∆n

)
e−βn∆nkn sup

t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx)

}
that converges to 0 if we use a similar proof than the one of (15). The proof of (28) is similar since
no jump occurs in the interval (i (n, q) , i (n, q) + 1] and

∆n
i(n,q)+1Z

β = −
(
1− e−βn∆n

)
Zβi(n,q)∆n

.

The term (28) is then dominated by the probability of the event{
e−βn∆n(1− e−βn∆n) min

1≤q≤N1

|∆XTq | < max
1≤q≤N1

|∆n
i(n,q)X

c|

+ (1− e−βn∆n)e−βn∆n(kn+1) sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx)

}
.

The convergence to 0 is obtained in the same way, except for the extra control of the terms

P
(

max
1≤q≤N1

|∆n
i(n,q)X

c| > vn
√

∆n(1− e−βn∆n)
)
≤ λne−v

2
n(1−e−βn∆n )2/2σ̄2

and

P
(

sup
t∈[0,1]

∫ t

0

∫
R
|x|e−βn(t−s)p (ds, dx) > eβn∆n(kn+1)vn

√
∆n

)
≤ λnP

(
|ξν | > eβn∆nkn∆

1
2−$
n

)
that both converge to 0. The proof of Proposition 4 is complete.

5.2. Proof of Theorem 6.
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Preparation for the proof. In order to prove Theorem 6, we start by giving an oracle estimator of
βn when the jump times and their sizes are known.

Proposition 9. Work under Assumption 1 and 2. Let βn
√
λn∆n →∞. Define β̂oracle

n via

exp
(
−∆nβ̂

oracle
n

)
= max

{
1 +

∑
q∈En sgn(∆XTq )

(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆XTj

)∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0},∆n

}
,

with En =
{
q ∈ {1, .., N1}, i (n, q) + 1 ∈ An and i (n, q) < i (n, q + 1)

}
.

i) The following expansion holds on the set {N1 > 0}:

β̂oracle
n − βn

βn
=Moracle

n + VnJ Tn ,

with

Moracle
n = eβn∆n

λn
βn

(x ? ν) (sgn (x) ? ν)

|x| ? ν
(eβn∆n − 1

βn∆n
− βn∆n

1− e−βn∆n

)
,

and Vn = (V(i)
n )1≤i≤4 ∈ R4 defined by

V(1)
n = eβn∆n

√
λn√

3βn|x|?ν

(
(sgn (x) ? ν)

2
(|x|2 ? ν) + (x ? ν)

2 − 2(sgn (x) ? ν)(|x|2 ? ν)
)1/2

,

V(2)
n = eβn∆n min

{( |x|2?ν
(|x|?ν)2

1
2βn

(1−e−2βn∆n)
2βn∆n

)1/2
, λnβn

}
,

V(3)
n = eβn∆n

(
βn∆n

1−e−βn∆n

) √∫ 1
0
σ2
sds

|x|?ν
√
λnβn

√
∆n
,

V(4)
n = eβn∆n

√∫ 1
0
σ2
sds
√

∆n

|x|?ν
√
λn

,

and Jn = (J (i)
n )1≤i≤4 ∈ R4 is bounded in probability as n→∞.

ii) If λn →∞, then

(J (3)
n ,J (4)

n )→ N (0, IdR2)

in distribution as n→∞.
iii) If λn →∞, |x|3 ? ν <∞ and (sgn(x) ? ν)2|x|2 ? ν + (x ? ν)

2 − 2sgn (x) ? ν|x|2 ? ν 6= 0, we
have

(J (1)
n ,J (3)

n , J (4)
n )→ N (0, IdR3)

in distribution as n→∞.
iv) If βn/λ

2
n → 0, the conditions of iii) and |x|4 ? ν <∞ hold together, we finally obtain

Jn → N (0, IdR4)

in distribution as n→∞.

Proposition 9 is the core of Theorem 6.

Proof of Proposition 9. Step 1). We first need three approximation results.

Lemma 10. We have ∣∣ ∑
q/∈En

sgn
(
∆XTq

)
∆n
i(n,q)X

∣∣ . λ2
n∆n

in probability.
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Proof. We plan to use the decomposition∑
q/∈En

sgn
(
∆XTq

)
∆n
i(n,q)X =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)X1{Tq+1−Tq<ti(n,q),n−Tq+∆n} = I + II,

with

I =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)X

c1{Tq+1−Tq<ti(n,q),n−Tq+∆n} and

II =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)Z

β1{Tq+1−Tq<ti(n,q),n−Tq+∆n}.

The term I is centred and as |I| ≤
∑N1

q=1 |∆n
i(n,q)X

c|1{Tq+1−Tq<ti(n,q),n−Tq+∆n}, we have

E[I2] ≤ E
[
(

N1∑
q=1

|∆n
i(n,q)X

c|1{Tq+1−Tq<ti(n,q),n−Tq+∆n})
2
]

≤ E
[
(

n∑
i=1

|∆n
i X

c|∆n
i N1{∆n

i N≥2 or ∆n
i+1N≥1})

2
]

=

n∑
i=1

E
[
(∆n

i X
c)2
]
E
[
(∆n

i N)21{∆n
i N≥2 or ∆n

i+1N≥1

]
with the convention ∆n

n+1N = 0. Since E[(∆n
i X

c)2] ≤ σ̄2∆n and E[(∆n
i N)2(1{∆n

i N≥2}+1{∆n
i+1N≥1})] .

λ2
n∆2

n we obtain
E[I2] . (λn∆n)2.

In turn I is of order λn∆n hence negligible. For the term II, we have

|II| ≤
N1∑
q=1

|∆n
i(n,q)Z

β |1{Tq+1−Tq<ti(n,q),n−Tq+∆n},

and

|∆n
i(n,q)Z

β | = | −
(
1− e−βn∆n

)
Zβti(n,q)−1,n

+

∆n
i(n,q)N∑
j=1

∆j
i(n,q)Xe

−βn(ti(n,q),n−T ji(n,q))|

≤ βn∆n|Zβti(n,q)−1,n
|+

∆n
i(n,q)N∑
j=1

|∆Xj
i(n,q)|,

where ∆Xj
i denotes the jth jump in the interval ((i− 1) ∆n, i∆n] that occurs at time T ji . First,

we have that the term
∑N1

q=1 |Z
β
ti(n,q)−1,n

|1{Tq+1−Tq<ti(n,q),n−Tq+∆n} is dominated by

n∑
i=1

∫ ti−1,n

0

|x|e−βn(ti−1,n−t)p (dt, dx) ∆n
i N
(
1{∆n

i N≥2} + 1{∆n
i+1N≥1}

)
.

Because of the independence of ∆n
i N and ∆n

i+1N conditional on Fti−1,n,n, we derive that its
expectation is less than

n∑
i=1

E
[ ∫ ti−1,n

0

|x|e−βn(ti−1,n−t)p(dt, dx)
]
E
[
∆n
i N(1{∆n

i N≥2} + 1{∆n
i+1N≥1})

]
.
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Second, since E[
∫ ti−1,n

0
|x|e−βn(ti−1,n−t)p(dt, dx)] . λn/βn and also E[∆n

i N(1{∆n
i N≥2}+1{∆n

i+1N≥1})] .

λ2
n∆2

n we derive

(29)

N1∑
q=1

|Zβti(n,q)−1,n
|1{Tq+1−Tq<ti(n,q),n−Tq+∆n} .

λ3
n∆n

βn

in probability. In the same way, it is not difficult to see that

N1∑
q=1

∆n
i(n,q)N∑
j=1

|∆Xj
i(n,q)|1{Tq+1−Tq<2∆n} ≤

n∑
i=1

∆n
i N

∆n
i N∑
j=1

|∆Xj
i |(1{∆n

i N≥2} + 1{∆n
i+1N≥1})

is of order λ2
n∆n. The result of the lemma follows. �

Lemma 11. We have

∣∣ N1∑
q=1

sgn(∆XTq )∆
n
i(n,q)X −

∫ 1

0

∫
R
|x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)
∣∣ . λ2

n∆n +
√
λn∆n

in probability.

Proof. We plan to use the decomposition
∑N1

q=1 sgn(∆XTq )∆i(n,q)X = I + II, with

I =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)X

c, and II =

N1∑
q=1

sgn
(
∆XTq

)
∆n
i(n,q)Z

β .

With the notation of Lemma 10, we write

I =

n∑
i=1

∆n
i N∑
j=1

sgn(∆Xj
i )∆n

i X
c1{∆n

i N≥1}

and in the same way as for the proof of Lemma 10, using the independence between Xc and N , it
is not difficult to see that I is centred with variance of order λn∆n. For the second term, we write
II = III + IV , with

III =

N1∑
q=1

sgn(∆XTq )

∆n
i(n,q)N∑
j=1

∆Xj
i(n,q)e

−βn((bTq∆−1
n c+1)∆n−T ji(n,q)),

IV = −(1− e−βn∆n)

N1∑
q=1

sgn(∆XTq )Z
β
ti(n,q)−1,n

.

In the same way as in Lemma 10, the term III is equal to

N1∑
q=1

sgn(∆XTq )
(
∆XTqe

−βn((bTq∆−1
n c+1)∆n−Tq)+

∆n
i(n,q)N∑
j=1,

T j
i(n,q)

6=Tq

∆Xi
qe
−βn((bTq∆−1

n c+1)∆n−T ji(n,q))1{∆n
i(n,q)

N≥2}
)
,
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which is nothing but
∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p (dt, dx) plus a remainder term of order λ2

n∆n

in probability. Finally

|IV | ≤ βn∆n

N1∑
q=1

∫ ti(n,q)−1,n

0

e−βn(ti(n,q)−1,n−t)|x|p(dt, dx)

≤ βn∆ne
βn∆n

N1∑
q=1

∫ T−q

0

e−βn(T−q −t)|x|p(dt, dx)

= βn∆ne
βn∆n

∫ 1

0

∫ t

0

|y|e−βn(t−s)p(ds, dy)p(dt, dx),

and this term has expectation of order βn∆nλ
2
n/βn . λ

2
n∆n. �

Lemma 12. We have∣∣∣ ∑
q∈En sgn(∆XTq )∆

n
i(n,q)X∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)
− 1
∣∣∣ . λn∆n +

√
∆n/λn

in probability.

Proof. If supn λn <∞, then
( ∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p(dt, dx)

)−1
is bounded in probability.

Otherwise, using
∫ 1

0
e−βn((bt∆−1

n +1)∆n−t)dt = 1−e−βn∆n

βn∆n
, we have∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p(dt, dx)

λn|x| ? ν( 1−e−βn∆n

βn∆n
)

→ 1

as n→∞ and the result follows by applying Lemma 10 and Lemma 11. �

Step 2). We are ready to prove Proposition 9. Define the oracle slope

ŝoracle
n = −

∑
q∈En sgn(∆XTq )

(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆XTj

)∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0}.

Using the canonical decomposition X = Xc + Zβ and the fact that for i ∈ An, we have

−∆n
i Z

β = (1− e−βn∆n)Zβti−1,n,n = (1− e−βn∆n)(∆n
i−1Z

β + Zβti−2,n),

and we write

ŝoracle
n = I + II + III,

with

I = −
∑
q∈En sgn(∆XTq )∆

n
i(n,q)+1X

c∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0},

II = (1− e−βn∆n)

∑
q∈En sgn(∆XTq )∆

n
i(n,q)Z

β∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0},

III = (1− e−βn∆n)

∑
q∈En sgn(∆XTq )

(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

1{N1>0}.

We study the convergence of each term separately.
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Step 3). The term I. From the proof of Lemma 10, we readily have∣∣ ∑
q/∈En

sgn(∆XTq )∆
n
i(n,q)+1X

c
∣∣ . λn∆n

in probability, so we shall replace the sum in q over En by the sum in q over {1, . . . , N1} in the
following. By Lemma 12, we derive

(30) I = IV (1 + (λn∆n +
√

∆n/λn)R(1)
n ) + ∆nR(2)

n ,

with

IV = −
∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)+1X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

and where both R(1)
n and R(2)

n are bounded in probability. Next, denoting by ∆Xj
i the j-th jump

in [(i− 1)∆n, i∆n], we have

N1∑
q=1

sgn(∆XTq )∆
n
i(n,q)+1X

c =

n∑
i=2

sgn(∆X1
i−1)∆n

i X
c1{∆n

i−1N=1} +

n∑
i=2

∆n
i−1N∑
j=2

sgn(∆Xj
i )∆n

i X
c1{∆n

i N≥2}

=

n∑
i=2

sgn(∆X1
i−1)∆n

i X
c1{∆n

i−1N=1} + λn∆nR(3)
n ,

whereR(3)
n is bounded in probability, using the same argument as in Lemma 11. It is not difficult to

see that
∑n
i=2 sgn(∆X1

i−1)∆n
i X

c1{∆n
i−1N≥1} is centred with variance λn∆n

∫ 1

∆n
σ2
sds up to an error

of order (λn∆n)2. Therefore, when supn λn < ∞, we have that IV is of order
√

∆n and of order√
∆n/λn otherwise, using that

∫ 1

0

∫
R |x|e

−βn((bt∆−1
n c+1)∆n−t)p (dt, dx) is equivalent to λn∆n|x| ?

ν
(

1−e−βn∆n

βn∆n

)
. We thus obtain the decomposition

I =

(
βn∆n

1− e−βn∆n

) √∆n

∫ 1

0
σ2
sds√

λn|x| ? ν
J (n)

3(31)

= e−βn∆nβn∆nV(n)
3 J

(n)
3 ,

where J (n)
3 is bounded in probability and V(n)

3 is defined in the statement of Proposition 9. We

investigate further the convergence of J (n)
3 . Define

V 2
n =

n∑
i=2

E
[
(∆n

i X
c)21{∆n

i−1N=1} |FWti−1,n

]
.

Clearly,
∑n
i=2 sgn(∆X1

i−1)∆n
i X

c1{∆n
i−1N=1} is centred and we claim that for every η > 0:

(32)

n∑
i=2

E
[
V −2
n (∆n

i X
c)21{∆n

i−1N=1}1{V −1
n |∆n

i X
c|≥η}1{N1≥1}

]
→ 0

as n → ∞. Indeed, applying successively Cauchy-Schwarz’s, Markov’s and Burckolder-Davis-
Gundy’s inequality, we obtain

E
[
(∆n

i X
c)21{V −1

n |∆n
i X

c|≥η} |F
N
1

]
≤ E

[
(∆n

i X
c)4
]1/2P[|∆n

i X
c| ≥ ηVn |FN1

]1/2
≤ E

[
(∆n

i X
c)4
]1/2E[(∆n

i X
c)2]1/2

ηVn
. η−1V −1

n ∆3/2
n .
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Next V 2
n =

∑n
i=2 1{∆n

i−1N=1}
∫ ti,n
ti−1,n

σ2
sds ≥ σ2∆n

∑n
i=2 1{∆n

i−1N=1} = σ2∆nV
2
n say. Summing up

and taking expectation, it follows that

n∑
i=2

E
[
V −2
n (∆n

i X
c)21{∆n

i−1N=1}1{V −1
n |∆n

i X
c|≥η}

]
. η−1∆3/2

n

n∑
i=2

E
[
V −3
n 1{∆n

i−1N=1}1{N1≥1}
]

. E
[
V −1
n 1{N1≥1}

]
≤ E

[
(V 2

n)−11{N1≥1}
]1/2

by Jensen’s inequality. Since V 2
n has a Binomial distribution with parameters (n−1, λn∆ne

−λn∆n),
we have that V 2

n →∞ in probability since λn →∞ and is bounded below on {N1 ≥ 1} which has
probability that converges to one, the Lindeberg condition (32) follows by dominated convergence
and we further infer

1

Vn

n∑
i=2

∆n
i X

csgn(∆1
jX)1{∆n

i−1N=1} → N (0, 1)

in distribution as n → ∞. Observing that
V 2
n

λn∆n
→
∫ 1

0
σ2
sds in probability, in view of (30), we

conclude

1√
λn∆n

∫ 1

0
σ2
sds

N1∑
q=1

sgn(∆XTq )∆
n
i(n,q)+1X

c → N (0, 1)

in distribution as n→∞ and likewise for J (n)
3 in view of (31).

Step 4). The term II. We write, using the proof of Lemma 10 and Lemma 12,

(1− e−βn∆n)−1II

= 1−
∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

c∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

= 1−
∑
q∈En sgn(∆XTq )∆

n
i(n,q)X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)

(
1 + max{λn∆n,

√
λn/∆n}R(1)

n

)
= 1− (

∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)
+ ∆nR(2)

n )
(
1 + max{λn∆n,

√
λn/∆n}R(1)

n

)
where R(1)

n and R(2)
n are bounded in probability. By Step 2), we know that∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

c∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p (dt, dx)
=

(
βn∆n

1− e−βn∆n

) √
∆n

∫ 1
0
σ2
sds√

λn|x|?ν
U (n)

= e−βn∆n

(
βn∆n

1− e−βn∆n

)
V(n)

4 ,

where U (n) is bounded in probability and asymptotically normal if λn →∞ and V(n)
4 is defined in

the statement of Proposition 9. Finally, we have proved

II = (1− e−βn∆n)
(
1 + e−βn∆n

(
βn∆n

1− e−βn∆n

)
V(n)

4 J
(n)
4

)
where J (n)

4 is bounded in probability and asymptotically normal if λn →∞.



ESTIMATING FAST MEAN-REVERTING JUMPS 29

Step 4’). It is easily shown that
∑n
i=2 E

[
(∆n

i X
c)21{∆i−1N=1}1{∆n

i N=1}1{N1≥1} |Fti−1,n

]
→ 0

if λn → ∞ as n → ∞, so we actually have from Step 3) and Step 4) the joint convergence

(J (3)
n ,J (4)

n )→ N (0, IdR2) in distribution as λn →∞.

Step 5). The term III. By the proof of Lemma 10 and Lemma 12, we have

(1− e−βn∆n)−1III

=

∑
q∈En sgn(∆XTq )

(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

(
1 + max{λn∆n,

√
∆n/λn}R(1)

n

)
=
(∑N1

q=1 sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)
+

λ2
n

βn
∆nR(2)

n

)(
1 + max{λn∆n,

√
∆n/λn}R(1)

n

)
where R(1)

n and R(2)
n are bounded in probability. Indeed, in the same way as for Lemma 10, we

have

∣∣ ∑
q/∈En

sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

q−1∑
j=1

∆XTj

)∣∣
≤
∑
q/∈En

(
|Zβti(n,q)−1,n

|+ 2∆n

1−e−βn∆n

q−1∑
j=1

|∆XTj |
)
1{Tq+1−Tq<2∆n} .

λ3
n∆n

βn

in probability, as follows from (29) and the computations of Lemma 10. When exactly one jump

occurs in (i (n, q)− 1, i (n, q)], we have Zβti(n,q)−1,n
= e−βn(ti(n,q)−1,n−Tq)ZβTq−

and

N1∑
q=1

sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

q−1∑
j=1

∆XTj

)
=

∫
0≤s<t≤1

∫
R2

y sgn(x)(e−βn(t−s)e−βn(bt∆−1
n c∆n−t) − 2∆n

1−e−βn∆n
)p(ds, dy)p(dt, dx) +

λ3
n∆n

βn
R(3)
n ,

where the remainder term R(3)
n is bounded in probability and accounts for the case where more

than one jump occurs in the intervals (i (n, q) − 1, i (n, q)]. By Fubini’s theorem, the main term

splits into M(1)
n +M(2)

n +M(3)
n , with

M(1)
n = λ2

n(x ? ν) (sgn(x) ? ν)

∫
0≤s<t≤1

(
e−βn(t−s)e−βn(bt∆−1

n c∆n−t) − 2∆n

1−e−βn∆n

)
dtds

=
λ2
n

βn
(x ? ν) (sgn (x) ? ν)

(
eβn∆n−1
βn∆n

−∆n
1−e−βn

1−e−βn∆n
− βn∆n

1−e−βn∆n

)
,

M(2)
n = λn

∫ 1

0

∫
R
g(1)
n (t, x)(p− λnq)(dt, dx),

M(3)
n =

∫
[0,1]2×R2

g(2)
n (t, x, s, y)

(
p− λnq

)
(ds, dy)

(
p− λnq

)
(dt, dx) ,
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with

g(1)
n (t, x) = x (sgn(y) ? ν)

∫
0≤s<t≤1

(e−βn(s−t)e−βn(bs∆−1
n c∆n−s) − 2∆n

1−e−βn∆n
)ds

+ (y ? ν) sgn(x)

∫
0≤s<t≤1

(e−βn(t−s)e−βn(bt∆−1
n c∆n−t) − 2∆n

1−e−βn∆n
)ds

and

g(2)
n (t, x, s, y) = y sgn(x)1{t>s}

(
e−βn(t−s)e−βn(bt∆−1

n c∆n−t) − 2∆n

1−e−βn∆n

)
.

By standard yet tedious computations, evaluating centred terms and their variances in terms of
asymptotics in n, we can infer from the previous representation that∑N1

q=1 sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

=
M(1)

n

λn(|x| ? ν) 1−e−βn∆n

βn∆n

+
λn
∫ 1

0

∫
R g

(3)
n (t, x)(p− λnq)(dt, dx)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

+ βn∆n

1−e−βn∆n
min

{√
x2?ν

2(|x|?ν)2βn

1− e−2βn∆n

2βn∆n
, λnβ

−1
n

}
J (2)
n ,

where J (2)
n is bounded in probability and g

(3)
n (t, x) = −λ−2

n
M(1)

n

|y|?ν
(

1−e−βn∆n
βn∆n

) |x|e−βn((bt∆−1
n c+1)∆n−t)+

g
(1)
n (t, x). It is not difficult to check that

λn
∫ 1

0
g

(3)
n (t, x)(p− λnq)(dt, dx)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)
= e−βn∆nV(1)

n J (1)
n

where V(1)
n is defined in the statement of Proposition 9 and J (1)

n is bounded in probability. It
follows that

1− e−βn∆n

βn∆n

∑N1

q=1 sgn(∆XTq )
(
Zβti(n,q)−1,n

− 2∆n

1−e−βn∆n

∑q−1
j=1 ∆XTj

)∫ 1

0

∫
R |x|e−βn((bt∆−1

n c+1)∆n−t)p(dt, dx)

=
M(1)

n

λn(|x| ? ν)
+ e−βn∆nV(1)

n J (1)
n + min

{√
x2?ν

2(|x|?ν)2βn

1− e−2βn∆n

2βn∆n
, λnβ

−1
n

}
J (2)
n .

We eventually obtain the decomposition

III = βn∆nMn + βn∆ne
−βn∆nV(1)

n J (1)
n + βn∆ne

−βn∆nV(2)
n J (2)

n

withMn = λn
βn

(x?ν) (sgn(x)?ν)
|x|?ν

(
eβn∆n−1
βn∆n

−∆n
1−e−βn

1−e−βn∆n
− βn∆n

1−e−βn∆n

)
and V(2)

n defined in the state-

ment of Proposition 9.

Step 5’). Using classical results of [21, Theorem 3], one can further investigate the asymptotic

distribution of (J (1)
n ,J (2)

n ) under the additional assumption |x|3 ? ν <∞ assuring the existence of∫ 1

0

∫
R g

3
n (t, x) ν (dx) dt and the condition

(sgn (x) ? ν)
2

(|x|2 ? ν) + (x ? ν)
2 − 2(sgn (x) ? ν)(|x|2 ? ν) 6= 0,
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otherwise the term V(1)
n becomes negligible. We then have that J (1)

n is asymptotically normal, and

under the stronger assumption |x|4 ? ν <∞, we even have the convergence of (J (1)
n ,J (2)

n ) towards
a standard two-dimensional Gaussian distribution. We omit the details.

Step 6). Combining Step 2) and the results of Steps 3), 4) and 5), we obtain

ŝoracle
n =

(
1− e−βn∆n

)
+ βn∆nMn + βn∆ne

−βn∆nVTn Jn

with the notation introduced in the statement of Proposition 9. Now, let β̂oracle
n = − 1

∆n
log(max{1−

ŝoracle
n ,∆n}). For n large enough, a first-order Taylor’s expansion entails

β̂oracle
n = βn + βne

βn∆n
(
Mn + e−βn∆nVTn J n

)
where the random vector J n has the same asymptotic properties as Jn. Setting Moracle

n =

eβn∆nMn, and checking that all the terms have the right order, we obtained the desired result and
Proposition 9 is proved.

Completion of proof of Theorem 6. We start by a simple approximation result.

Lemma 13. We have

P
(
sgn(∆XTq ) = sgn(∆n

i(n,q)X) for every 1 ≤ q ≤ N1

)
→ 1.

Proof. Note first that P(Ωn ∩ {sup|t−s|<2∆n
|Nt−Ns| = 1)→ 1 if λ2

n∆n → 0. We first work under

Assumption 3 (I). In this case, we have βn∆n → 0 and we claim that

(33) P
(

min
1≤q≤N1

∆n
i(n,q)X

∆XTq
≤ 0
)
→ 0

from which Lemma 13 readily follows. For all q ≥ 1, we have

∆n
i(n,q)X

∆XTq
= 1 +

∆n
i(n,q)X

c

∆XTq
− (1−e−βn∆n)Zβi(n,q)−1

∆XTq

≥ 1− |∆
n
i(n,q)X

c|
|∆XTq |

−
βn∆n|Zβi(n,q)−1

|
|∆XTq |

≥ 1−
maxi∈Acn |∆

n
i X

c|
min1≤i≤N1

|∆XTi |
−
βn∆n max1≤i≤n |Zβti,n |

min1≤i≤n |∆XTi |
.

Thus,

P
(

min
1≤q≤N1

∆n
i(n,q)X

∆XTq
≤ 0
)
≤ P

(
max
i∈Acn

|∆n
i X

c|+ β∆n max
1≤i≤n

|Zβti,n | ≥ min
1≤i≤N1

|∆XTi |
)

and this term converges to 0 in the same way as the terms (19) and (20). The convergence (33)
follows and Lemma 13 is proved. The case where Assumption 3 (II) is fulfilled corresponds to
showing the convergence (27) and the proof follows likewise. �

We are ready to prove Theorem 6.

Step 1). We prove the result on Ωn ∩
{

sgn
(
∆XTq

)
= sgn(∆n

i(n,q)X) for every 1 ≤ q ≤ N1

}
∩

{sup|t−s|<2∆n
|Nt −Ns| = 1

}
thanks to Lemma 13. On this event, the quantity

ŝn = −
∑λ̂n
q=1 sgn(∆n

In(q)X)
(
∆n
In(q)+1X + 2∆n

∑q−1
j=1 ∆n

In(j)X
)

∑λ̂n
q=1 sgn(∆n

In(q)X)∆n
In(q)X



32 THOMAS DESCHATRE, OLIVIER FÉRON AND MARC HOFFMANN

is equal to

−
∑N1

q=1 sgn(∆n
i(n,q)X)

(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆n

i(n,j)X
)∑N1

q=1 sgn(∆n
i(n,q)X)∆n

i(n,q)X

and

ŝoracle
n = −

∑N1

q=1 sgn(∆XTq )
(
∆n
i(n,q)+1X + 2∆n

∑q−1
j=1 ∆XTj

)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

.

It follows that ŝn = ŝoracle
n +R(1)

n , with

R(1)
n = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1(∆XTj −∆n

i(n,j)X)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

= I + II,

with

I = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 ∆n

i(n,j)

∫ t
0
(1− e−βn(t−s))xp(dt, dx)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

and

II = −2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 ∆n

i(n,j)X
c∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

.

say.

Step 2). We quickly study each term separately. The term I further splits into I = III+ IV , with

III = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 ∆XTj (1− e−βn(ti(n,j),n−Tj))∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

,

IV = 2∆n

∑N1

q=1 sgn(∆XTq )
∑q−1
j=1 Zti(n,j)−1,n

(
1− e−βn∆n

)∑N1

q=1 sgn(∆XTq )∆
n
i(n,q)X

.

With the same kind of arguments as developed in the proof of Proposition 9, it is not difficult to
see that |IV | . ∆2

nλ
2
n in probability. For the term III, we use the same kind of arguments and

obtain

III = M̃n + βn∆n

(√
λn∆n +

√
∆nβ

−1
n

)
R(2)
n ,

with

M̃n =
2∆nλnsgn(x) ? ν (x ? ν)

(
1
2 −

1−e−βn∆n

2βn∆n
+ 1+e−βn∆n

2βn
− 1−e−βn∆n

β2
n∆n

)
(|x| ? ν) 1−e−βn∆n

βn∆n

and R(2)
n is bounded in probability. We also have |II| . ∆

3/2
n in probability. We omit the details.

Step 3). Finally we obtain the decomposition

ŝn = ŝoracle
n + M̃n + βn∆n

(√
λn∆n +

√
∆nβ

−1
n

)
R(2)
n

and we conclude by applying Proposition 9, replacing ŝn by ŝoracle
n and studying the order of each

term carefully.
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