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Abstract. We introduce a new type of point process model to describe the incidence

of contagious diseases. The model is a variant of the Hawkes self-exciting process and

exhibits similar clustering but without the restriction that the component describing the

contagion must remain static over time. Instead, our proposed model prescribes that the

degree of contagion (or productivity) changes as a function of the conditional intensity; of

particular interest is the special case where the productivity is inversely proportional to the

conditional intensity. The model incorporates the premise that when the disease occurs at

very low frequency in the population, such as in the primary stages of an outbreak, then

anyone with the disease is likely to have a high rate of transmission to others, whereas

when the disease is prevalent in the population, then the transmission rate is lower due

to human mitigation actions and prevention measures and a relatively high percentage

of previous exposure in the total population. The model is said to be recursive, in the

sense that the conditional intensity at any particular time depends on the productivity

associated with previous points, and this productivity in turn depends on the conditional

intensity at those points. Some basic properties of the model are derived, estimation and

simulation are discussed, and the recursive model is shown to fit well to historic data on

measles in Los Angeles, California, a relevant example given the 2017 outbreak of this

disease in the same region.
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1 Introduction.

Hawkes self-exciting point processes (Hawkes 1971) are a type of branching point process

model that has become very commonly used in modeling clustered phenomena. For ex-

ample, versions of Hawkes models are used to model seismicity (Ogata 1988, 1998), crimes

(Mohler et al. 2011), invasive plants (Balderama et al. 2012), terrorist strikes (Porter and

White 2012), and perturbations in financial markets (Bacry et al. 2013 and Bacry et al.

2015).

Although Hawkes models have some features making them amenable to modeling inci-

dence of infectious diseases, consideration of the nature of the spread of disease may suggest

a somewhat different type of model. For instance, Hawkes processes have the property that

the productivity (the expected number of secondary events triggered directly by the given

event, or in the case of infectious disease, the expected number of transmissions from one

individual to another) is static. In the case of Hawkes models applied to earthquakes (e.g.

Ogata 1988, Ogata 1998), the basic Hawkes model was extended to allow the productivity

of an earthquake to depend on its magnitude, but still not to depend on the time or lo-

cation of the event, nor on the number of previously occurring events. When considering

infectious diseases, however, this assumption of static productivity seems questionable.

Early in the onset of an epidemic, when prevalence of the disease is still low, one would

expect the rate of transmission to be much higher than when the prevalence of the disease

is higher, because of human efforts at containment and intervention of the disease, and

3



because some potential hosts of the disease may have already been exposed. Thus, we

introduce a new type of point process model where the productivity (expected number of

transmissions) for a subject infected at location (s, t) in space-time is a function of the

conditional intensity at (s, t). Since the conditional intensity in turn depends critically on

this productivity, we call the model recursive.

Here we present this extension of Hawkes point process models as they apply to infec-

tious diseases in the following format. After a brief review of point processes in general

and Hawkes models in particular in Section 2, we introduce the recursive model in Section

3, followed by the derivation of some basic properties of the model in Section 4. Simulation

and estimation are discussed in Sections 5 and 6, respectively, and in Section 7 we fit the

model to data on recorded cases of measles in Los Angeles, California from 1910 to 1952.

Section 8 contains some concluding remarks.

2 Hawkes point processes.

A point process (Daley and Vere-Jones, 2003; Daley and Vere-Jones, 2007) is a σ-finite

collection of points {τ1, τ2, ...} occurring in some metric space S. While the definitions and

results below can be extended quite readily to other spaces, we will assume for simplicity

throughout that the metric space S is a bounded region B × [0, T ] in space-time, with µ

representing Lebesgue measure, and we will assume for convenience that the spatial region
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is scaled so that µ(B) = 1. With this convention, all our definitions and results apply also

to the case of a purely temporal process; in such cases one must simply ignore the integral

over B in formulae below. A point process is simple if, with probability 1, none of the

points overlap exactly.

Spatial-temporal point processes are typically modeled via their conditional intensity,

λ(t) or λ(s, t), which represents the infinitesimal rate at which points are accumulating

at location (s, t) of space-time, given information on all points occurring prior to time t.

Simple spatial-temporal point processes are uniquely characterized by their conditional

intensity (Daley and Vere-Jones, 2007); for models for non-simple point processes, see

Schoenberg (2006).

For a simple spatial-temporal Hawkes process (Hawkes 1971), the conditional rate of

events at location (s, t) of space-time, given information Ht on all events prior to time t,

can be written

λ(s, t|Ht) = µ+K

∫
B

t∫
0

g(s− s′, t− t′)dN(s′, t′), (1)

where µ > 0, is the background rate, g(v) ≥ 0 is the triggering density satisfying∫
B

∫∞
0 g(u, v)dudv = 1 which describes the spatial-temporal conductivity of events, and

the constant K is the productivity, which is typically required to satisfy 0 ≤ K < 1 in

order to ensure stationarity and subcriticality (Hawkes, 1971).

Ogata (1988) extended the Hawkes model in order for earthquakes of different magni-
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tudes to have different productivity. Hawkes models and their extension to the temporal-

magnitude case were called epidemic by Ogata (1988), since they posit that an earthquake

can produce aftershocks which in turn produce their own aftershocks, etc. Several forms

of the triggering function g have been posited for describing seismological data, such as

g(v) = 1
(v+c)p , where u is the time elapsed since a previous event (Ogata 1988).

Hawkes processes have been extended to describe the space-time-magnitude distribu-

tion of seismic events. A version suggested by Ogata (1998) uses a spatially inhomogeneous

background rate and circular aftershock regions where the squared distance between an

aftershock and its triggering event follows a Pareto distribution. The model may be written

λ(s, t|Ht) = µ(s) +K

∫
B

t∫
0

g(s− s′, t− t′,m′)dN(s′, t′,m′),

with triggering function

g(u, v,m) = (||u||2 + d)−q exp{a(m−M0)}(v + c)−p, (2)

where ||si− sj ||2 represents the squared distance between the epicenters or hypocenters si

and sj of earthquakes i and j, respectively, and d > 0 and q > 0 are parameters describing

the spatial distribution of triggered earthquakes about their respective mainshocks.

The ETAS model has been extended by allowing the parameters to vary spatially and

temporally. For example, the HIST-ETAS model (Ogata et al. 2003, Ogata et al. 2004)

assumes the parameters in the ETAS model are locally constant within small spatial-

6



temporal cells. Similarly, Harte (2014) allows the ETAS model’s productivity parameter

to vary smoothly in space and time. In the following section we extend the model in a

different way, allowing the productivity to vary as a function of λ.

3 Proposed recursive model.

Consideration of the nature of disease epidemics may lead one to question the usual as-

sumption in Hawkes models of static productivity. For instance, when the prevalence of

the disease is low or zero in a region, as is the case when the epidemic has never struck

before or has not struck in considerable time, then the conditional intensity λ is small

and one would expect the rate of transmission for each infected person to be quite high,

as a majority of hosts are likely immunologically naive, and a carrier of the disease may

be expected to infect many others. When the epidemic is at its peak and many subjects

have contracted the disease, on the other hand, λ is large and one might expect the rate

of transmission to be lower due to human efforts at containment and intervention of the

disease, and because many subjects may have already been exposed and thus might be

recovered and immune to further infection, or deceased (in either case no longer part of

a susceptible pool). These considerations suggest a point process model where the pro-

ductivity for a subject infected at location (s, t) in space-time is inversely related to the

conditional intensity at (s, t). Since the conditional intensity in turn depends critically on

this productivity, we call the model recursive.
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We may write this model

λ(s, t) = µ+

∫
B

t∫
0

H(λs′,t′) g(s− s′, t− t′)dN(s′, t′), (3)

where µ > 0, and g > 0 is a density function. The productivity function H should typically

be decreasing in light of the considerations above regarding the transmission of disease,

and we focus in particular in what follows on the case where H(x) = κx−α, with κ > 0,

so that

λ(s, t) = µ+ κ

∫
B

t∫
0

λ−αs′,t′ g(s− s′, t− t′)dN(s′, t′). (4)

The triggering density g may be given e.g. by an exponential density,

g(u, v) = β exp(−βv), (5)

or exponential in space and time,

g(u, v) = βsβt exp(−βsu− βtv).

When α = 0, (4) reduces to a Hawkes process. We will refer to the special case where

α = 1, i.e. where

λ(s, t) = µ+ κ

∫
B

t∫
0

g(s− s′, t− t′)
λs′,t′

dN(s′, t′) (6)

as standard. The standard recursive model has especially simple and attractive features,

some of which are described in Section 4.
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4 Basic properties of the recursion model.

We prove the existence of a simple point process with conditional intensity (4), and find

the mean, variance, and certain large sample properties of the process.

Existence.

Proposition 1. Given a complete probability space, a recursive model with conditional

intensity satisfying (4) can be constructed with H(x) = κx−α, for any α, κ > 0.

Proof. Let (ek)k≥1 be a sequence of independent random variables. Set T0 = 0 and

Tk+1 = inf
{
t > Tk,

t−∫
Tk

(
µ+ κ

k∑
i=1

λ−αTi g(s− Ti)
)
ds = ek+1

}
.

Define, for k ≥ 1 the sequence of processes N
(k)
t =

∑k
i=1 1{Ti≤t}. It is easy to see that

N
(k)
t is a counting process with stochastic intensity λ

(k)
t satisfying

λ
(k)
t = µ+ κ

t−∫
0

(λ(k)u )−αg(t− u)dN (k)
u .

Let Nt = limk→∞N
(k)
t . Let us show that Nt is well-defined, i.e. has no accumulation of
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jumps. We have

E[N
(k)
t ] = E

[ t∫
0

λ
(k)
s−ds

]

≤ µt+ κE
[ ∫ t

0

(s−)∫
0

(
λ(k)u

)−α
g(s− u)dNuds

]

≤ µt+ κµ−αE
[ t∫
0

(s−)∫
0

g(s− u)dN (k)
u ds

]
= µt+ κµ−αE

[ ∫ t

0
g(t− s)N (k)

s ds
]

where the last line can be obtained for instance by Lemma 22 in Delattre et al. 2016.

Hence

E[N
(k)
t ] ≤ µt+ κµ−α

∫ t

0
g(t− s)E

[
N (k)
s

]
ds

and the function Gk(t) = E[N
(k)
t ] satisfies Gk(t) ≤ µt+κµ−α

∫ t
0 g(t−s)Gk(s)ds, for which

Gronwall lemma implies supkGk(t) ≤ µtCt(g) for some constant Ct depending on g, µ, α

only as soon as g is locally integrable (see, for instance Lemma 23(i) in Delattre et al.

2016). Letting k → ∞, we infer by monotone convergence that E
[
Nt

]
< ∞ and thus

Nt <∞ P -almost surely follows. From this, one can observe that the stochastic intensity

λ of N satisfies the desired equation. The extension to a spatial variable, i.e. passing from

N(t) to N(t, s) and λ(t) to λ(t, s) satisfying (4) is straighforward.

Mean and variance.

The mean of the recursive process (4) can be obtained simply by using the Georgii-

Nguyen-Zessin property of the conditional intensity (Georgii 1976, Nguyen and Zessin
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1979).

1

T
EN(S) =

1

T
E

∫
S

dN

=
1

T
E

∫
B

T∫
0

λs,t dµ(s, t)

=
1

T
E

∫
B

T∫
0

{µ+ κ

∫
B

t∫
0

λ−αs′,t′ g(s− s′, t− t′)dNs′,t′}dµ(s, t)

= µ+
κ

T
E

∫
B

T∫
0

∫
B

t∫
0

λ1−αs′,t′ g(s− s′, t− t′)dµ(s, t, s′, t′)

= µ+
κ

T
E

∫
B

T∫
0

λ1−αs′,t′


∫
B

T−t′∫
0

g(s− s′, t− t′)dµ(s, t)

 dµ(s′, t′)

→ µ+
κ

T
E

∫
B

T∫
0

λ1−αs′,t′ dµ(s′, t′), (7)

as T →∞, provided

lim
T→∞

∫
B

T−t′∫
0

g(s− s′, t− t′)dsdt = 1, ∀(s′, t′). (8)

If assumption (8) is violated then equation (7) is merely an approximation. Impacts of

violations to assumption (8) are investigated in Schoenberg (2016).

Note that for the standard recursive model, α = 1, and (7) reduces simply to

µ+ κ. (9)

This highlights a major difference between Hawkes models and recursive models. For a

Hawkes process, doubling the background rate amounts to doubling the total expected

number of points, but this is far from true for the recursive process. As an example, in
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the rather realistic simulations in Figure 1a where µ = 0.1 and κ = 2, doubling µ would

only increase the total expected number of points by less than 5%, and in the case of the

process simulated in Figure 1c where µ = 0.01 and κ = 2, doubling µ would increase the

total expected number of points by less than 0.5%.

Law of large numbers.

We specialise in this section to the case α = 1 and show that T−1NT converges to

µ+ κ as T →∞ with rate of convergence
√
T in L2. For simplicity, we only consider the

temporal model Nt with stochastic intensity

λt = µ+ κ

t−∫
0

λ−1s g(t− s)dNs.

Proposition 2. Assume lim supT→∞ T
1/2
∫∞
T g(t)dt <∞. Then

sup
T
TE
[(
T−1NT − (µ+ κ)

)2]
<∞.

Proof. Write T−1NT − (µ+ κ) = AT +BT , with

AT = T−1NT −
1

T

T∫
0

λsds and BT =
1

T

T∫
0

λsds− (µ+ κ).

We claim that both supT TE[A2
T ] <∞ and supT TE[B2

T ] <∞, from which the proposition
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readily follows. Let us first consider the term involving BT . We have

BT = µ+ κ
1

T

T∫
0

g(T − s)
s−∫
0

dNu

λu
ds− (µ+ κ)

= κ
( 1

T

T∫
0

g(T − s)Ñsds− 1
)

= κ
1

T

T∫
0

g(T − s)(Ñs − s)ds+ κ
( 1

T

T∫
0

g(T − s)sds− 1
)

= B
(1)
T +B

(2)
T ,

say, where Ñs =
s−∫
0

dNu
λu
ds. Clearly

(
1

T

T∫
0

g(T − s)sds− 1 = − 1

T

T∫
0

g(s)ds+

T∫
0

g(s)ds− 1

= − 1

T

T∫
0

g(s)ds+

∞∫
T

g(s)ds

and this (deterministic) term is O(T−1/2) by assumption and thus B
(2)
T has the right

order. As for B
(1)
T , since s 7→ g(T −s) is a probability density, we successively use Jensen’s

inequality, Fubini, the fact that Ñs is a martingale with predictable compensator s, hence
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(Ñs − s)2 itself also a martingale with predictable compensator s to obtain

E
[(
B

(1)
T

)2] ≤ κ2 1

T 2

T∫
0

g(T − s)E
[
(Ñs − s)2

]
ds

= κ2
1

T 2

T∫
0

g(T − s)E
[
〈Ñ· − ·〉s

]
ds

= κ2
1

T 2

T∫
0

g(T − s)sds

= κ2
1

T 2

T∫
0

g(T − s)sds

and this term mutiplied by T is negligible, as for the term B
(2)
T . We finally turn to the

important term AT . Since Nt−
t∫
0

λsds is a martingale, its predictable compensator is also

t∫
0

λsds. It follows that

E
[
A2
T

]
= T−2E

[(
NT −

∫ T

0
λsds

)2]
= T−2E

[
〈N· −

·∫
0

λsds〉T
]

= T−2
∫ T

0
E
[
λs
]
ds.

The remainder of the proof consist in showing that sups>0E[λs] <∞. This follows in the

same line as for the proof of non accumulation of jumps in Proposition 1.

Productivity.

The productivity of a point τi is typically defined in the context of Hawkes or ETAS

processes as the expected number of first generation offspring of the point τi. For a Hawkes

process, the productivity of each point is simply K.
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In the case of the recursive model (3), the productivity of any point τi is given by

H{λ(τi)}. Thus the total productivity, for n points τ1, τ2, ..., τn, is
n∑
i=1

H{λ(τi)}, and

for the special case of the standard recursive model (6), the expected value of the total

productivity is

κE

∫
B

T∫
0

1

λs,t
dNs,t = κE

∫
B

T∫
0

1

λs,t
λs,t dµ = κT.

Thus under assumption (8) the average productivity for the standard recursive model is

κT/N(S)→ κ/(µ+ κ) a.s., since N(S)/T → µ+ κ a.s. This highlights another difference

between the recursive and Hawkes models. For a Hawkes process, the points τ1, τ2, ...

all have constant productivity, K. For a standard recursive process, the productivity of

the first point is very large (1/µ), but the productivity decreases thereafter, ultimately

averaging κ/(µ+ κ).

Declustering.

In the seismological context, one is often interested in mainshocks, and it can occasion-

ally be desirable to remove the earthquakes that could be considered aftershocks from a

catalog. Zhuang et al. (2002) proposed a method of stochastic declustering for Hawkes or

ETAS processes whereby one may assign to each observed point τi a probability that it

was mainshock, attributable to the background rate µ, and to each pair of points (τi, τj)

one may compute the probability that earthquake j was triggered by earthquake i, and

may thus be considered an aftershock of event i.

Similarly, when discussing the spread of a contagious disease in a given spatial region,
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one may consider the probability that events generated by the recursive model (3) are new

outbreak points, attributable to the background rate µ, or whether point τj was infected

by point τi. Such triggering or infection probabilities would be extremely relevant to a

statistical analysis of epidemic data.

Fortunately these background and infection probabilities are very easy to calculate for

the recursive model. Whereas in a sub-critical Hawkes process, the expected proportion

of background points is 1/(1 −K), for the standard recursive process, this proportion is

µ/(µ+κ). This follows directly from the formula (9) for the mean of the recursive process.

Referring to the form of the recursive model in (3), for any points τi < τj , the probability

that subject j was infected by subject i is given by

H(λτi)g(τj − τi)
µ+

∫
B

∫ τj
0 H(λs′,t′) g{τj − (s′, t′)}dNs′,t′

, (10)

which can readily be computed. In equation (10) we are using the simplified notation

g(τj − τi) to refer to g(s− s′, t− t′), where τj = (s, t) and τi = (s′, t′).

5 Simulation.

One way to simulate a recursive point process is using the thinning technique of Lewis

and Shedler (1979). Specifically, one sets b to some large value, generates a homogeneous

Poisson process of candidate points with rate b on the spatial-temporal domain S, sorts

the candidate points in order of time, and for each candidate point τi, for i = 1, 2, ...,,
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one keeps the point independently of the others with probability λ(τi)/b. Here, λ(τi) is

computed using equation (3), where in calculating

λ(s, t) = µ+

∫
B

t∫
0

H(λs′,t′) g(s− s′, t− t′)dN(s′, t′) = µ+
∑
i:t′i<t

H(λs′,t′) g(s− s′, t− t′),

the sum is taken over only the kept points. Hawkes processes may be simulated in a similar

manner.

Figure 1 shows simulations of a recursive process and a Hawkes process over the same

domain, with the same exponential triggering density, and the same background rate µ.

In the top panels, µ = 0.05 and βt = 0.8, and in the bottom panels, µ = 0.1 and β = 1.

In each case, the parameter K of the Hawkes process was selected as κ/(µ + κ) so that

the Hawkes and recursive processes would have the same expected number of points. One

main difference between the Hawkes and recursive models is that the former exhibits oc-

casional small clusters with just a few or even just one isolated point, whereas the latter

produces almost exclusively large clusters. One sees also how the parameter β influences

the degree of clustering in the processes.

Figure 2 shows the conditional intensity, λ, of a standard recursive process (6), along

with the corresponding conditional intensity of a Hawkes process (1) fit to the simulated

recursive process by maximum likelihood. One sees that the conditional intensity of the

recursive process is higher following the initial point in a cluster, but the Hawkes condi-

tional intensity becomes higher after several points have occurred in succession.
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6 Estimation.

As with most space-time point process models including Hawkes and ETAS processes, the

parameters in recursive point processes can be estimated by maximizing the loglikelihood,

`(θ) =

∫
S

log λ(s)dN(s)−
∫
S

λ(s)dµ, (11)

where θ is the vector of parameters to be estimated. Maximum likelihood estimates

(MLEs) of the parameters in such point process models are consistent, asymptotically

normal, and efficient (Ogata 1978).

Despite the recursive nature of the model, the loglikelihood of a recursive point process

can be computed quite directly. For any given realization of points {τ1, τ2, ..., τn}, given

a particular value of the parameter vector θ, λ(τ1) = µ so one can immediately compute

H{λ(τ1)} = H(µ), and thus λ(τ2) = µ + H(µ)g(τ2 − τ1). One therefore has H{λ(τ1)} =

H(µ + H(µ)g(τ2 − τ1), and one can continue in this fashion to compute λ(τi) for i =

1, 2, ..., n.

The integral term
∫
S

λ(s)dµ may readily be approximated in the standard way (see e.g.

Schoenberg 2013). Assuming g(t) has negligible mass for t > T − τi, one may invoke the
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approximation

∫
S

λ(s)dµ =

T∫
0

{µ+

t∫
0

H(λ(s))g(t− s)dN(s)}dt

= µT +

T∫
0

H(λ(s))

T−s∫
0

g(u)dN(s)du

≈ µT +

T∫
0

H(λ(s))dN(s)

= µT +
∑
i

H(λ(τi)),

which is trivial to compute. The parameter vector θ maximizing the approximation of

(11) can then be estimated by standard Newton-Raphson optimization routines. In what

follows, we use the function optim() in R. Approximate standard errors can be derived via

the diagonal elements of the inverse of the Hessian of the loglikelihood (Ogata 1978).

7 Application to Measles in Los Angeles, California.

Recorded cases of measles in Los Angeles, California, from 1/1/1906 to 12/31/1956 were

obtained from Project Tycho, www.tycho.pitt.edu (Van Panhuis et al., 2013). The data

consist of weekly counts of confirmed cases of measles in Los Angeles published by the

United States Centers of Disease Control (CDC) in its open access weekly Morbidity and

Mortality Weekly Reports. For some weeks no information is available, especially in the

years 1906-1909, so for this analysis we restrict our attention to the 148,037 recorded

cases during the period from 2/5/1910 to 12/31/1956. Weeks with no data over this pe-
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riod were treated as having zero confirmed cases. Since the temporal resolution of the

data is by week, the onset time for each individual case was drawn uniformly within each

7 day time interval. Figure 3 shows a histogram of the cases, along with the estimated

rate of the recursive model (4) with exponential triggering fit to the data by maximum

likelihood. The estimated parameters are (µ, κ, β, α) = (3.907 points/yr, 27.06 triggered

points/observed point, 60.01 points/yr, 0.3632), with corresponding standard error esti-

mates (.1494, .6569, .8681, .06997.).

One way to check for convergence of the MLE is to compute the ratio
T∫
0

λ̂(t)dt/N(0, T ),

which should be close to 1 since E
T∫
0

λ̂(t)dt = E
T∫
0

dN = N(0, T ). In practice this ratio

often assumes a value extremely close to 1 after fitting by maximum likelihood (Harte

2015). For the measles data, the ratio is 0.995601, and the loglikelihood is 1223183.

In order to assess the fit of the model, we used super-thinned residuals (Clements et

al. 2013). In super-thinning, one selects a constant b, thins the observations by keeping

each observed point τi independently with probability b/λ̂(τi) if λ̂(τi) > b, and superposes

points from a Poisson process with rate (b− λ̂)1λ̂≤b, where 1 denotes the indicator func-

tion. The resulting super-thinned residuals form a homogeneous Poisson process with rate

b iff. λ̂ is the true conditional rate of the observed point process (Clements et al. 2013).

If ti are the times of the super-thinned points, one may consider the interevent times,

ri = ti − ti−1 (with the convention t0 = 0), which should be exponential with mean 1/b

if the fitted model λ̂ is correct, and it is natural therefore to inspect the uniformity of
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the standardized interevent times ui = F−1(ri), where F is the cumulative distribution

function of the exponential with mean 1/b. Figure 4 shows the super-thinned residuals ti

along with their corresponding standardized interevent times ui, as well as the cumulative

sum of the standardized intervent times, along with individual 95% confidence bounds

based on 1000 simulations of an equivalent number of uniform random variables. The

super-thinned residuals appear to be well scattered, though the model does not fit per-

fectly; there are more very large interevent times than expected, especially between 1925

and 1945, and the cumulative sum of the standardized interevent times is somewhat more

concave than expected as a result. These largest interevent times appear to be somewhat

clustered together, while the other interevent times appear to be largely well scattered, as

shown in the lag plot of the standardized interevent times in Figure 5.

Figure 6 shows the stochastic declustering of the measles data in Los Angeles using

the fitted model (4). The y-axis shows the probability, based on the fitted model (4),

that the point is attributed to the background rate (µ) as opposed to contagion from

previous points. The vast majority of points are attributed to contagion rather than novel

outbreaks. Certain particular points in 1910-1912, 1922, and 1952 are given much higher

likelihood of being attributed to new outbreaks, though this is likely at least partially an

artifact of missing data in preceding weeks.
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8 Concluding remarks.

The recursive point process model proposed here and fit to infectious disease data seems to

be an improvement over Hawkes models because of its more general form and its flexibility,

enabling it to account for changes in the rate of contagion over the course of an epidemic.

We should note that although Hawkes models are widely used in seismology and are

occasionally called epidemic-type models, and although the processes by which humans

spread contagious diseases seem naturally to lend themselves to such models, the use of

Hawkes models in describing the spread of infections has been scant. Exceptions are Becker

(1977), who proposed purely temporal self-exciting point process models to describe the

temporal spread of smallpox in Brazil, Farrington et al. (2003), who describe the effect of

vaccinations on the spread of measles in the United States using self-exciting point process

models, and Balderama et al. (2012), who model invasive red banana plant locations and

times using a parametric space-time Hawkes point process model. As noted by Law et

al. (2009), unlike grid-based studies on area occupation, where the surface of study is

divided into an array of pixels on a grid, spatial-temporal point processes can enable

greater precision of forecasts in space and time, and can offer a more detailed and precise

account of spatial heterogeneity and clustering. Diggle (2006) investigated inhomogeneity

in foot-and-mouth disease using spatial-temporal point process models estimated by partial

likelihood methods, and Diggle (2014) discusses some successful uses of spatial-temporal

point process modeling in describing in detail ecological phenomena such as the locations

of Japanese black pine saplings as well as public health data such as liver cirrhosis in
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Northeastern England, but these efforts currently do not appear to have been widely

replicated. Perhaps the added flexibility of the recursive model proposed here will facilitate

the more frequent use of point process models for such epidemic data.

According to the fitted recursive model for measles in Los Angeles from 1910 to 1956,

the vast majority of observed points were spread via contagion, with only a small frac-

tion (0.121% of cases, or 3.907 cases per year) attributable to new outbreaks. The fitted

exponential triggering function in the recursive model had an estimated rate of 60.01

points/year, which corresponds to a mean triggering time of 6.08 days for each transmis-

sion. This estimate of 6 days for each transmission is, given the epidemiology of the

measles virus, plausible. For instance, CDC reports that communicability of measles can

occur from 4 days before, to 4 days after, onset of symptomatic rash, and that rashes

present on patients between 7-21 days after exposure (Centers for Disease Control and

Prevention, 2015). Note that this estimate of contagion is based on when the measles

cases were reported; thus, the contagion suggested here within 6.08 days corresponds to

cases being reported within 6.08 days of one another. This may differ from the actual

delay times between subjects’ contraction of the disease. There may be numerous covari-

ates, such as climate, geographical and geological variables for instance, that are omitted

here yet may influence the relationship observed here between previously observed points

and the rate of future points. The conditional intensity may nevertheless be consistently

estimated in the absence of such information provided the impact of the missing covariates

is suitable small, as shown in Schoenberg (2016).
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We have presented an extension of the Hawkes point process model, a recursive model,

that allows for previous disease status to inform a flexible component describing the time

intervals between contagious events. In the special case where the productivity is in-

versely proportional to the conditional intensity (i.e. when α = 0), we have shown that

this standard recursive model is computationally trivial to estimate, and does not re-

quire estimates of more complex parameters typically needed for accurate estimations of

transmission events. We have demonstrated that these recursive models perform well on

historical disease datasets, and can lead to insights into the transmission dynamics of par-

ticularly contagious diseases. These advances are particularly relevant given the recent

outbreaks of such diseases in the same regions tested here, and will hopefully encourage

informed strategies as to how best prevent and mitigate future outbreaks.
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Figure 1: (a) Simulation of a standard recursive model (6) with µ = 0.05, κ = 2, and g as

in (5) with βt = 0.8. (b) Simulation of a Hawkes model (1) with the same g and µ as in

(a), and with K = µ/(µ+ κ) so that the processes in (a) and (b) have the same expected

number of points. (c) Simulation of a standard recursive model (6) with µ = 0.1, κ = 2,

and g as in (5) with βt = 1. (d) Simulation of a Hawkes model (1) with the same g and

µ as in (c), and with K = µ/(µ + κ) so that the processes in (c) and (d) have the same

expected number of points. All 4 simulations are over the same domain S = B×[0, T ] with

B = [0, 1] and T = 1000. For all 4 simulations, points are distributed spatially uniformly

in B.
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Figure 2: The conditional intensity for a simulation of the standard recursive model (black)

and the corresponding conditional intensity for a Hawkes model (grey) fit by maximum

likelihood to the same simulated recursive process. Points are shown on the x axis. The

simulated recursive model has µ = 0.4, κ = 2, g as in (5) with βt = 1, and T = 1000, and

the Hawkes model also has g as in (5) and parameters µ,K, and βt fit by MLE. Points are

distributed uniformly over B = [0, 1].
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Figure 3: Histogram (black bars) of measles cases in Los Angeles, California, from 1910-

1956, along with the estimated rate of the recursive model (gray curve) with exponential

triggering function, fit by maximum likelihood.
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Figure 4: Super-thinned residuals tk using b = 100 points/year and their corresponding

standardized interevent times uk. The solid line shows, for each value of tk, the normalized

cumulative sum
k∑
i=1

ui/
m∑
i=1

ui, where m is the number of super-thinned residuals. Dotted

lines show lower and upper simultaneous 95% confidence bounds based on 1000 simulations

of the normalized cumulative sums of m uniform random variables.
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Figure 5: Lag plot of the standardized interevent times ui of the super-thinned residuals

using b = 100 points/year.
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Figure 6: Stochastic declustering of the Los Angeles measles cases based on the fitted

model (4). For each observed point ti, the y-coordinate, µ/λ(ti), is the probability, based

on model (4), that the point is attributed to the background rate (µ) as opposed to

contagion from previous points.
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