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Recover Dynamic Utility from Monotonic
Characteristic/Extremal Processes. ∗

El Karoui Nicole, † Mrad Mohamed ‡

Abstract

In the present paper, we are interested in the forward-looking inverse problem, where the
observable are a so-called characteristic process Xc and an initial utility function U(0, .) =

u(.). The recovery process is a dynamic (eventually random) utility performance U. The
main result is a necessary and sufficient condition for the existence of a utility performance
process U satisfying U(t,Xc

t (x)) is a martingale for any initial starting point x. Examples of
applications are developed in the last section to support our approach in the special case of
finance and economics: the first example concerns an aggregation problem, the second one a
Markov equilibrium.

1 Introduction

In the real world, decision making under uncertainty is often viewed as an optimization problem
under choice criterium, and most theories focus on the derivation of the "optimal decision"
and its out-comes. The available observed data are the result of the decision process and its
dynamics over the time. but poor information is available on the criterium yielding to these
observed data. Economics is a typical example of this difficulty. The standard assumption
that all participants in an economic system are utility maximizers likens economic modeling to
optimal problem; stability is obtained at the equilibrium, where the system may be described
in terms of the behavior of the strategic representative agent. In the applications, it is not
clear how the preferences of this representative agent are chosen; often taken as an input of the
problem, (chosen for instance by some "central planner"), we show in the last section of this
paper, that the choice can be done only in a very limited utility family.
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†Laboratoire de Probabilités, Statistique et Modélisation (LPSM, UMR CNRS 8001), Sorbonne Université
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1. Introduction

But, the increasing distance between the consequences of this theory and the economic reality
created new incentives for different approaches. One of them is the evolutionary economics by
W.B.Arthur [Art99], studying economies as complex evolutionary systems, where the agents
try to predict the out-comes of their actions, and how the market would be modified by their
decisions. In this forward-looking view point, the agents also need to adjust their (random)
preferences over time. Following J.Gomez-Ramirez [GR13], this complexity suggests the use
of an "inverse thinking" approach. The forward modeling allows anticipations on the future
values of observables, and the inverse problem uses those predictions to infer the values of the
parameters that characterize the system. Thus, the robustness of the method is obtained from
a family of forward model solutions, consistent with the data rather that one prediction.

In this paper, we limit ourselves to a simple inverse problem, standard in Economics and
Finance, called the revealed preference problem, and formulated as follows:

Pioneered by the economist P.A.Samuelson in [Sam38, Sam48], the theory is based on the
idea that the preferences of consumers are revealed in their purchasing behavior. As explained
in J.P.Chambers and F.Echenique book [CE16], "Revealed preference theory" has several inter-
pretations in economics, but the central theme common to all interpretations is what economic
models say about the observable world, a crucial step in reverse problem. An example is the
theory of recoverability, a very active field in choice theory in the 1980’s. Solving the recovery
problem from the observation of one trajectory of the observed wealth process in the Mer-
ton framework (under strong additional assumptions), P.H.Dybvig and L.C.Rogers in [DR97]
observed that "recoverability results provide a guide to what can and cannot be learned from
different types of data for deterministic performance criterium". Closed to these problems is the
neo-classical equilibrium characterization, of which we have described the importance and the
complexity; as explained in the last section, this complex task is considerably simplified by a
forward recovery point of view.

By definition, in the (forward-looking) revealed preference problem, the observable are a so-
called characteristic process Xc and an initial utility function U(0, .) = u(.), and the recovery
process is a dynamic (eventually random) utility performance U. To define the "model" which
underlies this inverse problem, we try to reproduce the properties of the stochastic value function
of a portfolio optimization problem in finance. In particular, the utility (value function ) process
U is a strictly concave stochastic family, evaluated at the observed (also called characteristic) pro-
cess Xc = {Xc

t (x)} considered as optimal, implying that the optimal preferences {U(t,Xc
t (x))}

are martingale (constant in mean). Given the concavity of the criterium, tools of convex analysis
play a large role, in particular the Fenchel-Legendre duality between the concave utility U(t, x)

and its Fenchel convex transform Ũ(t, y). These processes are linked by the "Master equation"
based on the marginal utility Uz(t, z), i.e. U(t, z) − z Uz(t, z) = Ũ(t, Uz(t, z)). Moreover, as
it is classical in convex analysis, the primal problem is equivalent to the dual problem with
characteristic process c, if and only Xc

t (x) and Yt(ux(x)) are orthogonal in the martingale sense
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2. The forward recovery problem

(Xc
t (x)Yt(ux(x)) is a martingale). The pathwise condition "Yt(y) := Ux(t,Xc

t (u
−1
z (y)))", true

at the optimum in optimization problem, is one of major requirements of the problem, called
the first order condition.
Along this paper, no regularity in time (of Itô’s process type for example) on the characteristic
process or dynamic utility is assumed. In return, monotony assumptions with respect of their
initial condition are introduced. For instance, the functions (x→ Xc

t (x)), (z → −Ux(t, z)), (y →
Yt(y)) are supposed to be increasing. The first order condition Uz(t,Xc

t (x)) = Yt(uz(x)) associ-
ated with the monotony assumption induces a one to one correspondance between the revealed
marginal utility Uz(t, z) and the adjoint process Yt(uz(z)), given by Uz(t, z) = Yt(uz(X ct (z)))

where X c is the inverse of Xc. A change of variable gives a way, via a Stieltjes integral, to study
the martingale properties of U(t,Xc

t (x)) =
∫ x

0 Yt(uz(z))dzX
c
t (z). It is the more technical part

of the Section 2.
The inverse problem admits many solutions parametrized by the family ({Yt(y)}) of "admis-
sible" monotonic adjoint processes satisfying different orthogonality assumptions. Additional
constraints imply a complex dependence between the initial utility u(z), the admissible pro-
cesses (Xc

t (x), Yt(y)). Section 3 illustrates these results through some examples based on the
aggregation of forward utilities and the solution of the equilibrium model of H.He and H.Leland
[HL93] in complete market, with Itô’s processes and Markov constraints. The revealed point of
view allows us to solve completely the problem, in showing that the pricing kernel is necessarily
a geometrical Brownian motion (GBM), and that dual and primal utilities are mixture of power
utilities. In this framework, equilibrium can only be obtained in a too simplified economy.

2 The forward recovery problem

As explained in the introduction, recovery problems arise usually with optimization problems in
economics or finance. In [CE16], C.P. Chambers observes:

"We can never see a utility function, but what we might be able to see are demand observations
at a finite list of prices.

On the basis of such an analysis, the question which obviously arises is whetherornot there has
been a utility function which could generate these observations by a process of maximization.
In a stochastic control setting, the question becomes: "what is the backward value function of
the problem, with these observed data as optimal process?". Moreover, in real world, people
consider, for simplicity, a Markov point of view for which the value function is a real function,
solution of some backward non linear PDE’s, which will be hard to solve. The forward point of
view gives more flexibility in the resolution of the problem, for which constraints may be added
progressively. Moreover, it is similar to the recent point of view of statistical learning.
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2. The forward recovery problem

2.1 Dynamic utility

We start by reminding some definition and properties of static or dynamic utility criterion.
A dynamic utility should represent, possibly changing over time, individual preferences of an
agent starting with a today’s specification of his utility, U(0, z) = u(z). The preferences are af-
fected over time by the available information represented by the filtration (Ft)t≥0 defined on the
probability space (Ω,P,F). The filtered probability space (Ω,P, (Ft)t≥0) is assumed to satisfy
usual conditions of right continuity and completeness. The filtration F0 is not necessarily as-
sumed to be trivial so that the initial condition U(0, z) is not necessarily a deterministic function.
On the space (Ω × R+), the σ-fields O of optional processes or P of predictable processes are
generated by the families of adapted, respectively right-continuous or left-continuous processes.

2.1.1 Deterministic utility function

In economics and finance, the standard notion of utility function, used for example as perfor-
mance measure in portfolio optimization, refers to a concave function u on R+, positive, increas-
ing, normalized by u(0) = 0, whose range is R+ (u(+∞) = ∞). An important role is played
by its derivative uz, also called marginal utility, which is continuous, positive and decreasing on
]0,+∞[, with range ]0,+∞[, satisfying the Inada’s conditions uz(+∞) = 0 and uz(0) = +∞.
As usual, the dual problem highlights some other aspects of the optimization problem. It is based
on the Fenchel-Legendre convex conjugate function ũ(y) defined through the system (u, ũ),

(Main equation)

{
ũ(y) = sup

z>0

(
u(z)− yz), u(z) = inf

y>0

(
ũ(y) + yz). (2.1)

u(z)− z uz(z) = ũ(uz(z)), u(−ũy(y)) + y ũy(y) = ũ(y) . (2.2)

In particular, since ũ(y) > 0, u(z) > z uz(z) > 0 and z uz(z) → u(0) = 0. The range of the
decreasing function ũ(y) is ]0,+∞[ since ũ(y)→∞ when y → 0 (since supz>0 u(z) = +∞) and
ũ(y)→ 0 when y → +∞ (u(0) = 0 and z uz(z) > 0). In Economics or Finance, utility functions
are often assumed to be of class C2(]0,∞[).
Power utility A typical example is the family of power utility u(α)(z) = z1−α

1−α for α ∈ [0, 1[ and
u(z) = (ln z)+ for α = 1. The coefficient α is the relative risk aversion of the agent defined by
the ratio γ(z) = −zuzz(z)/uz(z).
Put β = 1/α > 1. The Fenchel conjugate is the power function ũ(β)(y) = y(1−β)/(β − 1). The
risk tolerance is γ̃(y) = −yũyy(y)/ũy(y) = 1/γ(−ũy(y)).

2.1.2 Dynamic Utilities and their Fenchel-Legendre conjugates

A dynamic utility process U (in short dynamic utility) may be interpreted as a collection of
random utility functions {U(t, ω, x)} whose temporal evolution is "updated" over the time in
accordance with the new information (Ft) from an initial utility value u(z) = U(0, z), eventually
random if F0 is not trivial.
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2. The forward recovery problem

Definition 2.1. A dynamic utility U is a family of optional processes {U(t, z), z ∈ R+} (also
called optional random field) such that P .a.s., for every t ≥ 0, the function (z → U(t, z)) is a
standard utility function with U(t, 0) = 0.

− Its marginal utility Uz is the decreasing optional random field {Uz(t, z)}.

− Its conjugate utility Ũ is the convex optional random field defined by:
Ũ(t, y) = supx>0

(
U(t, x)− y x).

Equation (2.1) becomes the Master equation,

P.a.s., U(t, z)− zUz(t, z) = Ũ(t, Uz(t, z)) and Ũy(t, Uz(t, z)) = −z. (2.3)

2.2 The forward recovery problem

In this paper, we address the question of the recoverability based on a forward reconstruction of
the random dynamic utility from an observed process; the flexibility introduced by this forward
point of view, and the random character of the utility allows us to relax some constraints
imposed on the observed (also called characteristic) process. To define the "model" underlying
this inverse problem, we try to reproduce the properties of the stochastic value function V of a
portfolio optimization problem in finance. In particular, the value process V is a strictly concave
stochastic family, parametrized by a number z ∈ R+ (z 7→ V (t, z)), and martingale along the
”optimal” process X∗ = {X∗t (x)}. Moreover, the process {Vz(t,X∗t (x)) = Y ∗t (Vz(0, z))} is the
”optimal” process of the dual problem.
To simplify as much as possible the recovery problem, we eliminate any reference to optimization
problem, taking into account only specific dynamic relationships between "optimal" observed
process and its value function. As inverse problem, the dynamic utility U to be recovered from
the observable process Xc, requires the choice of an additional process, the so-called adjoint
process Y = {Yt(y)}, used to guarantee a kind of first-order condition, Yt(uz(x)) = Uz(t,X

c
t (x)).

2.2.1 Dynamic utility generated by two monotonic processes

The first step is to define the family of utility models U(t, z) consistent with the observed data
(u(z),Xc), from a process {Xc

t (x)} observed for different initial conditions x. Monotony and
concavity of z → U(t, z) cannot be satisfied without some regularity of x→ Xc

t (x)).
The data X = {Xc

t (x)} is assumed to be an optional random field, increasing in x with range
[0,∞). Then x → Xc

t (x) is continuous in x, and admits an optional increasing inverse flow
X c(t, z). The class of x-increasing optional processes with range [0,∞) is denoted I.
The first-order condition (Yt(uz(x)) = Uz(t,X

c
t (x))) imposes the same increasing assumption

on the family of positive adjoint processes Y = {Yt(y)}, with the additional assumption that
the function z → Yt(uz(Xt(z))) is integrable in a neighborhood of 0, (the problem coming from
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2. The forward recovery problem

the condition uz(0) = +∞). The class of admissible adjoint processes is denoted I(Xc, u).
Surprisingly, this monotony property is rarely highlighted in economics and finance although it
is satisfied by all known solutions.

Definition 2.2 (Compatible utility). Let (Xc,X c) ∈ I × I be an increasing observable process
and its inverse, and u the initial utility.
A dynamic utility U is said to be compatible with (Xc, u) if and only if there exists an admissible
adjoint process, Y ∈ I(Xc, u) satisfying the "first order condition":

Uz(t, z) = Yt(ux(X ct (z)) or U(t,Xc
t (x)) =

∫ x

0
Yt(ux(z))dzX

c
t (z). (2.4)

The class of (Xc, u)-compatible dynamic utilities is denoted U(Xc, u).

Example: In a Markov framework, it is sometimes assumed that the adjoint process {Yt(ux(x))}
is a deterministic function of the characteristic process, Yt(ux(x)) = W (t,Xc

t (x)), where W (t, z)

is a z-decreasing function, with range (0,∞]. Then, ifW is integrable in 0, the function U(t, x) =∫ x
0 W (t, z)dz is a compatible utility with respect to Xc

t (x) and ux(x) = W (0, x) := w(x). (See
Section 3).
Observe that, given (Xc, u), there is a one to one correspondence between the classes of com-
patible utilities U(Xc, u) and the admissible adjoint processes I(Xc, u). As mentioned in the
introduction and in the literature, the inverse problem admits many solutions parametrized by
the family I(Xc, u) of "admissible" monotonic processes satisfying this condition.

2.2.2 Martingale constraints and revealed utility

In the sequel, we will often encounter properties as "the product of two processes is martingale".
So, it is convenient to introduce the following definition, frequently used for martingale processes,
a little less often for general processes.

Definition 2.3 (Orthogonality). Two optional processes {Φt}, {Ψt} whose product {Φt.Ψt} is
a martingale are said to be orthogonal. When the product is only a supermartingale, they are
said to be sub-orthogonal.

The class of compatible utilities is too large to characterize a "good choice" of Xc-utility
criterium, and additional conditions must be introduced. We continue to be inspired by the
properties of the value function of concave control problems. As in dynamic optimization, the
Bellman’s principle states that the best choice Xc

t today is also the best one in the future and
verifies some "temporal stationarity" along of U(t, z), that is E[U(τ,Xc

τ (x))] = u(x) for any
bounded stopping time τ (such that the random variable U(τ,Xc

τ (x)) is integrable). In terms
of paths, the process {U(t,Xc

t )} is said to be a strong martingale, but most of the times for
simplicity we simply refer to "martingale" property.
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2. The forward recovery problem

By means of a change of variable x→ Xc
t (x), we have made the "curve" {U(t,Xc

t (x))} constant
in expectation, hence the name of characteristic process for Xc. Definition 2.2 must be modified
by the introduction of this new constraint.

Definition 2.4 (Revealed utility). A compatible dynamic utility U ∈ U(Xc, u) is said to be a
(Xc, u)-revealed dynamic utility if and only if:

∀x ∈ (0,∞), U(t,Xc
t (x)) is a positive martingale. (2.5)

In terms of adjoint process Y ∈ I(Xc, u), the condition "
∫ x

0 Yt(ux(z))dzX
c
t (z) is a martingale"

cannot be simplified in general.
In addition, for any revealed dynamic utility U ∈ UM(Xc, u), the martingale property of the
dual dynamic utility (Ũ(t, Yt(y))) is satisfied if and only if:

∀x ∈ (0,∞), Xc
t (x)Yt(uz(x)) is a positive martingale. (2.6)

This last condition which is equivalent to the orthogonality of {Xc
t (x)Yt(uz(x))}, obvious from

the Master equation (2.3) is satisfied in most of optimization problems in economics and finance.

Sometimes it is simpler to solve the dual problem, whose observable are the adjoint processes of
the primal problem, and the dual initial utility. For instance, in a complete market there is only
one adjoint (also called pricing kernel) process, and the dual utility is easy to recover. The role
of the processes X and Y are exchanged, and the dual problem would be formulated as:

Definition 2.5 (Revealed dual utility). Let {Y c
t (y)} be an optional increasing process with range

(0,∞) whose inverse is denoted Yc. Let ũ be a dual utility (decreasing convex function), whose
increasing derivative ũy varies from −∞ to 0.
(i) An increasing positive process X is said in the class Ĩ(Y c, ũ) if the map y 7→ Xt(−ũy(Yct (y)))

is integrable near ∞.
(ii) A dynamic dual utility Ũ is said to be compatible with the pair (Y c, ũ) and denoted in
Ũ(Y c, ũ) if ∃X ∈ Ĩ(Y c, ũ) s.t. Ũy(Y c

t (y)) = Xt(−ũy(y)).
(iii) Ũ ∈ Ũ(Y c, ũ) is said to be a revealed dual utility if and only if there exists X ∈ Ĩ(Y c, ũ)

such that the integral
∫ +∞
y Xt(−ũy(z))dzY c

t (z) is a well defined positive martingale.

2.3 Examples of Recovery Problem

2.3.1 Linear Characteristic process

The following simple examples give a nice illustration of the recovery problem, by specifing the
property of the observed process. The case of constant characteristic process (corresponding to
"to do nothing in finance") is very illustrative. The case of linear characteristic process is the
most frequently used in economics.
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2. The forward recovery problem

Proposition 2.1. (i) Assume the characteristic process to be constant Xc
t (z) = z. A compatible

utility U is a dynamic utility {U(t, z)} whose one of the adjoint processes {Yt(uz)} is its marginal
utility process {Uz(t, z)}.
A revealed utility is a martingale utility, if and only if the marginal utility is also a martingale.
(ii) Assume the characteristic process to be linear in x, Xc

t (x) = xXt. The recovery problem
has a solution if and only if there exists an adjoint process Y ∈ I(xX., u) such that for any y,
Xt Yt(y) is a martingale. Then, {Yt(y)} is a characteristic process for the dual conjugate utility
process.

Proof. (i) Assume the utility process {U(t, x)} to be a martingale. By the Master equation (2.3),
zUz(t, z) ≤ U(t, z) ≤ U(t, zmax). By Lebesgue’s derivative theorem, the martingale property can
be extended to the derivative random field {Uz(t, z)}. Conversely, if the x-decreasing process
{Uz(t, x)} is a martingale, by Fubini’s theorem {U(t, x) − U(t, x0)} is also a martingale, with
expectation u(x)−u(x0). Thanks to the monotony assumption, U(t, x0) decreases to 0 when x0

goes to 0, and the martingale property passes to the limit. Then, {U(t, x)} is a martingale.
(ii) If Xc(t, x) = xXt, the change of numeraire x → x/Xt yields to a new forward utility
process UX(t, x) = U(t, xXt) which is a martingale, with characteristic process x. The previous
characterization of the forward martingale utility imposes that UXz (t, x) = Xt Uz(t, xXt) =

Xt Yt(uz(x)) is a martingale. Moreover since (xXt)Yt(uz(x)) is a martingale, Ũ(t, Yt(uz(x)) is
a martingale and the adjoint process {Yt(uz(x))} is a characteristic process for the dual utility
process.

2.3.2 Differentiable characteristic process

The linear framework is a particular case of a differentiable characteristic process Xc with deriva-
tive Xc

x (Xc
x(t, 0) = 1). The orthogonality condition imposed in the linear case is extended into

the orthogonality of the processes Xc
x(., x) and Y(., uz(x)). If in addition the characteristic

process Xc is x-convex, this condition is necessary.

Proposition 2.2. Let U ∈ U(Xc, u) be a dynamic utility with adjoint process Y, whose char-
acteristic process Xc is x-differentiable with derivative {Xc

x(t, x)}.
(i) If the characteristic process is convex (x→ Xc

x(t, x) positive increasing), then U is a revealed
utility if and only if {Xc

x(t, x)Yt(uz(x)} is a martingale for any x.
(ii) In the general case, the condition is only sufficient; if {Xc

x(t, x)Yt(uz(x))} is a martingale
then {U(t,Xc

t (x))} is a martingale.

The necessary condition holds true only if the Lebesgue derivative theorem can be applied, that
is true for convex process; but observe that by definition the recovery problem is based only on
the sufficient condition.

Proof. (i) This result can be viewed as a particular case of the previous example, since when
the characteristic process is convex and differentiable in x, (x → Xc

x(t, x) increasing in x), for
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2. The forward recovery problem

any dynamic utility in U(Xc, u), the random field {U(t,Xc
t (x))} is x-concave. The new random

field {UX(t, z) = U(t,Xc
t (z))} is a martingale dynamic utility, studied in Proposition 2.1; the

equivalence between the martingale property of the utility and that of its derivative implies the
equivalence of the martingale property of {U(t,Xc

t (x))} and that of {Yt(uz(z))Xc
x(t, z)}.

(ii) The proof of the sufficient condition is close to the one of Proposition 2.1. Consider the
primitive process ΨX(t, x0, x) :=

∫ x
x0
Yt(uz(z))X

c
x(t, z)dz, which is a martingale with expectation

u(x) − u(x0), by the positive Fubini’s theorem. As above, by monotony and positivity, this
property goes to the limit when x0 → 0, and ΨX(t, x) =

∫ x
0 Xx(t, z)Yt(uz(z))dz is a well-defined

martingale. The random field U defined by U(t, x) := ΨX(t,X c(t, x)) is a revealed dynamic
utility.

2.4 Main result

When the characteristic process is not differentiable, we have to reformulate the "first order
condition" in a more global formulation.

2.4.1 Necessary and sufficient condition for recovery problem

In the general case, we use the rate of variation in place of the derivative, and the following
representation, for z′ > z > 0,

U(t, z′)− U(t, z) = (z′ − z)Uz
(
t, ξt(z, z

′)
)
, ξt(z, z

′) ∈ (z, z′)

ξt(z, z
′) = (Uz)

−1
(
t,∆U(t, (z, z′))

)
, ∆U(t, (z, z′)) =

U(t, z′)− U(t, z)

z′ − z
.

(2.7)

Next result provides a necessary condition for the forward recovery problem, when the sufficient
condition is developed in the next theorem.

Proposition 2.3 (Necessary Condition). Let U ∈ U(Xc, u) be a dynamic utility with adjoint
process Y (i.e., Uz(t,Xc

t (z)) = Yt(uz(z)) ). If U is a revealed utility, then for any x′ > x > 0

there exists an optional process ψt(x, x′) ∈ [x, x′] such that {
(
Xc
t (x
′)−Xc

t (x)
)
Yt(uz(ψt(x, x

′)))}
is a martingale.

Proof. The idea of the proof is a simple consequence of the decomposition given in equation (2.7)
with x < x′, applied to (z = Xc

t (x), z′ = Xc
t (x)), which ensures the existence of an optional

process ξt(z, z′) ∈ [Xt(x), Xt(x
′)] such that,

U(t,Xc
t (x
′))− U(t,Xc

t (x)) =
(
Xc
t (x
′)−Xc

t (x)
)
Uz(t, ξt(z, z

′))

By a change of variable, ξt(z, z′) can be sent into ψt(x, x′) that belongs to the interval (x, x′) by
the formula ξt(z, z′) = Xt(ψt(x, x

′)). So, Uz
(
t, ξt(z, z

′)
)

= Uz
(
t,Xt(ψt(x, x

′))
)

= Yt
(
uz(ψt(x, x

′))
)
.

Since by assumption, U(t,Xc
t (x
′))−U(t,Xc

t (x)) is a martingale, equal to
(
Xc
t (x
′)−Xc

t (x)
)
Yt
(
uz(ψt(x, x

′))
)
,

this last quantity is also a martingale, which is the required property.
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2. The forward recovery problem

Our main result is that this necessary condition is also sufficient. The argument uses the approx-
imation of the Stieltjes integral

∫ x
x0
Yt(ux(z))dzX

c
t (z) defined on a compact interval [x0, x] with

the help of Darboux sums obtained as follows: we start with a partition of the interval [x0, x]

into N subintervals ]zn, zn+1] where the mesh approaches zero, and we consider the following
sequences

SNt (x0, x) =
N−1∑
n=0

Yt(uz(z̄
n
t ))
(
Xc
t (zn+1)−Xc

t (zn)
)
, (2.8)

where z̄nt is a random process in the interval [zn, zn+1]. Given the continuity in z of z → Yt(uz(z))

and z → Xc
t (z), the Darboux theorem states that all the Darboux sums converge to the Stieltjes

integral when the mesh goes to 0.

Theorem 2.4. Let U ∈ U(Xc, u) be a dynamic utility with adjoint process Y (i.e., Uz(t,Xc
t (z)) =

Yt(uz(z))). Assume that for any (x, x′), x < x′, there exists an optional process ψt(x, x′) tak-
ing values in the interval (x, x′), such that the process

(
Xc
t (x
′)−Xc

t (x)
)
Yt
(
ux(ψt(x, x

′))
)
is a

martingale. Then, {U(t,Xc
t (x))} is a martingale for any x > 0 and U is a revealed utility.

Proof. [Theorem 2.4] We use the approximations based on Darboux sums centered around the
processes z̄n(t) = ψt(zn, zn+1). By assumption, these Darboux approximations SNt (x0, x) are
finite sum of positive martingales, and then also positive martingales. By the positive Fubini
theorem, we can interchange limit and expectation so that the martingale property is preserved
and

∫ x
x0
Y c
t (uz(z))dzX

c
t (x) is a martingale, with expectation

∫ x
x0
uz(z)dz = u(x)− u(x0).

Once again, by monotony, the random variables
∫ x
x0
Y c
t (uz(z))dzX

c
t (x) go to a limit with finite ex-

pectation. So, the Stieltjes integral is well-defined up to 0 and ΨX
0 (t, x) =

∫ x
0 Y

c
t (uz(z))dzX

c
t (x)

is a martingale. So, the revealed utility process is given by U(t, x) =
∫ x

0 Y
c
t

(
uz(X c(t, z)

)
dz.

The primal and dual problems being similar, the same reasoning and proofs remain valid
when studying the recovery dual problem, the following result is obvious from the above one.

Corollary 2.5. Let Ũ ∈ Ũ(Y c, ũ) with the associated primal process denoted X
(
i.e., Ũy(Y c

t (y)) =

Xt(−ũy(y))
)
. Ũ is a revealed dual utility if and only if for any y < y′ there exists an optional pro-

cess φt(y, y′) taking values in the interval (y, y′), such that the process
(
Y c
t (y′)− Y c

t (y)
)
Xt

(
−

ũy(φt(y, y
′))
)
is a martingale.

2.4.2 Supermartingale conditions

In the main result, the existence of a process ψt(z, z′) can be difficult to establish. The proof
based on Darboux sums suggest to relax the martingale assumptions in the only sufficient con-
dition, that the common Darboux sums, SN,upt (x0, x) =

∑N−1
n=0 Yt(uz(zn))

(
Xc
t (zn+1) −Xc

t (zn)
)

and SN,downt (x0, x) =
∑N−1

n=0 Yt(uz(zn+1))
(
Xc
t (zn+1)−Xc

t (zn)
)
are respectively supermartingales

and submartingales. Since the both sequences have the same limit, this limit is expected to be
a martingale.
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2. The forward recovery problem

Theorem 2.6. Let U ∈ U(Xc, u) be dynamic utility with adjoint process Y . Assume that
for x′ > x, the positive process {Yt(uz(x))

(
Xc
t (x
′) − Xc

t (x)
)
} is a supermartingale and that

{Yt(uz(x′))(Xc
t (x
′)−Xc

t (x))} is a submartingale, then the dynamic utility U is a revealed utility.

Proof. Let 0 < x0 < x and consider a partition of the interval [x0, x] intoN subintervals ]zn, zn+1]

where the mesh approaches zero. We approach the integral
∫ x
x0
Yt(uz(z))dzX

c
t (z) by above, re-

spectively by below, by the Darboux sums SN,upt (x0, x), respectively by SN,downt (x0, x). Thanks
to the monotony of the processes Y and Xc, the Darboux sums SN,downt (x0, x) and SN,upt (x0, x)

are bounded above, and converge a.s. to the Stieltjes integral
∫ x
x0
Yt(uz(z))dzX

c
t (z).

Furthermore, by assumption, the sum SN,upt (x0, x) is a positive supermartingale, while the sum
SN,downt (x0, x) is a positive submartingale.
By the positive Fubini theorem, for fixed x0 > 0, one can interchange the lim

N→∞
and the expec-

tation to justify that the sub- and super- martingale properties are preserved at the limit. So,∫ x
x0
Yt(uz(z))dzX

c
t (x) is a martingale, with expectation

∫ x
x0
uz(z))dz = u(x)− u(x0).

Once again, by monotony, the integrals
∫ x
x0
Yt(uz(z))dzX

c
t (x) go to a limit with finite expecta-

tion. So, the Stieltjes integral is well-defined up to 0 and {ΨX(t, x) =
∫ x

0 Yt(uz(z))dzX
c
t (z)}

is a martingale; that implies that the dynamic utility {U(t, x) = ΨX(t,X c(t, x))} is a revealed
dynamic utility.

2.4.3 Forward starting dates and time consistency property

Definition 2.2 of the revealed utility U is forward in time since U(t, .) is characterized from
its initial condition u. In many situations, especially in optimization issues, the problem is
formulated in a backward way, from the horizon T of the problem, from a given final utility
U(T, .). The question is to characterize the value function, sometimes called indirect utility,
from the dynamic programming principle.
The forward version of this problem requires to define a family of processes, starting from x at
any time s, together with a dynamic time-consistency constraint. At the end, the problem is to
generalize the stochastic representation of the deterministic function uz(x) = Yt(Uz(t,Xc

t (x)))

where Y(t, z) is the inverse flow of Yt(y).
The data are still a characteristic process Xc starting from x at time 0, with inverse process
{X c(t, z)}, an utility function u, and an adjoint process {Yt(uz(x))}. Now, the problem is to
build a revealed dynamic utility with respect to the filtration (Ft)t≥s starting for (x, s).

Definition of the forward characteristic processes: Let us define the new families
of characteristic processes, from the old processes Xc and Y and their inverses X c and Y as
follows, for s < t, Xc

t (s, x) = Xc
t (X c(s, x)), andXc

t (x) := Xc
t (s,X

c
s(x))

Yt(s, y) := Yt
(
Y(s, y)

)
, and Yt(s, y) := Yt

(
Y(s, y)

)
.

(2.9)
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2. The forward recovery problem

The starting value, at time s, of a time-consistent "revealed " dynamic utility is U(s, x).

Proposition 2.7 (Backward Formulation). Under assumptions of Theorem 2.4, the revealed dy-
namic utility U, generated by (X,Y, u), satisfies the consistency property, given in the backward
formulation by

U(0, x) = u(x) =

∫ x

0
YT
(
Uz(t,X

c
t (z))

)
dz, ∀t ≥ 0.

This representation holds also for any times (s, t), t ≥ s,

U(s, x) =

∫ x

0
Yt
(
s, Uz(t,X

c
t (s, z))

)
dz. (2.10)

By the same manner, the dual dynamic revealed utility satisfies the backward representation

Ũ(s, x) =

∫ ∞
y
X ct
(
s,−Ũy(t, Yt(s, z))

)
dz. (2.11)

Usually the value function is written as a conditional expectation of the final value of the
problem, whereas here we have a pathwise representation.

Proof. Using the semigroup property for Xc and Y, Xc
t (x) = Xc

t (s,X
c
s(x)) and Yt(uz(x)) =

Yt(s, Ys(uz(z))), we verify the first order conditions for the new delayed processes, for t ≥ s,

Uz(t,X
c
t (x)) = Uz

(
t,Xc

t (s,X
c
s(x))

)
= Yt

(
s, Ys(uz(z))

)
.

Recall the identity Uz(t, x) = Yt(uz(X ct (x)), where X c is the inverse of Xc. Then, the same
dynamic identity holds true

Uz(t,X
c
t (s, x)) = Yt

(
s, Ys(uz(X (s, x)))

)
= Yt

(
s, Uz(s, x)

)
and the backward formulation becomes clear Yt

(
s, Uz(t,X

c
t (s, x))

)
= Uz(s, x).

This way to recover marginal dynamic utility from two monotonic processes has been high-
lighted for the first time in the classical portfolio optimization problem with dynamic forward
utility in Itô’s framework in M.Mrad & N.El Karoui (2013) [EKM13]. The solution is based on
stochastic analysis using very technical arguments.
Link with optimization problem: The time-consistency property is important when opti-
mizing the expected utility over a class of processes X . With this condition and under the
assumption that the class X is rich enough, we deduce by the dynamic programming principle
that ∀X ∈ X , the process V (t,Xt) is necessarily a supermartingale and martingale along the
optimal (characteristic) trajectory, this property is called X -consistency. In the case of finan-
cial semimartingale market, one can see in a previous works [EKM13, EKHM18a] that revealed
utility implies X -consistency (X is not necessarily unique). This is not true in all generalities,
but in the financial market framework, the property of strong orthogonality between wealth and
state price is satisfied.
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2. The forward recovery problem

2.5 Orthogonality Conditions and Risk aversion

2.5.1 Orthogonality conditions: definitions and remarks

In Definition 2.3, we have introduced a martingale condition satisfied by the product of two
stochastic processes and said that the two processes are orthogonal. In particular, the processes
{Xc

t (x), Yt(ux)} or {Xc
x(t, x), Yt(ux)} are often supposed to be orthogonal. This notion of orthog-

onality usually concerns the product of two martingales {Mt, Nt}, for which it is not important to
precise the initial condition, because {Mt.Nt} is a martingale, if and only if {(Mt−M0).(Nt−N0)}
is a martingale. When the orthogonality condition is applied to general optional processes, called
{Φt(x),Ψt(y)} in all generality, the difference is important because the martingale property of
{Φt(x)Ψt(y)} is no more equivalent to the martingale property of {(Φt(x)− x)(Ψt(y)− y)}. So
it is important to clarify the role of the initial condition in the definition of the orthogonality.

Different notions of orthogonality: In the linear example, the orthogonality condition
introduced in Proposition 2.1 between the processes {xX̄t, Yt(ux(x))} is the key of the martin-
gale property of the revealed utility. But the role of initial conditions of Xc and Y is hidden
by the linearity in x of X. In particular, in this example, the processes Φt(x) = Xc

t (x) and
Ψt(y) = Yt(y) are orthogonal for any x > 0 and y > 0, the random fields (Φ,Ψ) are said
to be strongly orthogonal. In the case of differentiable characteristic processes, the orthogo-
nality condition introduced in Proposition 2.2, called ux-orthogonality, concerns the processes
(Φt(x) = Xc

x(t, x)) and (Ψt(ux(x)) = Yt(ux(x))), with linked initial conditions y = ux(x).

Definition 2.6. Let (Φ,Ψ) be two optional positive monotonic random fields, and v(z) = −uz(z)
be a increasing function with range [0,∞]. Then, we are concernes by the following different
notions of orthogonality:

strong orthogonality : {Ψt(y)Φt(z)} is a martingale ∀(z, y > 0).

v-weak orthogonality : {Ψt(v(x))Φt(x)} is a martingale for any x > 0.

v-sub orthogonality : ∀ x′ > x, {Ψt(v(x))
(
Φt(x

′)− Φt(x)
)
} is a supermartingale

and {Ψt(v(x′))
(
Φt(x

′)− Φt(x)
)
} is a positive submartingale. (2.12)

Obviously the strong orthogonality implies all the other forms of orthogonality.
In the recovery problem, we are concerned with the monotonic process Xc(= Φ) and the

adjoint process Y(= Ψ), satisfying different notions of orthogonality expected to imply the
martingale property of U(t,Xc

t (x)). From previous results, the strong orthogonality implies the
martingale property of the two processes U(t,Xc

t ) and Ũ(t, Yt). The suborthogonality implies
only the martingale property of U(t,Xc

t ), but not implies necessarily the weak orthogonality. On
another side, the weak orthogonality condition between Xc and Y is not sufficient to obtain mar-
tingales properties for U(t,Xc

t ) or Ũ(t, Yt). The sufficient condition is the uz-weak orthogonality
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2. The forward recovery problem

of Y and Xc
x. The weak-orthogonality, which may seem unusual, allows to recover complex

dependency between characteristics process or adjoint process and the initial utility.

2.5.2 Risk Aversion Coefficient

In this paragraph, we paid attention to relative risk aversion coefficient of the recovered utility
process. It will be shown how the initial relative risk aversion noted here γ(z) = −zuzz(z)/uz(z)
is diffused over time in a consistent manner, when the weak optimality holds true between
(Xc,Y) and between (Xc

x,Y). Since the risk aversion coefficient is associated with regular
utility function, we assume as much regularity as necessary on the process x → Xc

t (x) and
y → Yt(y).

Proposition 2.8 (Risk aversion coefficient).
(i) The relative risk coefficient Γ(t, z) = −zUzz(t, z)/Uz(t, z) of compatible utility process U

verifies

Γ(t,Xc
t (x))

Xc
x(t, x)

Xc
t (x)

= −∂x(Yt(uz(x)))

Yt(uz(x))
(2.13)

When the adjoint process Y is linear in y, Γ(t,Xc
t (x))xX

c
x(t,x)

Xc
t (x) = γ(x).

If the two processes Xc and Y are linear in their initial conditions, then the risk aversion is
constant in time Γ(t,Xc

t (x)) = −xuzz(x)
uz(x) = γ(x).

(ii) For revealed utility, with weak orthogonality between (Xc
t (x) and Xc

x(t, x)) and Yt(uz(x)),
the following martingale properties hold true:
− The process ∂x(Yt(uz(x)))Xc

t (x) is a martingale.
− The process Γ(t,Xc

t (x))Yt(uz)X
c
x(t, x) is a martingale.

Proof. (Sketch of proof without index c.)
(i) By definition, the relative risk aversion along the characteristic process X is

Γ(t,Xt(x)) = −Xt(x)Uzz(t,Xt(x))/Uzz(t,Xt(x)).

It follows, differentiating the first order condition Uz(t,Xt(x)) = Yt(uz(x)) thatXx(t, x)Uzz(t,Xt(x)) =

∂x(Yt(uz(x))). Thus

Γ(t,Xt(x)) = −∂x(Yt(uz(x)))

Yt(uz(x))

Xt(x)

Xx(t, x)
.

Moreover, if Y is linear in y that is Yt(y) = yȲt, then

∂x(Yt(uz(x)))

Yt(uz(x))
=
uzz(x)

uz(x)
, and Γ(t,Xt(x))

xXx(t, x)

Xt(x)
= γ(x).

Finally Xt(x) = xX̄t implies xXx(t,x)
Xt(x) = 1. This achieves the proof of (i) .

(ii) By assumption Mt(x) = Yt(uz(x))Xt(x), and Nt(x) = Yt(uz(x))Xx(t, x) are regular mar-
tingales. Since ∂xMt(x) = ∂x(Yt(ux(x)))Xt(x)) +Nt(x), the process ∂x

(
Yt(ux(x))Xt(x)

)
is also

a martingale starting from xuxx.
For risk aversion point of view, the process Γ(t,Xt(x))Nt(x) is a martingale.
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3 Applications

The purpose of this section is to illustrate the previous results by two applications in finance
and economics, the first concerns an aggregation problem, the second a Markov equilibrium,
following [HL93].

3.1 Aggregated portfolio

Consider a group of agents who invest in a financial market according to their own preferences.
Our aim is to characterize a representative agent of the aggregated population and his repre-
sentative preference. The agents are classified into classes represented by their forward dynamic
utility Uθ and their "optimal" wealth (Xθ, x), in the sense where U θ(t,Xθ

t (x)) is a martingale.
In a financial market, all admissible portfolios are strongly orthogonal to a family of adjoint
processes (also known as state price processes). Also it is reasonable to assume that,

For any (θ, θ′), the processes (Xθ,Yθ′) are strongly orthogonal.

The weight of the different classes is quantified by a finite positive measure m(dθ) on a metric
space Θ. The aggregation can be applied at different granularity levels: one can aggregate each
agent individually, or aggregate different classes of agents having the same preferences and the
same strategy inside the class (for example θ may be interpreted as the risk aversion parameter
of the class and m(dθ) the proportion of this class among the whole).

3.1.1 Aggregated universe

To define a characteristic process for the aggregated economy with (global) wealth x, we need
to know how the global health is shared between the different agents, that is to know the
functions (xθ(x)) such that x =

∫
xθ(x) m(dθ). To guarantee the monotony of the various

aggregated processes, the functions x → xθ(x) are assumed increasing and differentiable, with
range (0,∞). The simplest example is the linear case as in [EKHM18b], where xθ(x) = αθx

with
∫
αθm(dθ) = 1.

Then, the aggregated characteristic process is defined from the same representation,

X
(m)
t (x) =

∫
Θ
Xθ
t (xθ(x))m(dθ)

is an increasing process with range [0,∞).
The next step is to define the initial (deterministic) utility of the representative agent of the
aggregated economy. As usual in convex analysis, the aggregation concerns the marginal utilities
and not the utilities themselves. So, under the assumption that uθz(xθ(z)) is z-integrable in z = 0,
the initial marginal utility of the aggregated problem is defined by

u(µ)
z (z) =

∫
Θ
uθz(x

θ(z))m(dθ) =

∫
Θ
yθ(uz(z))m(dθ). (3.1)
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Motivated by this construction, a natural choice of the increasing adjoint process and the
marginal utility dynamics Uz associated with it is

X
(µ)
t (x) =

∫
Xθ
t (xθ(x))m(dθ) (3.2)

Y
(µ)
t (uz(x)) :=

∫
Θ
Y θ
t (uθz(x

θ(x)))m(dθ) =

∫
Y θ
t (yθ(uz(x)))m(dθ) (3.3)

U (µ)
z (t,X

(µ)
t (x)) =

∫
Θ
U θz (t,Xθ

t (xθ(x)))m(dθ) (3.4)

The dynamic utility U(µ), which is compatible with (X(µ), Y
(µ)
t , u(µ)), is expected to be a revealed

utility, such that {U(t,Xc
t (x)) is a martingale. To satisfy this property, we have seen that it is

sufficient to verify the strong orthogonality of the processes (X(µ),Y(µ)) which will be obtained
for instance from the strong orthogonality of the family (Xθ,Yθ′).

Proposition 3.1. Consider the characteristic processes of the aggregated economy (X(µ),Y(µ), u)

defined by Equations (3.3),(3.1),(3.4). Assume that :

for any (θ, θ′, x, y), Xθ
t (x)Y θ′

t (y) is a martingale.

Then, the processes X(µ)(x) and Y (µ)(y) are strongly orthogonal and the utility U (µ)(t, z) (3.4)
is a revealed utility with characteristic process Xθ.

Proof. From previous results, it is sufficient to show that (X(µ),Y(µ)c) are strongly orthogonal,
or equivalently that X(µ)

t (x)Y
(µ)
t (y) is a martingale. By (positif) Fubini’s Theorem, and the

definition of X(µ), and Y(µ),

Xc
t (x)Y c

t (y) =

∫∫
m(dθ)µ(dθ′)Xθ

t (xθ(x))Y θ′
t (yθ

′
(y)).

The martingale property of Xθ
t (z)Y θ′

t (y) is extended to the product Xc
t (x)Y c

t (y), once again
thanks to positif Fubini theorem.

Links with the Pareto wealth allocation We come back to the definition of the initial
marginal utility from the wealth sharing functions {xθ(x)}. The question of the "optimal"
choice of these functions is associated with the following optimization problem, known as the
Pareto allocation problem: "Find the best allocation {xθ(x)} such that

∫
Θ x

θ(x)m(dθ) = x, max-
imizing the sup-convolution criterium sup

∫
Θ u

θ(xθ(x))m(dθ)". An optimal solution {xθ,∗(x)},
(if there exists), must satisfy the first order condition on the marginal rate of substitution,
(∀x, ∀θ, uθz(xθ,∗(x)) = uz(x)). This optimal choice is Pareto optimal in the sense that the wealth
is allocated in the most efficient manner, but this choice does not imply equality or fairness.
The extension to dynamic processes and forward utility is discussed in [EKM17]
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3.2 Economic Equilibrium

The neo-classical equilibrium theory, whose the two pillars are the representative agent, and
the individual rationality, is a natural field for the application of the forward point of view.
As in S.Wang [Wan93], A. Bick [Bic90] or H.He et H.Leland [HL93], the standard problem
is to study the optimal portfolio, selected by a rational agent optimizing its expected util-
ity at a given horizon J(T, x) of its wealth. When the market is complete, the problem is
easy to solve by duality, simplified by the uniqueness of the pricing kernel {Yt} (adjoint pro-
cess in our framework). At time T , the optimal wealth X∗T (x) is deduced from the pricing
kernel Y, by the first order condition Jx(T,X∗T (x)) = c(x)YT , relation equivalent to X∗T (x) =

J−1
z (T, c(x)YT ) = −J̃y(T, c(x)YT ). The Lagrange multiplier c(x) is adjusted by the initial wealth

constraint E[YTX
∗
T (x)] = E[YT J

−1
z (T, c(x)YT )] = x.

By the no arbitrage principle, the optimal portfolio process {X∗,Tt (x)} is the replicating portfolio
ofX∗T (x), and the conditional "value function" {UT,xt } is the martingale E[J(T, J−1

x (T, c(x)YT ))|Ft].
The Markov case will be detailed below.
The equilibrium policy is a priori independent of any maturity horizon T so that the first order
condition Jx(t,X∗t (x)) = c(x)Yt holds at any time; this point of view is close to that developed
by S.Nadtochiy and M.Tehranchi [NT17] using a forward point of view in optimization problem.

Our approach is different, because formulated as a revealed problem in a complete financial
market, without reference to any optimization problem. The data are, the unique market pricing
kernel or adjoint process {Yt(y)} that is by definition strongly orthogonal to the risky asset and
then to the equilibrium portfolio {Xe

t (x)}. The problem is to give conditions on the data (Xe,Y)

that guarantee the existence of a revealed dynamic utility satisfying the first order condition.
The main difference with the recovery problem defined above is that the adjoint process is given,
but not the initial utility. A priori, it is not imposed that the revealed utility is the value
function of a representative agent. This point of view is applied to the one-dimensional Markov
framework as in [HL93] and yields to a complete characterization of the pair (equilibrium strategy
and equilibrium preferences). Geometrical Brownian strategies coupled with power utility are
the elementary solutions of the problem. All other solutions are obtained by aggregation of
heterogeneous risk averse agents and are coherent with the theory of representative agent.

3.2.1 Equilibrium in He and Leland’s framework

In [HL93], the authors examine the equilibrium strategy in a financial world which is dynamically
complete, with only one risky asset and a bond whose price (and then the spot rate {rt}) is
exogenous and deterministic. The asset price S follows a (one dimensional) stochastic differential
equation (SDE) driven by a one dimensional Brownian motion W, whose the drift (productivity)
coefficient is µ(t, z) and the volatility coefficient is σ(t, z). The pricing kernel (or adjoint process)
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{yY S
t } is also a diffusion process whose volatility is the market risk premium {ηS},

dSt = St
(
µ(t, St)dt+ σ(t, St)dWt

)
= St

(
rtdt+ σ(t, St)(dWt + η(t, St)dt

)
, S0 = z (3.5)

ηSt = η(t, St) = (µ(t, St)− rt)/σ(t, St), (3.6)

dY S
t = −Y S

t (rt dt+ η(t, St) dWt), Y S
0 = 1. (3.7)

By construction, the pair {(St(z), yY S
t )} is a Markov diffusion, the product {St(z)Y S

t } is a
martingale. Moreover, under regularity assumptions (in time and space) on the coefficients
(µ(t, z), σ(t, z)), the process z → St(z) is increasing and z-differentiable .

Equilibrium problem as forward revealed utility problem In [HL93], the economy is
in equilibrium, that is the total wealth is invested in the risky asset at each moment, and
this regardless of the global market-utility. With the notations of the recovery problem, the
characteristic process, here denoted {Xe

t (x)} is the increasing risky asset, x = z = S0, X
e
t (x) =

St(x). The equilibrium revealed problem consists in finding conditions on the coefficients of
the processes {(St(x), yY S

t )} for the existence of a deterministic time-dependent regular utility
V e(t, z) (C3-regular in z) satisfying:

− The first order condition, V e
x (t, St(x)) = vex(x)Y S

t , V e
x (0, x) = vex(x).

− The martingale property of {V e(t, St(x))}.

The first contraint imposes vex(x)Y S
t being a regular decreasing function of St(x), that is Y S

t =

V e
x (t, St(x))/vex(x). Itô’s formula gives the necessary closed relations between the Y S-coefficients

and the S-coefficients, and the V e-derivatives as in [HL93]. But, the same formulation holds for
the dual problem, easier to solve in complete market. The existence of V e(t, z) is equivalent to
the existence of a dual conjugate utility Ṽ e(t, y) such that

St(x(y)) = −Ṽ e
y (t, yY S

t ), −Ṽ e
y (0, y) = −ṽey(y) = x(y) = (ve(.))−1(y) (3.8)

Plugging this identity in the Y S-differential dynamics (3.7), the process yY S
t := Y e

t (y) appears
as solution of a SDE with return −rt and volatility −ζ(t, y) = −η(t,−Ṽ e

y (t, y)), starting from y.
From the dual point of view, the revealed constraint is equivalent to the martingale property of
the two process {Ṽ e(t, Y e

t (y))} and {−Y e
t (y)Ṽ e

y (t, Y e
t (y))}.

3.2.2 The paradigm of the geometrical Brownian motion in economy inequi-
librium

We are locking for an economy, whose the pricing kernel is solution of the SDE(3.7).
dY e

t (y) = Y e
t (y)[−rtdt− ζ(t, Y e

t (y))dWt], Y e
0 = y.

We first assume the existence of a revealed dual utility Φ(t, y) such that the two processes
Φ(t, Y e

t ) and −Y e
t Φy(t, Y

e
t ) (Xe

t = −Φy(t, Y
e
t )) are positive martingales. These conditions are

very strong since the only solution {Y e(t, y)} to this problem is the geometrical Brownian motion
(GBM(−rt,−ζt)) (where we assume for any time t,

∫ t
0 (rs + ζ2

s )ds < +∞).
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Theorem 3.2. A necessary condition for the economy to be in equilibrium is that the pricing
kernel Y e(t, y) is a geometrical Brownian motion (GBM)

Y e
t (y) := yY e

t = y exp
(
−
∫ t

0
rsds−

∫ t

0
ζsdWs −

1

2

∫ t

0
ζ2
sds
)

(3.9)

Moreover, any dual revealed utility is solution of the following PDE,

∂tΦ(t, y) +
1

2
y2ζ2

t Φyy(t, y)− yrtΦy(t, y) = 0 (3.10)

A power dual utility Φ(β)(t, y) = H̃(t, β)y
1−β

β−1 is solution of this PDE if and only if β > 1 and
H̃(t, β) = exp(−(β − 1)

∫ t
0 (rs + 1

2β ζ
2
s )ds).

Proof. The previous martingale conditions are equivalent to the PDE’s system
∂tΦ(t, y) +

[1
2

(yζ)2Φyy − yrtΦy

]
(t, y) = 0, (3.11)[

∂t(yΦy) +
1

2
(yζ)2∂yy(yΦy)− yrt∂y(yΦy)

]
(t, y) = 0.

∂tΦy(t, y) +
[1
2

(yζ)2Φyyy + ∂y(
1

2
(yζ)2)Φyy − rt∂y(yΦy)

]
(t, y) = 0. (3.12)

The last line is the derivative of the first with respect to y. But since ∂y(yΦy)(t, y) = (Φy +

yΦyy)(t, y), then ∂yy(yΦy)(t, y) = (2Φyy + yΦyyy)(t, y), what implied that the second line is
proportional to y. After simplification by y, and making the difference with the third line, it
becomes that 1

2∂y(yζ)2(t, y)− yζ2(t, y) = 0. An immediate consequence is that ζ(t, y) does not
depend on y.
The function Φ(β)(t, y) = H̃(t, β)y

1−β

β−1 is solution of the PDE (3.14) iff H̃ is a decreasing solution
of the linear differential equation ∂tH̃(t, β)+H̃(t, β)(β−1)(rt+

1
2β ζ

2
t ) = 0. Moreover, the power

function is convex iff β > 1.

HJB equation for the primal utility. The primal market is defined by the utility function V
associated with Φ and by the risky asset {Set (x)} defined by the first order condition, Set (x(y)) =

−Φy(t, y Y
S
t ). If Φ(β)(t, y) is a power function, then the associated utility V (α) is also a power

function, and the risky asset {S(α)
t } is a GBM(rt, βζt),

V (α)(t, x) = H(t, α)
x1−α

1− α
, α = 1/β and H(t, α) = (H̃(t, β))−1/β (3.13)

In general case, V (t, x) is solution of an optimization problem in x i.e., by the conjugation
relation V (t, x) = infy>0{Φ(t, y) + yx} = Φ(t, Vx(t, x)) + xVx(t, x), Equation (2.1), the envelop
theorem states that the partial derivatives with respect to the parameter t verifies ∂tV (t, x) =

∂tΦ(t, .)(Vx(t, x)), easy also by hand. Thus, the PDE satisfied by the primal utility V is obtained
essentially by change of variables technique on the dual PDE, which we recall here

∂tΦ(t, y) +
1

2
y2ζ2

t Φyy(t, y)− yrtΦy(t, y) = 0 (3.14)
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Proposition 3.3. Let us consider the function V whose the derivative is the inverse of −Φy.
Then, this function satisfied the non linear PDE

∂tV (t, x)− 1

2

V 2
z (t, x)

Vzz(t, x)
ζ2
t + rtxVz(t, x) = 0 (3.15)

This PDE can be rewritten as an optimization program, of HJB-type,

∂tV (t, x) + sup
κ∈R
{1

2
x2Vzz(t, x)κ2 + xVz(t, x)κζt}+ xVzrt = 0 (3.16)

where the supremum is achieved on κ∗t = σ(t, x) := ζt
−Vz(t,x)
xVzz(t,x) = ζt

γV (t,x)
, where γV is the risk

aversion coefficient of V .

Proof. As mentioned above, we use change of variable techniques: we replace y by Vz(t, x) in the
dual PDE (3.14). The identity ∂tV (t, x) = ∂tΦ(t, .)(Vx(t, x)), (Enveloppe Theorem), combined
with identities Φy(t, Vz(t, x)) = −x and Φyy(t, Vz(t, x))Vzz(t, x) = −1, since Φy(t, .) is the inverse
function of −Vz(t, .), lead without much more effort to the primal PDE

∂tV (t, x)− 1

2

V 2
z (t, x)

Vzz(t, x)
ζ2
t + rtxVz(t, x) = 0

This non linear PDE is well-known to be the value function of some optimal control problem;
to give a short proof, let us introduce the quadratic polynomial in κ, Q(α, β)(κt) = 1

2ακ
2
t + βκt

where α = x2Vzz(t, x) < 0 and β = xVz(t, x)ζt. By definition, this quadratic form is maximal at
κ∗t = −β

α = Vxζt
−xVzz (t, x) and the maximum is

max
κ

Q(α, β)(κ) = −1

2

β2

α
= −1

2

V 2
z ζ

2
t

Vzz
(t, x)

This term is exactly the non linear part of the PDE (3.15). Observe that the optimal parameter
κ∗t = −β

α = − Vxζt
xVzz

(t, x) is proportional to the inverse of the relative risk aversion coefficient
of the V function, introduced in Section 2.1.1, and denoted γV (t, x). So HJB equation can be
revritten as the supremum of linear operators, and

∂tV (t, x) + sup
κ∈R
{1

2
x2Vzz(t, x)κ2 + xVz(t, x)κζt}+ xVzrt = 0 (3.17)

At the optimum the PDE is linearized by putting σ(t, x) = κ∗(t, x) and σ(t, x)γV (t, x) = ζt.

Description of an economy in equilibrium Assume the economy to be in equilibrium, with
a revealed utility function V (t, x) satisfying the non-linear PDE (3.15). The pricing kernel is a
GBM(−rt,−ζt) with deterministic volatility (−ζt in the dual point of view, −ηt in the primal
point of view) (ηt ≡ ζt). Then, we have the main theorem:

June 3, 2019 20/28



3. Applications

Theorem 3.4. (i) In this economic equilibrium, the volatility σ(t, x) of the risky asset Set (x) is
linked to the relative risk aversion coefficient γV (t, x) by the relation σ(t, x)γV (t, x) = ηt.
For power utility (Equation (3.13)) with relative risk aversion α, the equilibrium risky asset
X

(α)
t (x) is linear in x i.e. {X(α)

t (x) = xX
(α)
t } and is a GBM(rt, ηt/α).

(ii) Consider the class X of self-financing portfolios indexed by κt, with dynamics is

dXκ
t = Xκ

t

[
rtdt+ κt(dWt + ηtdt)

]
, (3.18)

Moreover, the risky asset Xe
t = Set is optimal for the V -utility. This property can be interpreted

as the existence of representative agent.

Proof. The proof stems quite simply from Proposition 3.3. Using the notation L(κ)V (t, x) =

∂tV (t, x) + 1
2x

2Vzz(t, x)κ2 + xVz(t, x)κζt + xVzrt, for any Xκ ∈X , by Itô’s formula

dV (t,Xκ
t ) = L(κ)V (t,Xκ

t )dt+Xκ
t Vz(t,X

κ
t )dWt.

Note that the drift term is dominated by supκ∈R L
(κ)V (t, x) ≡ 0 from Equation (3.16). Then,

for any Xκ ∈X , V (t,Xκ
t ) is a supermartingale and a martingale for Xe

t = Set with the optimal
choice κ∗t = σ(t, x) := ζt

−Vz(t,x)
xVzz(t,x) = ζt

γV (t,x)
(from Proposition 3.3), that is σ(t, x)γV (t, x) = ζt

since (ηt ≡ ζt). So, a representative agent maximizes his expected utility at any times.

Remark: In [HL93], He and Leland studied the PDE satisfied by the ratio f(t, x) of risk
premium/volatility, given here by the relative risk aversion coefficient γV (t, x). The PDE is very
complicated and it was not clear that the risk premium is necessarily deterministic.

3.2.3 Pareto optimality at the equilibrium

Now we are concerned by the description of all equilibrium (primal or dual) utilities, and non
only the power utilities. The proof is based on the description of the solutions of the "pricing"
PDE (3.14) of the GBM(−rt,−ζt) pricing kernel.

Aggregated power dual utility paradigm Since the PDE (3.11) is linear, we can reach
the ideas of Section 3.1 and generate a more general class of solutions by aggregating the above
dual power utilities in function of their risk tolerance coefficient β. But, a natural question is :
"Are there other solutions to this equilibrium problem than aggregated power functions? "
The answer, given in the following theorem, is negative. In other words, the set of revealed
dual equilibrium utilities is entirely described by the aggregation of dual power utilities. Similar
questions were encountered by different authors in other frameworks, (T. Zariphopoulou and
ali.[MZ10], M. Tehranchi and ali.[BRT09]), who were the first to use the Widder theorem,
characterizing the positive space-time harmonic functions of the Brownian motion.
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Theorem 3.5 (Widder 1963). A function Ψ : (0,∞)×R→ R is a positive classical solution to
the heat equation, Ψt(t, z) + 1

2Ψzz(t, z) = 0, if and only if it can be represented as

Ψ(t, z) =

∫
R
eβz−

1
2
β2tm(dβ), (3.19)

where m is a Borel measure such that the above integral is finite for all (t, z) ∈ (0,∞)× R.

The "revealed dual utility" version of this theorem is the following,

Theorem 3.6. A regular function Φ is a revealed dual utility if and only if there exists a positive
Borel measure µ(dβ) on (1,∞) such that

∫∞
1

y1−β

β−1 µ(dβ) <∞, such that

Φ(µ)(t, y) =

∫ ∞
1

H̃(t, β)
y1−β

β − 1
µ(dβ) =

∫ ∞
1

Φ(β)(t, y)µ(dβ) (3.20)

where H̃(t, β) = exp(−(β − 1)
∫ t

0 (rs + 1
2β ζ

2
s )ds).

Φ(µ) is a solution of the PDE (3.14) whose the initial dual utility is necessarily an aggregate dual
power utility.

Proof. The proof is based on the representation of the geometrical Brownian motion as a time-
dependent function of a change of time Brownian motion. In addition of the square integrability
of ζ, assume ζt > 0 a.s. After a classical change of time driven by the inverse of the increasing
process At =

∫ t
0 ζ

2
s ds, we can assume for simplicity that ζt ≡ 1 for any t, and drop out ζ

in the PDE (3.11) and replacing rt by r̃t = rt/ζ
2
t . The process {Ỹ e

t (y)} is a time depending
function of the Brownian motion {W̃t = −Wt}, Ỹ e

t (ez) = exp[z +
∫ t

0 −(r̃s + 1/2)ds + W̃t].
Then, the martingale {Φ(t, Ỹ e

t (ez))} is a function of the Brownian motion {W̃t(z) = z + W̃t},
Φ(t, Ỹ e

t (ez)) = Ψ(t, W̃t(z)), where the function Ψ(t, z) = Φ(t, e−
∫ t
0 (r̃s+1/2)dsez). The martingale

property of {Ψ(t, W̃t(z))} implies that Ψ(t, z) is a space-time harmonic solution of the heat
equation ∂tΨ(t, z) + 1

2Ψzz(t, z) = 0. By the Widder theorem, there exists a positive measure
m such that Ψ(t, z) = Φ(t, e−

∫ t
0 (r̃s+1/2)dsez) =

∫
R e

[(1−β)z− 1
2

(1−β)2t]m(dβ), with β > 1. The
proof of Theorem 3.6 when ζ̃ = 1 is achieved by taking the inverse change of variable z =

ln(y) +
∫ u

0 (r̃s + 1/2)ds, and µ(dβ) = (β − 1)m(dβ); the general case is attained after taking the
inverse of the change of time. Monotony and convexity implies that β > 1.

Pareto equilibrium of aggregate economy with risk averse heterogeneous agents
The question is now to precise the additional properties of such economy given that the dual
utility is an aggregation of dual power utility, (since we already known that all the expected
properties hold true). The study of Section 3.1.1 helps us to precise the problem in more general
context. Moreover, since our framework the heterogeneous agents have the same pricing kernel,
we can refer to the notion of Pareto optimality defined at the end of Section 3.1.1, relative to
the optimal allocation of the wealth between the different agents.
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Characterization of the aggregated primal equilibrium utility. In the sequel, in the
dual problem we use the parametrization (β, µ(dβ)) and in the primal problem the parametriza-
tion (α, ν(dα) with α = 1/β and ν(dα) is the transport of µ(dβ) by the function α = 1/β

(
∫ 1

0 k(α)ν(dα) =
∫∞

1 k(1/β)µ(dβ)).

When the dual revealed utility is the β-power function Φ(β)(t, y) = H̃(t, β) y
1−β

(β−1) , the primal
revealed utility is also a power function V (α)(t, x) = H(t, α) x

1−α

(1−α) . Moreover, the equilibrium

portfolio is a geometrical Brownian motion (GBM) equal to X(α)
t (x) = xΦ

(β)
y (t, Y e

t ) by the first
order condition.

In the general case of mixture of powers, the primal point of view is less explicit. Nevertheless,
we will shown that the primal utility function can be characterized as the value function of a
Pareto optimal allocation (introduced at the end of Section 3.1.1).
First, we show this property for the primal utility at time 0, for which φ(β)(y) = y1−β

β−1 and

φ(β)(y) + yφ
(β)
y (y) = βφ(β)(y) = v(α)(−φ(β)

y (y)) := v(α)(x(α)(y)), by the master equation. When
considering the mixture of power dual utilities φ(µ)(y) =

∫∞
1 φ(β)(y)µ(dβ), some other quantities

are also obtained by mixture, for example φ(µ)(y) + yφ
(µ)
y (y) =

∫∞
1 βφ(β)(y)µ(dβ). For the pri-

mal utility function v(ν)(x), the property fails in general, but since the left side of the previous
formula is the function v(ν)(−φ(µ)

y (y)), we have that the mixture representatin still holds along
the characteristic function x(ν)(y) = −φ(µ)

y (y).

Lemma 3.7. Let us consider the aggregated economy at time 0, whose the dual utility φ(µ) is a
mixture of dual power utilities. Then, the primal utility v(ν)(x) read along the wealth x(ν)(y) =

−φ(µ)
y (y) is still a mixture, and

φ(µ)(y) =

∫ ∞
1

y1−β

β − 1
µ(dβ), x(ν)(y) =

∫ 1

0
x(α)(y)ν(dα) (3.21)

v(ν)(x(ν)(y)) =

∫ ∞
1

βφ(β)(y)µ(dβ) =

∫ 1

0
v(α)(x(α)(y))ν(dα). (3.22)

Furthermore, the utility v(ν) is the sup-convolution of power utilities v(α)

v(ν)(x) = sup{
∫ 1

0
v(α)(zα)ν(dα);

∫ 1

0
zαν(dα) = x} (3.23)

The ”Pareto” supremum is achieved at the family {zα(x) := x(α)(v
(ν)
z (x)), α}.

Proof. The identity (3.22) is a simple consequence of the previous identities based on the master
equation and the relation βφ(β)(y) = v(α)(x(α)(y)).
The identification of v(ν)(x) as the solution of a sup convolution problem is based on the Fenchel
transform,

φ(β)(y) := max
x>0
{v(α)(x)− xy} = v(α)(x(α)(y))− yx(α)(y) ≥ v(α)(zα)− zαy, (zα > 0)
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that is, for any zα > 0,

v(α)(x(α)(y)) ≥ v(α)(zα) + y(x(α)(y)− zα).

Integrating in α and using Equation (3.22) implies that for any zα > 0.

v(ν)(x(ν)(y)) ≥
∫ 1

0
v(α)(zα)ν(dα) + y

∫ 1

0
(x(α)(y)− zα)ν(dα),

Then, taking the maximum over the class Z(ν) := {zα :
∫ 1

0 zαν(dα) = x(ν)(y)}, containing
(x(α)(y))α implies

v(ν)(x(ν)(y)) =

∫ 1

0
v(α)(x(α)(y))ν(dα) = max

Z(ν)
{
∫ 1

0
v(α)(zα)ν(dα)},

To conclude, it suffices to replace y by v(ν)
z (x).

Mainly due to the fact that we aggregate utility functions which are time-separable, this
Pareto-optimal initial allocation is propagated with the same rule than at time 0, using an
aggregating measure evolving randomly with the time. Indeed, using the same notations of the
previous lemma, the first order condition allows to write the equilibrium risky asset as as a
mixture of GBM.

(Mixing)


X

(ν)
t (x(ν)(y)) =

∫ ∞
1

y−βH̃(t, β)(Y e
t )−βµ(dβ) =

∫ ∞
1

x(α)(y)X
(α)
t ν(dα).

V (ν)(t,X
(ν)
t (x(ν)(y))) =

∫ 1

0
V (α)(t, x(α)(y)X

(α)
t )ν(dα), (3.24)

where the last identity is easily obtained from optimality and from the Master equation. Starting
from (3.24) and applying the same proof as in the previous lemma, we get the following result.

Theorem 3.8. Let V (ν) be the utility of a representative agent. A economic equilibrium holds
if and only if there exists a positive Borel measure ν on (0, 1) such that,
(i) The utility process V (ν) is given as the sup-convolution:

V (ν)(t, x) = sup{
∫ 1

0
V (α)(t, zα)ν(dα);

∫ 1

0
zαν(dα) = x}

The supremum is achieved at the family {xα(t, x) := (V
(α)
z )−1(t, V

(ν)
z (t, x)), α} satisfying the

condition
∫ 1

0 x
α(t, x)ν(dα) = x.

(ii) Economic interpretation: Assume the initial wealth optimally Pareto allocated, then
at any time the allocation generated by the individual optimal wealth processes X(α)(t, x(α)(x))

is Pareto optimal for the aggregated utility V (ν)(t,X
(ν)
t (x)) and the optimal wealth at time t.

Proof. Using the notation x(ν)(y) = −Φ
(µ)
y (y) = x in equation (3.24), follows

V (ν)(t,X
(ν)
t (x)) =

∫ 1

0
V (α)(t, x(α)(v(ν)

z (x))X
(α)
t )ν(dα).
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AsX(ν)
t (x) = −Φ

(µ)
y (t, v

(ν)
z (x)Yt), it is a monotonic function in x with inverse (v

(ν)
z )−1

(
V

(ν)
z (t, x)/Yt

)
,

we obtain
V (ν)(t, x) =

∫ 1

0
V (α)

(
t, x(α)

(
V (ν)
z (t, x)/Yt

)
X

(α)
t

)
ν(dα).

Now, as x(α)(y)X
(α)
t = −Φβ

y (t, yYt) (β = 1/α), the quantity x(α)
(
V

(ν)
z (t, x)/Yt

)
X

(α)
t is equal to

−Φβ
y (t, V

(ν)
z (t, x)). In other words,

V (ν)(t, x) =

∫ 1

0
V (α)

(
t,−Φβ

y (t, V (ν)
z (t, x))

)
ν(dα).

Moreover, identical reasoning as in the proof of the previous result, using the inequality

V (α)(t,−Φβ
y (t, y)) ≥ V (α)(t, zα) + (Φβ

y (t, y)− zα)y, ∀zα > 0, (3.25)

integrating and replace y by V (ν)
z (t, x), follows

V (ν)(t, x) ≥ sup{
∫ 1

0
V (α)(t, zα)ν(dα) + V (ν)

z (t, x)

∫ 1

0
(Φβ

y (t, V (ν)
z (t, x))− zα)ν(dα)}, (3.26)

with equality iff
∫ 1

0 Φ
1/α
y (t, V

(ν)
z (t, x))ν(dα) =

∫ 1
0 zαν(dα), in this case the supremum is achieved

at zα = −Φβ
y (t, V

(ν)
z (t, x)) = (V

(α)
z )−1(t, V

(ν)
z (t, x)). But, using the definition of Φ(µ) as a

mixture, one can observe that the integral
∫ 1

0 Φ
1/α
y (t, V

(ν)
z (t, x))ν(dα) is equal to x. This achieves

the proof.

Conclusion: In this work we have provided a necessary and sufficient condition for the
existence of solution to the general problem of revealed utility, using very basic tools of analysis
and the theory of integration. We have made almost no assumptions about the regularity of
the processes in time t and the constructed utilities are only differentiable in x. To be aware of
the efficiency of our method and the extent of our results, it is enough to refer to existing work
in the semimartingale framework where calculations are tedious and assumptions are numerous.
Requiring to treat the problem in an abstract way has clarified many subtleties including the role
of the initial conditions and how to deal with the Stieltjes integral near to zero. The different
notions of orthogonality introduced for the first time in this type of problem are the keys of this
work. These difficulties are particularly well-illustrated in the Markovian economic equilibrium
problem. By approaching the problem from the dual point of view to be concentrated on the
pricing kernel process only (as in the first part) and exploiting the necessary and sufficient
orthogonality condition of our main result yields to the complete resolution of this problem,
until now without a satisfactory answer.
Also, this condition of orthogonality undoubtedly plays an important role in Markov framework,
because they give us the necessary and sufficient conditions in the form of PDEs. Solving them
is still an open question that will be studied in a forthcoming paper.
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Finally, since we have no regularity assumptions with respect to the time, our results can be
applied in the discrete frame, and in different stetting, as preference learning in which the goal is
to learn a predictive preference model from observed preference information, see [FH11, FSS06].
As well, reasoning with preferences has been recognized as a particularly promising research
direction for artificial intelligence, see [NJ04, QXL]. Other learning problems can also be studied
from the viewpoint of an expected utility maximizing as learning a probabilistic models, see for
example [FS16, CS03] for more details.
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