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Abstract

Dimensionality reduction is a first step of many machine learning pipelines.
Two popular approaches are principal component analysis, which projects onto
a small number of well chosen but non-interpretable directions, and feature se-
lection, which selects a small number of the original features. Feature selection
can be abstracted as a numerical linear algebra problem called the column sub-
set selection problem (CSSP). CSSP corresponds to selecting the best subset of
columns of a matrix X ∈ RN×d, where best is often meant in the sense of min-
imizing the approximation error, i.e., the norm of the residual after projection
of X onto the space spanned by the selected columns. Such an optimization
over subsets of {1, . . . , d} is usually impractical. One workaround that has been
vastly explored is to resort to polynomial-cost, random subset selection algo-
rithms that favor small values of this approximation error. We propose such
a randomized algorithm, based on sampling from a projection determinantal
point process (DPP), a repulsive distribution over a fixed number k of indices
{1, . . . , d} that favors diversity among the selected columns. We give bounds
on the ratio of the expected approximation error for this DPP over the opti-
mal error of PCA. These bounds improve over the state-of-the-art bounds of
volume sampling when some realistic structural assumptions are satisfied for
X. Numerical experiments suggest that our bounds are tight, and that our al-
gorithms have comparable performance with the double phase algorithm, often
considered to be the practical state-of-the-art. Column subset selection with
DPPs thus inherits the best of both worlds: good empirical performance and
tight error bounds.
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1 Introduction

Datasets come in always larger dimensions, and dimension reduction is thus often one
the first steps in any machine learning pipeline. Two of the most widespread strate-
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gies are principal component analysis (PCA) and feature selection. PCA projects the
data in directions of large variance, called principal components. While the initial
features (the canonical coordinates) generally have a direct interpretation, principal
components are linear combinations of these original variables, which makes them
hard to interpret. On the contrary, using a selection of original features will preserve
interpretability when it is desirable. Once the data are gathered in an N×d matrix,
of which each row is an observation encoded by d features, feature selection boils
down to selecting columns of X. Independently of what comes after feature selec-
tion in the machine learning pipeline, a common performance criterion for feature
selection is the approximation error in some norm, that is, the norm of the residual
after projecting X onto the subspace spanned by the selected columns. Optimizing
such a criterion over subsets of {1, . . . , d} requires exhaustive enumeration of all
possible subsets, which is prohibitive in high dimension. One alternative is to use
a polynomial-cost, random subset selection strategy that favors small values of the
criterion.

This rationale corresponds to a rich literature on randomized algorithms for col-
umn subset selection (Deshpande and Vempala, 2006; Drineas et al., 2008; Boutsidis
et al., 2011). A prototypal example corresponds to sampling s columns of X i.i.d.
from a multinomial distribution of parameter p ∈ Rd. This parameter p can be the
squared norms of each column (Drineas et al., 2004), for instance, or the more subtle
k-leverage scores (Drineas et al., 2008). While the former only takes O(dN2) time
to evaluate, it comes with loose guarantees; see Section 3.2. The k-leverage scores
are more expensive to evaluate, since they call for a truncated SVD of order k, but
they come with tight bounds on the ratio of their expected approximation error over
that of PCA.

To minimize approximation error, the subspace spanned by the selected columns
should be as large as possible. Simultaneously, the number of selected columns
should be as small as possible, so that intuitively, diversity among the selected
columns is desirable. The column subset selection problem (CSSP) then becomes a
question of designing a discrete point process over the column indices {1, . . . , d} that
favors diversity in terms of directions covered by the corresponding columns of X.
Beyond the problem of designing such a point process, guarantees on the resulting
approximation error are desirable. Since, given a target dimension k ≤ d after
projection, PCA provides the best approximation in Frobenius or spectral norm, it
is often used a reference: a good CSS algorithm preserves interpretability of the c
selected features while guaranteeing an approximation error not much worse than
that of rank-k PCA, all of this with c not much larger than k.

In this paper, we introduce and analyze a new randomized algorithm for selecting
k diverse columns. Diversity is ensured using a determinantal point process (DPP).
DPPs can be viewed as the kernel machine of point processes; they were introduced
by Macchi (1975) in quantum optics, and their use widely spread after the 2000s in
random matrix theory (Johansson, 2005), machine learning (Kulesza et al., 2012),
spatial statistics (Lavancier et al., 2015), and Monte Carlo methods (Bardenet and
Hardy, 2016), among others. In a sense, the DPP we propose is a nonindependent
generalization of the multinomial sampling with k-leverage scores of (Boutsidis et al.,
2009). It further naturally connects to volume sampling, the CSS algorithm that
has the best error bounds (Deshpande et al., 2006). We give error bounds for DPP
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sampling that exploit sparsity and decay properties of the k-leverage scores, and
outperform volume sampling when these properties hold. Our claim is backed up
by experiments on toy and real datasets.

The paper is organized as follows. Section 2 introduces our notation. Section 3
is a survey of column subset selection, up to the state of the art to which we later
compare. In Section 4, we discuss determinantal point processes and their connection
to volume sampling. Section 5 contains our main results, in the form of both classical
bounds on the approximation error and risk bounds when CSS is a prelude to linear
regression. In Section 6, we numerically compare CSS algorithms, using in particular
a routine that samples random matrices with prescibed k-leverage scores.

2 Notation

We use [n] to denote the set {1, . . . , n}, and [n : m] for {n, . . . ,m}. We use bold
capitals A,X, . . . to denote matrices . For a matrix A ∈ Rm×n and subsets of
indices I ⊂ [m] and J ⊂ [n], we denote by AI,J the submatrix of A obtained
by keeping only the rows indexed by I and the columns indexed by J . When we
mean to take all rows or A, we write A:,J , and similarly for all columns. We write
rk(A) for the rank of A, and σi(A), i = 1, . . . , rk(A) for its singular values, ordered
decreasingly. Sometimes, we will need the vectors Σ(A) and Σ(A)2 the vectors of
Rd with respective entries σi(A) and σ2

i (A), i = 1, . . . , rk(A). Similarly, when A
can be diagonalized, Λ(A) (and Λ(A)2) are vectors with the decreasing eigenvalues
(squared eigenvalues) of A as entries.

The spectral norm of A is ‖A‖2 = σ1(A), while the Frobenius norm of A is
defined by

‖A‖Fr =

√√√√rk(A)∑
i=1

σi(A)2.

For ` ∈ N, we need to introduce the `-th elementary symmetric polynomial on L ∈ N
variables, that is

e`(X1, . . . , XL) =
∑
T⊂[L]
|T |=`

∏
j∈T

Xj . (1)

Finally, we follow Ben-Israel (1992) and denote spanned volumes by

Volq(A) =
√
eq
(
σ1(A)2, . . . , σrk(A)(A)2

)
, q = 1, . . . , rk(A).

Throughout the paper, X will always denote an N × d matrix that we think
of as the original data matrix, of which we want to select k ≤ d columns. Unless
otherwise specified, r is the rank of X, and matrices U ,Σ,V are reserved for the
SVD of X, that is,

X = UΣV T (2)

=
[
Uk Ur−k

] [ Σk 0

0 Σr−k

] [
V T
k

V T
r−k

]
, (3)

where U ∈ RN×r and V ∈ Rd×r are orthogonal, and Σ ∈ Rr×r is diagonal. The
diagonal entries of Σ are denoted by σi = σi(X), i = 1, . . . , r, and we assume they
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are in decreasing order. We will also need the blocks given in (3), where we separate
blocks of size k corresponding to the largest k singular values. To simplify notation,
we abusively write Uk for U:,[k] and Vk for V:,[k] in (3), among others. Though they
will be introduced and discussed at length in Section 3.3, we also recall here that
we note `ki = ‖V[k],i‖22 the so-called k-leverage score of the i-th column of X.

We need some notation for the selection of columns. Let S ⊂ [d] be such that
|S| = k, and let S ∈ {0, 1}d×k be the corresponding sampling matrix: S is defined
by ∀M ∈ RN×d,MS = M:,S . In the context of column selection, it is often referred
to XS = X:,S as C. We set for convenience Y ᵀ

:,S = (Y:,S)ᵀ.

The result of column subset selection will usually be compared to the result of
PCA. We denote by ΠkX the best rank-k approximation to X. The sense of best
can be understood either in Frobenius or spectral norm, as both give the same result.
On the other side, for a given subset S ⊂ [d] of size |S| = s and ν ∈ {2,Fr}, let

Πν
S,kX = arg min

A
‖X −A‖ν

where the minimum is taken over all matrices A = X:,SB such that B ∈ Rs×d and
rkB ≤ k; in words, the minimum is taken over matrices of rank at most k that lie in
the column space of C = X:,S . When |S| = k, we simply write Πν

SX = Πν
S,kX. In

practice, the Frobenius projection can be computed as ΠFr
S X = CC+X, yet there

is no simple expression for Π2
SX. However, ΠFr

S X can be used as an approximation
of Π2

SX since

‖X −Π2
SX‖2 ≤ ‖X −ΠFr

S X‖2 ≤
√

2‖X −Π2
SX‖2, (4)

see (Boutsidis et al., 2011, Lemma 2.3).

3 Related Work

In this section, we review the main results about column subset selection.

3.1 Rank revealing QR decompositions

The first k-CSSP algorithm can be traced back to the article of Golub (1965) on
pivoted QR factorization. This work introduced the concept of Rank Revealing QR
factorization (RRQR). The original motivation was to calculate a well-conditioned
QR factorization of a matrix X that reveals its numerical rank.

Definition 1 Let X ∈ RN×d and k ∈ N (k ≤ d). A RRQR factorization of X is
a 3-tuple (Π,Q,R) with Π ∈ Rd×d a permutation matrix, Q ∈ RN×d an orthogonal
matrix, and R ∈ Rd×d a triangular matrix, such that XΠ = QR,

σk(X)

p1(k, d)
≤ σmin(R[k],[k]) ≤ σk(X) , (5)

and

σk+1(X) ≤ σmax(R[k+1:d],[k+1:d]) ≤ p2(k, d)σk+1(X), (6)

where p1(k, d) and p2(k, d) are controlled.
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In practice, a RRQR factorization algorithm interchanges pairs of columns and
updates or builds a QR decomposition on the fly. The link between RRQR factor-
ization and k-CSSP was first discussed by Boutsidis, Mahoney, and Drineas (2009).
The structure of a RRQR factorization indeed gives a deterministic selection of a
subset of k columns of X. More precisely, if we take C to be the first k columns
of XΠ, C is a subset of columns of X and ‖X − ΠFr

S X‖2 = ‖R[k+1:r],[k+1:r]‖2. By
(6), any RRQR algorithm thus provides provable guarantees in spectral norm for
k-CSSP.

Following (Golub, 1965), many papers gave algorithms that improved on p1(k, d)
and p2(k, d) in Definition 1. Table 1 sums up the guarantees of the original algorithm
of (Golub, 1965) and the state-of-the-art algorithms of Gu and Eisenstat (1996).
Note the dependency of p2(k, d) on the dimension d through the term

√
d− k; this

term is common for guarantees in spectral norm for k-CSSP. We refer to (Boutsidis
et al., 2009) for an exhaustive survey on RRQR factorization.

3.2 Length square importance sampling and additive bounds

Drineas, Frieze, Kannan, Vempala, and Vinay (2004) proposed a randomized CSS
algorithm based on i.i.d. sampling s indices S = {i1, . . . , is} from a multinomial
distribution of parameter p, where

pj =
‖X:,j‖22
‖X‖2Fr

, j ∈ [d]. (7)

Let C = X:,S be the corresponding submatrix. First, we note that some columns
of X may appear more than once in C. Second, (Drineas et al., 2004, Theorem 3)
states that

P

(
‖X −ΠFr

S,kX‖2Fr ≤ ‖X −ΠkX‖2Fr + 2(1 +

√
8 log(

2

δ
))

√
k

s
‖X‖2Fr

)
≥ 1− δ. (8)

Equation (8) is a high-probability additive upper bound for ‖X − ΠFr
S X‖2Fr. The

drawback of such bounds is that they can be very loose if the first k singular values
of X are large compared to σk+1. For this reason, multiplicative approximation
bounds have been considered.

3.3 k-leverage scores sampling and multiplicative bounds

Drineas, Mahoney, and Muthukrishnan (2008) proposed an algorithm with provable
multiplicative upper bound using multinomial sampling, but this time according to
k-leverage scores.

Algorithm p2(k, d) Complexity References

Pivoted QR 2k
√
d− k O(dNk) (Golub and Van Loan, 1996)

Strong RRQR (Alg. 3)
√

(d− k)k + 1 not polynomial (Gu and Eisenstat, 1996)

Strong RRQR (Alg. 4)
√
f2(d− k)k + 1 O(dNk logf (d)) (Gu and Eisenstat, 1996)

Table 1: Examples of some RRQR algorithms and their theoretical performances.
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Definition 2 (k-leverage scores) Let X = UΣV ᵀ ∈ RN×d be the SVD of X.
We note Vk = V:,[k] the first k columns of V . For j ∈ [d], the k-leverage score of
the j-th column of X is defined by

`kj =

k∑
i=1

V 2
i,j . (9)

In particular, it holds∑
j∈[d]

`kj =
∑
j∈[d]

‖(V ᵀ
k ):,j‖22 = Tr(VkV

ᵀ
k ) = k, (10)

since Vk is an orthogonal matrix. Therefore, one can consider the multinomial
distribution on [d] with parameters

pj =
`kj
k
, j ∈ [d]. (11)

This multinomial is called the k-leverage scores distribution.

Theorem 3 (Drineas et al., 2008, Theorem 3) If the number s of sampled columns
satisfies

s ≥ 4000k2

ε2
log

(
1

δ

)
, (12)

then, under the k-leverage scores distribution,

P

(
‖X −ΠFr

S,kX‖2Fr ≤ (1 + ε)‖X −ΠkX‖2Fr

)
≥ 1− δ. (13)

Drineas et al. (2008) also considered replacing multinomial with Bernoulli sampling,
still using the k-leverage scores. The expected number of columns needed for (13)
to hold is then lowered to O(k log k

ε2
). A natural question is then to understand how

low the number of columns can be, while still guaranteeing a multiplicative bound
like (13). A partial answer has been given by Deshpande and Vempala (2006).

Proposition 4 (Deshpande and Vempala, 2006, Proposition 4) Given ε >
0, k, d ∈ N such that dε ≥ 2k, there exists a matrix Xε ∈ Rkd×k(d+1) such that
for any S ⊂ [d],

‖Xε −ΠFr
S,kX

ε‖2Fr ≥ (1 + ε)‖Xε −Xε
k‖2Fr. (14)

This suggests that the lower bound for the number of columns is k/ε, at least in the
worst case sense of Proposition 4. Interestingly, the k-leverage scores distribution
of the matrix Xε in the proof of Proposition 4 is uniform, so that k-leverage score
sampling boils down to simple uniform sampling.

To match the lower bound of Deshpande and Vempala (2006), Boutsidis, Drineas,
and Magdon-Ismail (2011) proposed a greedy algorithm to select columns. This
algorithm is inspired by the sparsification of orthogonal matrices proposed in (Batson
et al., 2009). The full description of this family of algorithms is beyond the scope of
this article. We only recall one of the results of the article.
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Theorem 5 (Boutsidis et al., 2011, Theorem 1.5) There exists a randomized
algorithm A that select at most c = 2k

ε (1 + o(1)) columns of X such that

EA ‖X −ΠFr
S,kX‖2Fr ≤ (1 + ε)‖X −ΠkX‖2Fr. (15)

Finally, a deterministic algorithm based on k-leverage score sampling was pro-
posed by Papailiopoulos, Kyrillidis, and Boutsidis (2014). The algorithm selects the
c(θ) columns of X with the largest k-leverage scores, where

c(θ) ∈ arg min
u

(
u∑
i=1

`ki > θ

)
, (16)

and θ is a free parameter that controls the approximation error. To guarantee that
there exists a matrix of rank k in the subspace spanned by the selected columns,
Papailiopoulos et al. (2014) assume that

0 ≤ k − θ < 1. (17)

Loosely speaking, this condition is satisfied for a low value of c(θ) if the k-leverage
scores (after ordering) are decreasing rapidly enough. The authors give empirical
evidence that this condition is satisfied by a large proportion of real datasets.

Theorem 6 (Papailiopoulos et al., 2014, Theorem 2) Let ε = k − θ ∈ [0, 1),
letting S index the columns with the c(θ) largest k-leverage scores,

‖X −Πν
S,kX‖ν ≤

1

1− ε
‖X −ΠkX‖ν , ν ∈ {2,Fr}. (18)

In particular, if ε ∈ [0, 1
2 ],

‖X −Πν
S,kX‖ν ≤ (1 + 2ε)‖X −ΠkX‖ν , ν ∈ {2,Fr}. (19)

Furthermore, they proved that if the k-leverage scores decay like a power law,
the number of columns needed to obtain a multiplicative bound can actually be
smaller than k

ε .

Theorem 7 (Papailiopoulos et al., 2014, Theorem 3) Assume, for η > 0,

`ki =
`k1
iη+1

. (20)

Let ε = k − θ ∈ [0, 1), then

c(θ) = max

{(
4k

ε

) 1
η+1

− 1,

(
4k

ηε

) 1
η

, k

}
. (21)

This complements the fact that the worst case example in Proposition 4 had uniform
k-leverage scores. Loosely speaking, matrices with fast decaying k-leverage scores
can be efficiently subsampled.
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3.4 The geometric interpretation of the k-leverage scores

The k-leverage scores can be given a geometric interpretation, the generalization of
which serves as a first motivation for our work.

For i ∈ [d], let ei be the i-th canonical basis vector of Rd. Let further θi be
the angle between ei and the subspace Pk = Span(Vk), and denote by ΠPkei the
orthogonal projection of ei onto the subspace Pk. Then

cos2(θi) :=
(ei,ΠPkei)

2

‖ΠPkei‖2
= (ei,ΠPk(ei)) = (ei,

k∑
j=1

Vi,jV:,j) =
k∑
j=1

V 2
i,j = `ki . (22)

A large k-leverage score `ki thus indicates that ei is almost aligned with Pk. Selecting
columns with large k-leverage scores as in (Drineas et al., 2008) can thus be inter-
preted as replacing the principal eigenspace Pk by a subspace that must contain k of
the original coordinate axes. Intuitively, a closer subspace to the original Pk would
be obtained by selecting columns jointly rather than independently, considering the
angle with Pk of the subspace spanned by these columns. More precisely, consider
S ⊂ [d], |S| = k, and denote PS = Span(ej , j ∈ S). A natural definition of the
cosine between Pk and PS is in terms of the so-called principal angles (Golub and
Van Loan, 1996, Section 6.4.4); see Appendix C. In particular, Proposition 27 in
Appendix C yields

cos2(Pk,PS) = Det(VS,[k])
2. (23)

This paper is about sampling k columns proportionally to (23).

In Appendix A, we contribute a different interpretation of k-leverage scores and
volumes, which relates them to the length-square distribution of Section 3.2.

3.5 Negative correlation: volume sampling and the double phase
algorithm

In this section, we survey algorithms that randomly sample exactly k columns from
X, unlike the multinomial sampling schemes of Sections 3.2 and 3.3, which typically
require more than k columns.

Deshpande, Rademacher, Vempala, and Wang (2006) obtained a multiplicative
bound on the expected approximation error, with only k columns, using so-called
volume sampling.

Theorem 8 (Deshpande et al., 2006) Let S be a random subset of [d], chosen
with probability

PVS(S) = Z Det(Xᵀ
:,SX:,S)1{|S|=k}, (24)

where Z =
∑
|S|=k

Det(Xᵀ
:,SX:,S). Then

EVS ‖X −ΠFr
S X‖2Fr ≤ (k + 1)‖X −ΠkX‖2Fr (25)

and

EVS ‖X −Π2
SX‖22 ≤ (d− k)(k + 1)‖X −ΠkX‖2Fr. (26)
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Note that the bound for the spectral norm was proven in (Deshpande et al., 2006)
for the Frobenius projection, that is, they bound ‖X − ΠFr

S X‖2. The bound (26)
easily follows from (4). Later, sampling according to (24) was shown to be doable in
polynomial time (Deshpande and Rademacher, 2010). Using a worst case example,
Deshpande et al. (2006) proved that the k + 1 factor in (25) cannot be improved.

Proposition 9 (Deshpande et al., 2006) Let ε > 0. There exists a (k + 1) ×
(k + 1) matrix Xε such that for every subset S of k columns of Xε,

‖Xε −ΠFr
S X

ε‖2Fr > (1− ε)(k + 1)‖Xε −ΠkX
ε‖2Fr. (27)

We note that there has been recent interest in a similar but different distribution
called dual volume sampling (Avron and Boutsidis, 2013; Li et al., 2017a; Dereziński
and Warmuth, 2018), sometimes also termed volume sampling. The main application
of dual VS is row subset selection of a matrix X for linear regression on label budget
constraints.

(Boutsidis et al., 2009) proposed a k-CSSP algorithm, called double phase, that
combines ideas from multinomial sampling and RRQR factorization. The motivating
idea is that the theoretical performance of RRQR factorizations depends on the
dimension through a factor

√
d− k; see Table 1. To improve on that, the authors

propose to first reduce the dimension d to c by preselecting a large number of columns
c > k using multinomial sampling from the k-leverage scores distribution, as in
Section 3.3. Then only, they perform a RRQR factorization of the reduced matrix
V ᵀ
k S1D1 ∈ Rk×c, where S1 ∈ Rd×c is the sampling matrix of the multinomial phase

and D1 ∈ Rc×c is a scaling matrix.

Theorem 10 (Boutsidis et al., 2009) Let S be the output of the double phase
algorithm with c = Θ(k log k). Then

PDPh

(
‖X −ΠFr

S X‖Fr ≤ Θ(k log
1
2 k)‖X −ΠkX‖Fr

)
≥ 0.8 . (28)

PDPh

(
‖X−Π2

SX‖2 ≤ Θ(k log
1
2 k)‖X−ΠkX‖2+Θ(k

3
4 log

1
4 k)‖X−ΠkX‖Fr

)
≥ 0.8.

(29)

Note that the spectral norm bound was proven for a slightly different distribu-
tion in the randomized phase. Furthermore this bound was proved in (Deshpande
et al., 2006) for ‖X −ΠFr

S X‖2 but using (4) the bound (29) follows. The constants

Θ(k log
1
2 k) and Θ(k

3
4 log

1
4 k) in the bounds (28) and (29) depends on c the number

of pre-selected columns in the randomized step. In practice, the choice of the pa-
rameter c of the randomized pre-selection phase has an influence on the quality of
the approximation. We refer to (Boutsidis et al., 2009) for details.

3.6 Excess risk in sketched linear regression

So far, we have focused on approximation bounds in spectral or Frobenius norm for
X − Πν

S,kX. This is a reasonable measure of error as long as it is not known what
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the practitioner wants to do with the submatrix X:,S . In this section, we assume
that the ultimate goal is to perform linear regression of some y ∈ RN onto X. Other
measures of performance then become of interest, such as the excess risk incurred by
regressing onto X:,S rather than X. We use here the framework of Slawski (2018),
further assuming well-specification for simplicity.

For every i ∈ [N ], assume yi = Xi,:w
∗ + ξi, where the noises ξi are i.i.d. with

mean 0 and variance v. For a given estimator w = w(X,y), its excess risk is defined
as

E(w) = Eξ

[
‖Xw∗ −Xw‖22

N

]
. (30)

In particular, it is easy to show that the ordinary least squares (OLS) estimator
ŵ = X+y has excess risk

E(ŵ) = v × rk(X)

N
. (31)

Selecting k columns indexed by S in X prior to performing linear regression yields
wS = (XS)+y ∈ Rk. We are interested in the excess risk of the corresponding
sparse vector

ŵS := SwS = S(XS)+y ∈ Rd

which has all coordinates zero, except those indexed by S.

Proposition 11 (Theorem 9, Mor-Yosef and Avron, 2018) Let S ⊂ [d], such
that |S| = k. Let (θi(S))i∈[k] be the principal angles between SpanS and SpanVk,
see Appendix C. Then

E(ŵS) ≤ 1

N

(
1 + max

i∈[k]
tan2 θi(S)

)
‖w∗‖2σ2

k+1 +
vk

N
. (32)

Compared to the excess risk (31) of the OLS estimator, the second term of the
right-hand side of (32) replaces rkX by k. But the price is the first term of the
right-hand side of (32), which we loosely term bias. To interpret this bias term, we
first look at the excess risk of the principal component regressor (PCR)

w∗k ∈ arg min
w∈SpanVk

Eξ
[
‖y −Xw‖2/N

]
. (33)

Proposition 12 (Corollary 11, Mor-Yosef and Avron, 2018)

E(w∗k) ≤
‖w∗‖2σ2

k+1

N
+
vk

N
. (34)

The right-hand side of (34) is almost that of (32), except that the bias term in the
CSS risk (32) is larger by a factor that measures how well the subspace spanned
by S is aligned with the principal eigenspace Vk. This makes intuitive sense: the
performance of CSS will match PCR if selecting columns yields almost the same
eigenspace.

The excess risk (32) is yet another motivation to investigate DPPs for column
subset selection. We shall see in Section 5.2 that the expectation of (32) under a
well-chosen DPP for S has a particularly simple bias term.

11



4 Determinantal Point Processes

In this section, we introduce discrete determinantal point processes (DPPs) and the
related k-DPPs, of which volume sampling is an example. DPPs were introduced by
Macchi (1975) as probabilistic models for beams of fermions in quantum optics. Since
then, DPPs have been thoroughly studied in random matrix theory (Johansson,
2005), and have more recently been adopted in machine learning (Kulesza et al.,
2012), spatial statistics Lavancier et al. (2015), and Monte Carlo methods (Bardenet
and Hardy, 2016).

4.1 Definitions

For all the definitions in this section, we refer the reader to (Kulesza et al., 2012).
Recall that [d] = {1, . . . , d}.

Definition 13 (DPP) Let K ∈ Rd×d be a positive semi-definite matrix. A random
subset Y ⊂ [d] is drawn from a DPP of marginal kernel K if and only if

∀S ⊂ [d], P(S ⊂ Y ) = Det(KS), (35)

where KS = [Ki,j ]i,j∈S. We take as a convention Det(K∅) = 1.

For a given matrix K, it is not obvious that (35) consistently defines a point process.
One sufficient condition is that K is symmetric and its spectrum is in [0, 1]; see
(Macchi, 1975) and (Soshnikov, 2000)[Theorem 3]. In particular, when the spectrum
ofK is included in {0, 1}, we callK a projection kernel and the corresponding DPP a
projection DPP1. Letting r be the number of unit eigenvalues of its kernel, samples
from a projection DPP have fixed cardinality r with probability 1 (Hough et al.,
2005, Lemma 17).

For symmetric kernels K, a DPP can be seen as a repulsive distribution, in the
sense that for all i, j ∈ [d],

P({i, j} ⊂ Y ) = Ki,iKj,j −K2
i,j (36)

= P({i} ⊂ Y ) P({j} ⊂ Y )−K2
i,j (37)

≤ P({i} ⊂ Y ) P({j} ⊂ Y ). (38)

Besides projection DPPs, there is another natural way of using a kernel matrix
to define a random subset of [d] with prespecified cardinality k.

Definition 14 (k-DPP) Let L ∈ Rd×d be a positive semi-definite matrix. A ran-
dom subset Y ⊂ [d] is drawn from a k-DPP of kernel L if and only if

∀S ⊂ [d], P(Y = S) ∝ 1{|S|=k}Det(LS) (39)

where LS = [Li,j ]i,j∈S.

DPPs and k-DPPs are closely related but different objects. For starters, k-DPPs
are always well defined, provided L has a nonzero minor of size k.

1All projection DPPs in this paper have symmetric kernels
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4.2 Sampling from a DPP and a k-DPP

Let K ∈ Rd×d be a symmetric, positive semi-definite matrix, with eigenvalues in
[0, 1], so that K is the marginal kernel of a DPP on [d]. Let us diagonalize it as
K = V Diag(λi)V

ᵀ. Hough et al. (2005) established that sampling from the DPP
with kernel K can be done by (i) sampling independent Bernoullis Bi, i = 1, . . . , d,
with respective parameters λi, (ii) forming the submatrix V:,B of V corresponding
to columns i such that that Bi = 1, and (iii) sampling from the projection DPP
with kernel

Kproj = V:,BV
ᵀ

:,B.

The only nontrivial step is sampling from a projection DPP, for which we give
pseudocode in Figure 1; see (Hough et al., 2005, Theorem 7) or (Kulesza et al.,
2012, Theorem 2.3) for a proof. For a survey of variants of the algorithm, we
also refer to (Tremblay et al., 2018) and the documentation of the DPPy toolbox2

(Gautier et al., 2018). For our purposes, it is enough to remark that general DPPs
are mixtures of projection DPPs of different ranks, and that the cardinality of a
general DPP is a sum of independent Bernoulli random variables.

ProjectionDPP
(
Kproj = V V ᵀ)

1 Y ←− ∅
2 W ←− V
3 while rk(W ) > 0

4 Sample i from Ω with probability ∝ ‖Wi,:‖22 . Chain rule

5 Y ←− Y ∪ {i}
6 V ←− V⊥ an orthonormal basis of Span(V ∩ e⊥i )

7 return Y

Figure 1: Pseudocode for sampling from a DPP of marginal kernel K.

The next proposition establishes that k-DPPs also are mixtures of projection
DPPs.

Proposition 15 (Kulesza et al. (2012, Section 5.2.2)) Let Y be a random subset of
[d] sampled from a k-DPP with kernel L. We further assume that L is symmetric,
we denote its rank by r and its diagonalization by L = V ΛV ᵀ. Finally, let k ≤ r.
It holds

P(Y = S) =
∑
T⊂[r]
|T |=k

µT

[
1

k!
Det

(
VT,SV

ᵀ
T,S

)]
(40)

where

µT =

∏
i∈T λi∑

U⊂[r]
|U |=k

∏
i∈U λi

. (41)

2http://github.com/guilgautier/DPPy
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Each mixture component in square brackets in (40) is a projection DPP with car-
dinality k. Sampling a k-DPP can thus be done by (i) sampling a multinomial
distribution with parameters (41), and (ii) sampling from the corresponding pro-
jection DPP using the algorithm in Figure 1. The main difference between k-DPPs
and DPPs is that all mixture components in (40) have the same cardinality k. In
particular, projection DPPs are the only DPPs that are also k-DPPs.

X

=

U Σ Vᵀ

(a) SVD of X

Step 1 Step 2

Step 3

Vᵀ =

(b) Sampling k columns according to VS and our DPP

Figure 2: A graphical depiction of the sampling algorithms for volume sampling
(VS) and the DPP with marginal kernel VkV

ᵀ
k . (a) Both algorithms start with an

SVD. (b) In Step 1, VS randomly selects k rows of V ᵀ, while the DPP always picks
the first k rows. Step 2 is the same for both algorithms: jointly sample k columns
of the subsampled V ᵀ, proportionally to their squared volume. Step 3 is simply the
extraction of the corresponding columns of X.

A fundamental example of k-DPP is volume sampling, as defined in Section 3.5.
Its kernel is the Gram matrix of the data L = XᵀX. In general, L is not an
orthogonal projection, so that volume sampling is not a DPP.

4.3 Motivations for column subset selection using projection DPPs

volume sampling has been successfully used for column subset selection, see Sec-
tion 3.5. Our motivation to investigate projection DPPs instead of volume sampling
is twofold.

Following (40), volume sampling can be seen as a mixture of projection DPPs
indexed by T ⊂ [d], |T | = k, with marginal kernels KT = V:,TV

ᵀ
:,T and mixture

weights µT ∝
∏
i∈T σ

2
i . The component with the highest weight thus corresponds

to the k largest singular values, that is, the projection DPP with marginal kernel
K := VkV

ᵀ
k . This paper is about column subset selection using precisely this DPP.

Alternately, we could motivate the study of this DPP by remarking that its marginals
P(i ⊂ Y ) are the k-leverage scores introduced in Section 3.3. Since K is symmetric,
this DPP can be seen as a repulsive generalization of leverage score sampling.

Finally, we recap the difference between volume sampling and the DPP with
kernel K with a graphical depiction in Figure 2 of the two procedures to sample
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from them that we introduced in Section 4.2. Figure 2 is another illustration of the
decomposition of volume sampling as a mixture of projection DPPs.

5 Main Results

In this section, we prove bounds for EDPP ‖X − Πν
SX‖ν under the projection DPP

of marginal kernel K = VkV
ᵀ
k presented in Section 4. Throughout, we compare our

bounds to the state-of-the-art bounds of volume sampling obtained by Deshpande
et al. (2006); see Theorem 8 and Section 3.5. For clarity, we defer the proofs of our
results from this section to Appendix D.

5.1 Multiplicative bounds in spectral and Frobenius norm

Let S be a random subset of k columns of X chosen with probability:

PDPP(S) = Det(VS,[k])
2. (42)

First, without any further assumption, we have the following result.

Proposition 16 Under the projection DPP of marginal kernel VkV
ᵀ
k , it holds

EDPP ‖X −Πν
SX‖2ν ≤ k(d+ 1− k)‖X −ΠkX‖2ν , ν ∈ {2,Fr}. (43)

For the spectral norm, the bound is practically the same as that of volume sampling
(26). However, our bound for the Frobenius norm is worse than (25) by a factor
(d − k). In the rest of this section, we sharpen our bounds by taking into account
the sparsity level of the k-leverage scores and the decay of singular values.

In terms of sparsity, we first replace the dimension d in (43) by the number
p ∈ [d] of nonzero k-leverage scores

p =
∣∣{i ∈ [d],Vi,[k] 6= 0}

∣∣ . (44)

To quantify the decay of the singular values, we define the flatness parameter

β = σ2
k+1

 1

d− k
∑
j≥k+1

σ2
j

−1

. (45)

In words, β ∈ [1, d−k] measures the flatness of the spectrum of X above the cut-off
at k. Indeed, (45) is the ratio of the largest term in a sum to that sum. The closer
β is to 1, the more similar the terms in the sum in the denominator of (45). At the
extreme, β = d− k when σ2

k+1 > 0 while σ2
j = 0, ∀j ≥ k + 2.

Proposition 17 Under the projection DPP of marginal kernel VkV
ᵀ
k , it holds

EDPP ‖X −Π2
SX‖22 ≤ k(p− k)‖X −ΠkX‖22 (46)

and

EDPP ‖X −ΠFr
S X‖2Fr ≤

(
1 + β

p− k
d− k

k

)
‖X −ΠkX‖2Fr. (47)
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The bound in (46) compares favorably with volume sampling (26) since the dimen-
sion d has been replaced by the sparsity level p. For β close to 1, the bound in (47)
is better than the bound (25) of volume sampling since (p− k)/(d− k) ≤ 1. Again,
the sparser the k-leverage scores, the smaller the bounds.

Now, one could argue that, in practice, sparsity is never exact: it can well be
that p = d while there still are a lot of small k-leverage scores. We will demonstrate
in Section 6 that the DPP still performs better than volume sampling in this setting,
which Proposition 17 doesn’t reflect. We introduce two ideas to further tighten the
bounds of Proposition 17. First, we define an effective sparsity level in the vein of
Papailiopoulos et al. (2014), see Section 3.3. Second, we condition the DPP on a
favourable event with controlled probability.

Theorem 18 Let π be a permutation of [d] such that leverage scores are reordered

`kπ1
≥ `kπ2

≥ ... ≥ `kπd . (48)

For δ ∈ [d], let Tδ = [πδ, . . . , πd]. Let θ > 1 and

peff(θ) = min

q ∈ [d]

/ ∑
i≤q

`kπi ≥ k − 1 +
1

θ

 . (49)

Finally, let Aθ be the event {S ∩ Tpeff(θ) = ∅}. Then, on the one hand,

PDPP (Aθ) ≥
1

θ
, (50)

and, on the other hand,

EDPP

[
‖X −Π2

SX‖22
∣∣Aθ] ≤ (peff(θ)− k + 1)(k − 1 + θ) ‖X −ΠkX‖22 (51)

and

EDPP

[
‖X −ΠFr

S X‖2Fr

∣∣Aθ] ≤ (1 + β
(peff(θ) + 1− k)

d− k
(k − 1 + θ)

)
‖X −ΠkX‖2Fr.

(52)

In Theorem 18, the effective sparsity level peff(θ) replaces the sparsity level p of
Proposition 17. The key is to condition on S not containing any index of column
with too small a k-leverage score, that is, the event Aθ. In practice, this is achieved
by rejection sampling: we repeatedly and independently sample S ∼ DPP(K) until
S ∩ Tpeff

(θ) = ∅.
The caveat of any rejection sampling procedure is a potentially large number of

samples required before acceptance. But in the present case, Equation (50) guar-
antees that the expectation of that number of samples is less than θ. The free
parameter θ thus interestingly controls both the “energy” threshold in (49), and the
complexity of the rejection sampling. The approximation bounds suggest picking θ
close to 1, which implies a compromise with the value of peff(θ) that should not be
too large either. We have empirically observed that the performance of the DPP is
relatively insensitive to the choice of θ.
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5.2 Bounds for the excess risk in sketched linear regression

In Section 3.6, we surveyed bounds on the excess risk of ordinary least squares
estimators that relied on a subsample of the columns of X. Importantly, the generic
bound (32) of Mor-Yosef and Avron (2018) has a bias term that depends on the
maximum squared tangent of the principal angles between Span(S) and Span(Vk).
When |S| = k, this quantity is hard to control without making strong assumptions
on the matrix Vk. But it turns out that, in expectation under the same DPP as in
Section 5.1, this bias term drastically simplifies.

Proposition 19 We use the notation of Section 3.6. Under the projection DPP
with marginal kernel VkV

ᵀ
k , it holds

EDPP

[
E(wS)

]
≤
(
1 + k(p− k)

)‖w∗‖2σ2
k+1

N
+
vk

N
. (53)

The sparsity level p appears again in the bound (53): The sparser the k-leverage
scores distribution, the smaller the bias term. The bound (53) only features an
additional (1 + k(p − k)) factor in the bias term, compared to the bound obtained
by Mor-Yosef and Avron (2018) for PCR, see Proposition 12. Loosely speaking, this
factor is to be seen as the price we accept to pay in order to get more interpretable
features than principal components in the linear regression problem. Finally, a
natural question is to investigate the choice of k to minimize the bound in (53), but
this is out of the scope of this paper.

As in Theorem 18, for practical purposes, it can be desirable to bypass the need
for the exact sparsity level p in Proposition 19. We give a bound that replaces p
with the effective sparsity level peff(θ) introduced in (49).

Theorem 20 Using the notation of Section 3.6 for linear regression, and of Theo-
rem 18 for leverage scores and their indices, it holds

EDPP

[
E(ŵS)

∣∣Aθ] ≤ [1 +
(
k − 1 + θ

)(
peff(θ)− k + 1

)]‖w∗‖2σ2
k+1

N
+
vk

N
. (54)

In practice, the same rejection sampling routine as in Theorem 18 can be used to
sample conditionally on Aθ. Finally, to the best of our knowledge, bounding the
excess risk in linear regression has not been investigated under volume sampling.

In summary, we have obtained two sets of results. We have proven a set of
multiplicative bounds in spectral and Frobenius norm for EDPP ‖X − Πν

SX‖ν , ν ∈
{2,Fr}, under the projection DPP of marginal kernelK = VkV

ᵀ
k , see Propositions 16

& 17 and Theorem 18. As far as the linear regression problem is concerned, we have
proven bounds for the excess risk in sketched linear regression, see Proposition 19
and Theorem 20.

6 Numerical experiments

In this section, we empirically compare our algorithm to the state of the art in column
subset selection. In Section 6.1, the projection DPP with kernel K = VkV

ᵀ
k and
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volume sampling are compared on toy datasets. In Section 6.2, several column subset
selection algorithms are compared to the projection DPP on four real datasets from
genomics and text processing. In particular, the numerical simulations demonstrate
the favorable influence of the sparsity of the k-leverage scores on the performance of
our algorithm both on toy datasets and real datasets. Finally, we packaged all CSS
algorithms in this section in a Python toolbox3.

6.1 Toy datasets

This section is devoted to comparing the expected approximation error E‖X −
ΠFr
S X‖2Fr for the projection DPP and volume sampling. We focus on the Frobenius

norm to avoid effects to due different choices of the projection ΠFr
S , see (4).

In order to be able to evaluate the expected errors exactly, we generate matrices
of low dimension (d = 20) so that the subsets of [d] can be exhaustively enumerated.
Furthermore, to investigate the role of leverage scores and singular values on the
performance of CSS algorithms, we need to generate datasets X with prescribed
spectra and k-leverage scores.

6.1.1 Generating toy datasets

Recall that the SVD of X ∈ RN×d reads X = UΣV ᵀ, where Σ is a diagonal
matrix and U and V are orthogonal matrices. To sample a matrix X, U is first
drawn from the Haar measure of ON (R), then Σ is chosen among a few deterministic
diagonal matrices that illustrate various spectral properties. Sampling the matrix
V is trickier. The first k columns of V are structured as follows: the number of
non vanishing rows of Vk is equal to p and the norms of the nonvanishing rows are
prescribed by a vector `. By considering the matrix K = VkV

ᵀ
k , generating V

boils down to the simulation of an Hermitian matrix with prescribed diagonal and
spectrum (in this particular case the spectrum is included in {0, 1}). For this reason,
we propose an algorithm that takes as input a leverage scores profile ` and a spectrum
σ2, and outputs a corresponding random orthogonal matrixX; see Appendix E. This
algorithm is a randomization4 of the algorithm proposed by Fickus, Mixon, Poteet,
and Strawn (2011b). Finally, the matrix Vk ∈ Rd×k is completed by applying the
Gram-Schmidt procedure to d− k additional i.i.d. unit Gaussian vectors, resulting
in a matrix V ∈ Rd×d. Figure 3 summarizes the algorithm proposed to generate
matrices X with a k-leverage scores profile ` and a sparsity level p.

6.1.2 volume sampling vs projection DPP

This section sums up the results of numerical simulations on toy datasets. The
number of observations is fixed to N = 100, the dimension to d = 20, and the
number of selected columns to k ∈ {3, 5}. Singular values of are chosen from the
following profiles: a spectrum with a cutoff called the projection spectrum,

Σk=3,proj = 100
3∑
i=1

eie
ᵀ
i + 0.1

20∑
i=4

eie
ᵀ
i ,

3http://github.com/AyoubBelhadji/CSSPy
4http://github.com/AyoubBelhadji/FrameBuilder
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MatrixGenerator
(
`,Σ)

1 Sample U from the Haar measure ON (R).

2 Pick Σ a diagonal matrix.

3 Pick p ∈ [k + 1 : d].

4 Pick a k-leverage-scores profile ` ∈ Rd+ with a sparsity level p.

5 Generate a matrix Vk with the k-leverage-scores profile `.

6 Extend the matrix Vk to an orthogonal matrix V .

7 return X ←− UΣV ᵀ

Figure 3: The pseudocode of the algorithm generating a matrix X with prescribed
profile of k-leverage scores.

Σk=5,proj = 100

5∑
i=1

eie
ᵀ
i + 0.1

20∑
i=6

eie
ᵀ
i .

and a smooth spectrum

Σk=3,smooth = 100e1e
ᵀ
1 + 10e2e

ᵀ
2 + e3e

ᵀ
3 + 0.1

20∑
i=4

eie
ᵀ
i ,

Σk=5,smooth = 10000e1e
ᵀ
1 + 1000e2e

ᵀ
2 + 100e3e

ᵀ
3 + 10e4e

ᵀ
4 + e5e

ᵀ
5 + 0.1

20∑
i=6

eie
ᵀ
i .

Note that all profiles satisfy β = 1; see (45). In each experiment, for each spec-
trum, we sample 200 independent leverage scores profiles that satisfy the sparsity
constraints from a Dirichlet distribution with concentration parameter 1 and equal
means. For each leverage scores profile, we sample a matrix X from the algorithm
in Appendix E.

Figure 4 compares, on the one hand, the theoretical bounds in Theorem 8 for
volume sampling and Proposition 17 for the projection DPP, to the numerical eval-
uation of the expected error for sampled toy datasets on the other hand. The x-axis
indicates various sparsity levels p. The unit on the y-axis is the error of PCA. There
are 400 crosses on each subplot: each of the 200 matrices appears once for both
algorithms. The 200 matrices are spread evenly across the values of p.

The VS bounds in (k + 1) are independent of p. They appear to be tight for
projection spectra, and looser for smooth spectra. For the projection DPP, the
bound (k + 1)p−kd−k is linear in p, and can be much lower than the bound of VS. The
numerical evaluations of the error also suggest that this DPP bound is tight for a
projection spectrum, and looser in the smooth case. In both cases, the bound is
representative of the actual behavior of the algorithm.

The bottom row of Figure 4 displays the same results for identity spectra, again
for k = 3 and k = 5. This setting is extremely nonsparse and represents an arbi-
trarily bad scenario where even PCA would not make much practical sense. Both
VS and DPP sampling perform constantly badly, and all crosses superimpose at
y = 1, which indicates the PCA error. In this particular case, our linear bound in
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(d) Σ5,proj, k = 5
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(b) Σ3,smooth, k = 3
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(e) Σ5,smooth, k = 5
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(d) I20, k = 3
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(f) I20, k = 5

Figure 4: Realizations and bounds for E‖X −ΠFr
S X‖2Fr as a function of the sparsity

level p.
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Figure 5: Realizations and bounds for E‖X −ΠFr
S X‖2Fr as a function of the effective

sparsity level peff(1
2).
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Figure 6: Realizations and bounds for the avoiding probability P(S ∩Tpeff(θ) = ∅) in
Theorem 18 as a function of θ.

p is not representative of the actual behavior of the error. This observation can be
explained for volume sampling using Theorem 25, which states that the expected
squared error under VS is Schur-concave, and is thus minimized for flat spectra. We
have no similar result for the projection DPP.

Figure 5 provides a similar comparison for the two smooth spectra Σ3,smooth

and Σ5,smooth, but this time using the effective sparsity level peff(θ) introduced in
Theorem 18. We use θ = 1/2; qualitatively, we have observed the results to be robust
to the choice of θ. The 200 sampled matrices are now unevenly spread across the
x-axis, since we do not control peff(θ). Note finally that the DPP here is conditioned
on the event {S ∩ Tpeff(θ) = ∅}, and sampled using an additional rejection sampling
routine as detailed below Theorem 18.

For the DPP, the bound is again linear on the effective sparsity level peff(1
2),

and can again be much lower than the VS bound. The behavior of both VS and
the projection DPP are similar to the exact sparsity setting of Figure 4: the DPP
has uniformly better bounds and actual errors, and the bound reflects the actual
behavior, if relatively loosely when peff(1/2) is large.
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Figure 6 compares the theoretical bound in Theorem 18 for the avoiding proba-
bility P(S ∩Tpeff(θ) = ∅) with 200 realizations, as a function of θ. More precisely, we
drew 200 matricesX, and then for eachX, we computed exactly – by enumeration –
the value P(S ∩ Tpeff(θ) = ∅) for all values of θ. The only randomness is thus in the
sampling of X, not the evaluation of the probability. The results suggest again that
the bound is relatively tight.

6.2 Real datasets

This section compares the empirical performances of several column subset selection
algorithms on the datasets in Table 2.

Dataset Application domain N × d References

Colon genomics 62× 2000 (Alon et al., 1999)

Leukemia genomics 72× 7129 (Golub et al., 1999)

Basehock text processing 1993× 4862 (Li et al., 2017b)

Relathe text processing 1427× 4322 (Li et al., 2017b)

Table 2: Datasets used in the experimental section.

These datasets are illustrative of two extreme situations regarding the sparsity
of the k-leverage scores. For instance, the dataset Basehock has a very sparse profile
of k-leverage scores, while the dataset Colon has a quasi-uniform distribution of
k-leverage scores, see Figures 7 (a) & (b).

We consider the following algorithms presented in Section 3: 1) the projection
DPP with marginal kernel K = VkV

ᵀ
k , 2) volume sampling, using the implementa-

tion proposed by Kulesza and Taskar (2011), 3) deterministically picking the largest
k-leverage scores, 4) pivoted QR as in (Golub, 1965), although the only known
bounds for this algorithm are for the spectral norm, and 5) double phase, with c
manually tuned to optimize the performance, usually around c ≈ 10k.

The rest of Figure 7 sums up the empirical results of the previously described
algorithms on the Colon and Basehock datasets. Figures 7 (c) & (d) illustrate the
results of the five algorithms in the following setting. An ensemble of 50 subsets are
sampled from each algorithm. We give the corresponding boxplots for the Frobenius
errors, on Colon and Basehock respectively. We observe that the increase in perfor-
mance using projection DPP compared to volume sampling is more important for
the Basehock dataset than for the Colon dataset: this improvement can be explained
by the sparsity of the k-leverage scores as predicted by our approximation bounds.
Deterministic methods (largest leverage scores and pivoted QR) perform well com-
pared with other algorithms on the Basehock dataset; in contrast, they display very
bad performances on the Colon dataset. The double phase algorithm has the best
results on both datasets. However its theoretical guarantees cannot predict such
an improvement, as noted in Section 3. The performance of the projection DPP
is comparable to those Double Phase and makes it a close second, with a slightly
larger gap on the Colon dataset. We emphasize that our approximation bounds are
sharp compared to numerical observations.

Figures 7 (e) & (f) show results obtained using a classical boosting technique
for randomized algorithms. We repeat 20 times: sample 50 subsets and take the
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best subset selection. Displayed boxplots are for these 20 best results. The same
comments apply as without boosting.

Figure 8 calls for similar comments, comparing this time the datasets Relathe
(with concentrated profile of k-leverage scores) and Leukemia (with almost uniform
profile of k-leverage scores).

6.3 Discussion

The performance of our algorithm has been compared to state-of-the-art column
subset selection algorithms. We emphasize that the theoretical performances of
the proposed approach take into account the sparsity of the k-leverage scores as in
Proposition 17 or their fast decrease as in Proposition 18, and that the bounds are in
good agreement with the actual behavior of the algorithm. In contrast, state-of-the-
art algorithms like volume sampling have looser bounds and worse performances, or
like double phase display great performance but have overly pessimistic theoretical
bounds.

7 Conclusion

We have proposed, analyzed, and empirically investigated a new randomized column
subset selection (CSS) algorithm. The crux of our algorithm is a discrete determi-
nantal point process (DPP) that selects a diverse set of k columns of a matrix X.
This DPP is tailored to CSS through its parametrization by the marginal kernel
K = VkV

ᵀ
k , where Vk are the first k right singular vectors of the matrix X. This

specific kernel is related to volume sampling, the state-of-the-art for CSS guarantees
in Frobenius and spectral norm.

We have identified generic conditions on the matrixX under which our algorithm
has bounds that improve on volume sampling. In particular, our bounds highlight
the importance of the sparsity and the decay of the k-leverage scores on the approx-
imation performance of our algorithm. This resonates with the compressed sensing
literature. We have further numerically illustrated this relation to the sparsity and
decay of the k-leverage scores using toy and real datasets. In these experiments, our
algorithm performs comparably to the so-called double phase algorithm, which is the
empirical state-of-the-art for CSS despite more conservative theoretical guarantees
than volume sampling. Thus, our DPP sampling inherits both favorable bounds
and increased empirical performance under sparsity or fast decay of the k-leverage
scores.

In terms of computational cost, our algorithms scale with the cost of finding the
k first right singular vectors, which is currently the main bottleneck. In the line
of (Drineas et al., 2012) and (Boutsidis et al., 2011), where the authors estimates
the k-leverage scores using random projections, we plan to investigate the impact of
random projections to estimate the full matrix K on the approximation guarantees
of our algorithms.

Although often studied as an independent task, in practice CSS is often a prelude
to a learning algorithm. We have considered linear regression and we have given a
bound on the excess risk of a regression performed on the selected columns only. In
particular, sparsity and decay of the k-leverage scores are again involved: the more
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Figure 7: Comparison of several column subset selection algorithms for two datasets:
Basehock and Colon.
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Figure 8: Comparison of several column subset selection algorithms for two datasets:
Relathe and Leukemia.
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localized the k-leverage scores, the smaller the excess risk bounds. Such an analysis
of the excess risk in regression highlights the interest of the proposed approach
since it would be difficult to conduct for both volume sampling or the double phase
algorithms. Future work in this direction includes investigating the importance of
the sparsity of the k-leverage scores on the performance of other learning algorithms
such as spectral clustering or support vector machines.

Finally, in our experimental section, we used an adhoc randomized algorithm
inspired by (Fickus et al., 2011b) to sample toy datasets with a prescribed profile of
k-leverage scores. An interesting question would be to characterize the distribution
of the output of our algorithm. In particular, sampling from the uniform measure
on the set of symmetric matrices with prescribed spectrum and leverage scores is
still an open problem (Dhillon et al., 2005).
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N. Tremblay, S. Barthelmé, and P.-O. Amblard. Optimized algorithms to sample
determinantal point processes. arXiv preprint arXiv:1802.08471, 2018.

29

http://doi.acm.org/10.1145/2623330.2623698


A Another interpretation of the k-leverage scores

For i ∈ [d], the SVD of X yields

X:,i =

r∑
`=1

Vi,`f`, (55)

where f` = σ`U:,`, ` ∈ [r], are orthogonal. Thus

Xᵀ
:,ifj = Vi,j‖fj‖2 = Vi,jσ

2
j . (56)

Then
Vi,j
‖X:,i‖

=
Xᵀ

:,ifj

σj‖X:,i‖‖fj‖
=:

cos ηi,j
σj

, (57)

where ηi,j ∈ [0, π/2] is the angle formed by X:,i and fj . Finally, (56) also yields

`ki = ‖X:,i‖2
k∑
j=1

cos2 ηi,j
σ2
j

. (58)

Compared to the length-square distribution in Section 3.2, k-leverage scores thus
favour columns that are aligned with the principal features. The weight 1/σ2

j corrects
the fact that features associated with large singular values are typically aligned with
more columns. One could also imagine more arbitrary weights wj/σ

2
j in lieu of 1/σ2

j ,
or, equivalently, modified k-leverage scores

`ki (w) =
k∑
j=1

wjV
2
i,j .

However, the projection DPP with marginal kernel K = VkV
ᵀ
k that we study in this

paper is invariant to such reweightings. Indeed, for any S ⊂ [d] of cardinality k,

Det
[
VS,[k] Diag(w[k])V

ᵀ
[k],S

]
= Det(VS,[k])

2
∏
j∈[k]

w2
j ∝ Det(VS,[k])

2. (59)

Such a scaling is thus not a free parameter in K.

B Majorization and Schur convexity

This section recalls some definitions and results from the theory of majorization
and the notions of Schur-convexity and Schur-concavity. We refer to (Marshall
et al., 2011) for further details. In this section, a subset D ⊂ Rd is a symmetric
domain if D is stable under coordinate permutations. Furthermore, a function f
defined on a symmetric domain D is called symmetric if it is stable under coordinate
permutations.
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Definition 21 Let p, q ∈ Rd+. p is said to majorize q according to Schur order and
we note q ≺S p if 

qi1 ≤ pj1
qi1 + qi2 ≤ pj1 + pj2
...
d−1∑
k=1

qik ≤
d−1∑
k=1

pjk

d∑
k=1

qik =
d∑

k=1

pjk

(60)

where p, q are reordered so that pid ≤ ... ≤ pi1 and qjd ≤ ... ≤ qj1.

The majorization order has an algebraic characterization using doubly stochastic
matrices first proven by Hardy, Littlewood, and Polya in 1929.

Proposition 22 (Theorem B.2. Marshall et al., 2011) The vector p majorizes
the vector q if and only if there exists a d× d doubly stochastic matrix Π such that
q = pΠ.

Example 1 Let p = (3, 0, 0) and q = (1, 1, 1). We check easily that p majorizes q.
Note that we can ’redistribute’ p over q as follows: q = 1

3Jp, where J is a 3 × 3
matrix of ones. The matrix Π = 1

3J is a doubly stochastic matrix.

Schur order compares two vectors using multiple inequalities. To avoid such cum-
bersome calculations, a scalar metric of inequality in a vector is desired. This is
possible using the notion of Schur-convex/concave function.

Definition 23 Let f be a function on a symmetric domain D ⊂ Rd+.
f is said to be Schur convex if

∀p, q ∈ Rd+, q ≺S p =⇒ f(q) ≤ f(p). (61)

f is said to be Schur concave if

∀p, q ∈ Rd+, q ≺S p =⇒ f(q) ≥ f(p). (62)

Proposition 24 (Theorem A.3, Marshall et al., 2011) Let f be a symmetric
function defined on Rd+, let D be a permutation-symmetric domain in Rd+ and suppose
that

∀xi, xj ∈ R+, (xi − xj)(
∂f

∂xi
− ∂f

∂xj
) > 0 (63)

then
∀p, q ∈ D, q ≺S p =⇒ f(q) ≤ f(p), (64)

and f is Schur convex.

We get a similar result for Schur concavity by switching the orders in the previous
proposition.

Theorem 25 (Theorem 3.1, Guruswami and Sinop, 2012) Let X ∈ RN×d,
and let σ ∈ Rd the vector containing the squares of the singular values of X. The
function

σ 7→ EVS‖X −ΠSX‖2Fr = (k + 1)
ek(σ)

ek−1(σ)
(65)

is Schur-concave.
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C Principal angles and the Cosine Sine decomposition

C.1 Principal angles

This section surveys the notion of principal angles between subspaces, see (Golub
and Van Loan, 1996, Section 6.4.3) for details.

Definition 26 Let P,Q be two subspaces in Rd. Let p = dimP and q = dimQ and
assume that q ≤ p. To define the vector of principal angles θ ∈ [0, π/2]q between P
and Q, let

cos(θ1) = max

{
xTy

‖x‖‖y‖
; x ∈ P,y ∈ Q

}
(66)

be the cosine of the smallest angle between a vector of P and a vector of Q, and let
(x1,y1) ∈ P × Q be a pair of vectors realizing the maximum. For i ∈ [2, q], define
successively

cos(θi) = max

{
xTy

‖x‖‖y‖
; x ∈ P,y ∈ Q;x ⊥ xj ,y ⊥ yj ,∀j ∈ [1 : i− 1]

}
(67)

and denote (xi,yi) ∈ P ×Q such that cos(θi) = xᵀ
i yi .

Note that although the so-called principal vectors (xi,yi)i∈[q] are not uniquely de-
fined by (66) and (67), the principal angles θ are uniquely defined, see (Björck and
Golub, 1973). The following result confirms this, while also providing a way to
compute θ.

Proposition 27 (Björck and Golub, 1973, Ben-Israel, 1992) Let P and Q and
θ be as in Definition 26. Let P ∈ Rd×p, Q ∈ Rd×q be two orthogonal matrices, whose
columns are orthonormal bases of P and Q, respectively. Then

∀i ∈ [q], cos(θi) = σi(Q
ᵀP ). (68)

In particular

Vol2q(Q
ᵀP ) =

∏
i∈[q]

cos2(θi). (69)

An important case for our work arises when q = k, Q = V ∈ Rd×k, and P = S ∈
Rd×k is a sampling matrix. The left-hand side of (69) then equals Det(V:,S)2.

C.2 The Cosine Sine decomposition

The Cosine Sine (CS) decomposition is useful for the study of the relative position
of two subspaces. It generalizes the notion of cosine, sine and tangent to subspaces.

Proposition 28 (Golub and Van Loan, 1996) Let q ≤ d/2 and Q =

[
Q1

Q2

]
be a d× q orthogonal matrix, where Q1 ∈ Rq×q and Q2 ∈ R(d−q)×q. Assume that Q1

is non singular, then there exist orthogonal matrices Y ∈ Rd×q and

W =

[
W1 0

0 W2

]
∈ Rd×d, (70)
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and a matrix

Σ =

 CS
0

 ∈ Rd×q, (71)

such that
Q = WΣY T , (72)

where W1 ∈ Rq×q and W2 ∈ Rd−q×d−q, and C,S ∈ Rq×q are diagonal matrices
satisfying the identity C2 +S2 = Iq. In particular, each block Qi factorizes as

Q1 =W1 C Y T

Q2 =W2

[
S
0

]
Y T .

(73)

The CS decomposition is defined for every orthogonal matrix. An important case
is when Q is the product of an orthogonal matrix V ∈ Rd×d and a sampling matrix
S ∈ Rd×k, that is Q = V ᵀS.

Corollary 29 Let V ∈ Rd×d be an orthogonal matrix and S ∈ Rd×k be a sampling
matrix. Let

Q = V ᵀS =

[
V ᵀ
k S

V ᵀ
d−kS

]
(74)

be a d×k orthogonal matrix, with Det(V ᵀ
k S)2 > 0. Let further ZS = V ᵀ

d−kS(V ᵀ
k S)−1.

Then
Tr(ZSZ

ᵀ
S) ≤

∑
i∈[k]

tan2(θi(S)). (75)

Proof In the case k ≤ d/2, Proposition 28 applied to the matrix Q = V ᵀS with
Q1 = V ᵀ

k S and Q2 = V ᵀ
d−kS yields

Q1 =W1 C Y T (76)

Q2 =W2

[
S
0

]
Y T . (77)

Thus, the diagonal matrix C contains the singular values of the matrix V ᵀ
k S that are

cosines of the principal angles (θi(S))i∈[k] between Span(Vk) and Span(S) thanks to
Proposition 27.
The identity C2 +S2 = Ik and the fact that θi(S) ∈ [0, π2 ] imply that the (diagonal)
elements of S are equal to the sines of the principal angles between Span(Vk) and
Span(S). Let T = S C−1. T ∈ Rk×k is a diagonal matrix containing the tangents of
the principal angles (θi(S))i∈[k]. Using (76), we get

ZS = V ᵀ
d−kS(V ᵀ

k S)−1 = W2

[
S
0

]
Y ᵀY C−1W ᵀ

1 = W2

[
S
0

]
C−1W ᵀ

1 = W2

[
S C−1

0

]
W ᵀ

1 .

(78)
Then,

Tr(ZSZ
ᵀ
S) = Tr(W2

[
T 2 0

0 0

]
W ᵀ

2 ) =
∑
i∈[k]

tan2(θi(S)). (79)
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D Proofs

D.1 Technical lemmas

We start with two useful emmas borrowed from the literature.

Lemma 30 (Lemma 3.1, Boutsidis et al., 2011) Let S ⊂ [d], then

‖X −Πν
S,kX‖2ν ≤ ‖E(I − PS)‖2ν , ν ∈ {2,Fr}, (80)

where E = X −ΠkX and PS = S(V ᵀ
k S)−1V ᵀ

k . Furthermore,

‖X −Πν
S,kX‖2ν ≤

1

σ2
k(VS,[k])

‖X −ΠkX‖2ν , ν ∈ {2,Fr}. (81)

The following lemma was first proven by Deshpande et al., 2006, and later rephrased.

Lemma 31 (Lemma 11, Deshpande and Rademacher, 2010) Let V ∈ Rk×d,
r = rk(V ) and ` ∈ [1 : r]. Then∑

S⊂[d],|S|=`

e`(Σ(V:,S)2) = e`(Σ(V )2) (82)

where e` is the `-th elementary symmetric polynomial on r variables, see Section 2.

Elementary symmetric polynomials play an important role in the proof of Propo-
sition 18, in particular their interplay with the Schur order; see Appendix B for
definitions.

Lemma 32 Let φ, ψ : Rd+ → R+ be defined by

φ : σ 7→ ek−1(σ)

ek(σ)
(83)

and
ψ : σ 7→ ek(σ). (84)

Then both functions are symmetric, φ is Schur-convex, and ψ is Schur-concave.

Proof [of Lemma 32] Let i, j ∈ [r], i 6= j. Let σi, σj ∈ R+, it holds

(σi − σj)(∂iφ(σ)− ∂jφ(σ)) = (σi − σj)(−
1

σ2
i

+
1

σ2
j

)

=
(σi − σj)2(σi + σj)

σ2
i σ

2
j

≥ 0,

so that φ is Schur-convex by Proposition 24. Similarly,

(σi − σj)(∂iψ(σ)− ∂jψ(σ)) = (σi − σj)(
∏
` 6=i

σ` −
∏
`6=j

σ`)

= −(σi − σj)2
∏
`6=i,j

σ` ≥ 0,

so that ψ is Schur-concave by Proposition 24.

Elementary symmetric polynomials also interact nicely with “marginalizing”
sums.
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Lemma 33 Let V be a real k×d matrix and let r = rk(V ). Denote by p the number
of non zero columns of V . Then for all k ≤ r + 1,∑

S⊂[d],|S|=k
Volk(V:,S)2>0

∑
T⊂[S]
|T |=k−1

ek−1(Σ(V:,T )2) ≤ (p− k + 1)ek−1(Σ(V )2). (85)

A fortiori, ∑
S⊂[d],|S|=k

Volk(V:,S)2>0

∑
T⊂[S]
|T |=k−1

ek−1(Σ(V:,T )2) ≤ (d− k + 1)ek−1(Σ(V )2). (86)

Proof [of Lemma 33] For T ⊂ [d], |T | = k − 1,

Ω1(T ) = {S ⊂ [d] : |S| = k, T ⊂ S, ∀i ∈ S, V:,i 6= 0}
Ω2(T ) =

{
S ⊂ [d] : |S| = k, T ⊂ S,Volk(V:,S)2 > 0

}
.

Note that Ω2(T ) ⊂ Ω1(T ) so that∑
S⊂[d],|S|=k

Volk(V:,S)2>0

∑
T⊂S
|T |=k−1

ek−1(Σ(V:,T )2) =
∑
T⊂[d]
|T |=k−1

∑
S∈Ω2(T )

ek−1(Σ(V:,T )2)

≤
∑
T⊂[d]
|T |=k−1

∑
S∈Ω1(T )

ek−1(Σ(V:,T )2).

The set Ω1(T ) has at most (p− k + 1) elements so that∑
T⊂[d]
|T |=k−1

∑
S∈Ω1(T )

ek−1(Σ(V:,T )2) ≤ (p− k + 1)
∑
T⊂[d]
|T |=k−1

ek−1(Σ(V:,T )2). (87)

Lemma 31 for ` = k − 1 further yields

(p− k + 1)
∑
T⊂[d]
|T |=k−1

ek−1(Σ(V:,T )2) ≤ (p− k + 1) ek−1(Σ(V )2). (88)

D.2 Proof of Proposition 16

First, Lemma 30 yields∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −Πν

SX‖2ν ≤
∑

S⊂[d],|S|=k

1

σ2
k(VS,[k])

Det(VS,[k])
2 ‖X −ΠkX‖2ν

= ‖X −ΠkX‖2ν
∑

S⊂[d],|S|=k

k−1∏
`=1

σ2
` (VS,[k]), (89)
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where the last equality follows from

Det(VS,[k])
2 =

k∏
`=1

σ2
` (VS,[k]). (90)

By definition of the polynomial ek−1, it further holds

k−1∏
`=1

σ2
` (VS,[k]) ≤ ek−1(Σ(VS,[k])

2), (91)

so that (89) leads to∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −Πν

SX‖2ν ≤ ‖X −ΠkX‖2ν
∑

S⊂[d],|S|=k

ek−1(Σ(VS,[k])
2).

(92)

Now, Lemma 31 applied to the matrix V ᵀ
S,[k] gives

ek−1(Σ(VS,[k])
2) =

∑
T⊂S,|T |=k−1

ek−1(Σ(VT,[k])
2), (93)

Therefore, Lemma 33 yields∑
S⊂[d],|S|=k

ek−1(Σ(VS,[k])
2) ≤ (d− k + 1)

∑
T⊂[d],|T |=k−1

ek−1(Σ(VT,[k])
2). (94)

Using Lemma 31 and the fact that Vk is orthogonal, we finally write∑
T⊂[d],|T |=k−1

ek−1(Σ(VT,[k])
2) = ek−1(Σ(Vk)

2) = k. (95)

Plugging (95) into (94), and then into (92) concludes the proof of Proposition 16.

D.3 Proof of Proposition 17

We first prove the Frobenius norm bound, which requires more work. The spectral
bound is easier and uses a subset of the arguments for the Frobenius norm.

D.3.1 Frobenius norm bound

Recall that E = X −ΠkX. We start with Lemma 30:

‖X −ΠFr
S X‖2Fr ≤ ‖E(I − PS)‖2Fr

≤ ‖E‖2Fr + Tr(EᵀEPSP
ᵀ
S )− 2 Tr(P ᵀ

SE
ᵀE).

(96)

Since EᵀE = Vr−kΣ
2
r−kV

ᵀ
r−k and PS = S(V ᵀ

k S)−1V ᵀ
k ,

Tr(P ᵀ
SE

ᵀE) = Tr

(
Vk ((V ᵀ

k S)ᵀ)−1SᵀVr−kΣr−kV
ᵀ
r−k

)
= Tr

(
V ᵀ
r−kVk ((V ᵀ

k S)ᵀ)−1SᵀVr−kΣr−k

)
= 0,

(97)
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where the last equality follows from V ᵀ
r−kVk = 0. Therefore, (96) becomes

‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr + Tr(EᵀEPSP

ᵀ
S ). (98)

Taking expectations,

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr +

∑
S⊂[d],|S|=k

Det(VS,[k])
2 Tr(EᵀEPSP

ᵀ
S ). (99)

Proposition 27 expresses Det(VS,[k])
2 as a function of the principal angles (θi(S))

between Span(Vk) and Span(S), namely

Det(VS,[k])
2 =

∏
i∈[k]

cos2(θi(S)). (100)

The remainder of the proof is in two steps. First, we bound the second factor in
the sum in the right-hand side of (99) with a similar geometric expression. This
allows trigonometric manipulations. Second, we work our way back to elementary
symmetric polynomials of spectra, and we conclude after some simple algebra.

First, for S ⊂ [d], |S| = k, let

ZS = V ᵀ
d−kS(V ᵀ

k S)−1 = V ᵀ
d−kPSVk.

It allows us to write

Tr(EᵀEPSP
ᵀ
S ) = Tr(Vd−kΣ

2
d−kV

ᵀ
d−kPSP

ᵀ
S ) = Tr(Σ2

r−kZSZ
ᵀ
S). (101)

However, for real symmetric matrices A and B with the same size, a simple diago-
nalization argument yields

Tr(AB) ≤ ‖A‖2 Tr(B), (102)

so that
Tr(EᵀEPSP

ᵀ
S ) = Tr(Σ2

r−kZSZ
ᵀ
S) ≤ σ2

k+1 Tr(ZSZ
ᵀ
S). (103)

In Appendix C, we characterize Tr(ZSZ
ᵀ
S) using principal angles, see (75). This

reads
Tr(ZSZ

ᵀ
S) =

∑
j∈[k]

tan2(θj(S)). (104)

Combining (99), (103), (100), and (104), we obtain the following intermediate bound

EDPP ‖X−ΠFr
S X‖2Fr ≤ ‖E‖2Fr+σ

2
k+1

∑
S⊂[d],|S|=k

∏
i∈[k]

cos2(θi(S))

∑
j∈[k]

tan2(θj(S))

 .
(105)

Distributing the sum and using trigonometric identities, the general term of the sum
in (105) becomes∏
i∈[k]

cos2(θi(S))

∑
j∈[k]

tan2(θj(S))

 =
∑
i∈[k]

(1− cos2(θi(S)))
∏

j∈[k],j 6=i

cos2(θj(S))

=
∑
i∈[k]

∏
j∈[k],j 6=i

cos2(θj(S))−
∑
i∈[k]

∏
j∈[k]

cos2(θj(S)).

(106)
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The (cos(θj(S)))j∈[k] are the singular values of the matrix VS,[k] so that

∑
i∈[k]

∏
j∈[k],j 6=i

cos2(θj(S)) = ek−1(Σ(VS,[k])
2), (107)

and ∏
j∈[k]

cos2(θj(S)) = ek(Σ(VS,[k])
2). (108)

Back to (106), one gets∏
i∈[k]

cos2(θi(S))

∑
j∈[k]

tan2(θj(S))

 = ek−1(Σ(VS,[k])
2)−

∑
i∈[k]

ek(Σ(VS,[k])
2)

= ek−1(Σ(VS,[k])
2)− kek(Σ(VS,[k])

2). (109)

Thus, plugging (109) back into the intermediate bound (105), it comes

EDPP ‖X −ΠFr
S X‖2Fr

≤ ‖E‖2Fr + σ2
k+1

∑
S⊂[d]
|S|=k

ek−1(Σ(VS,[k])
2)− k

∑
S⊂[d]
|S|=k

ek(Σ(VS,[k])
2)

 .
(110)

Using Lemma 31 twice, it comes

EDPP ‖X −ΠFr
S X‖2Fr

≤ ‖E‖2Fr + σ2
k+1

∑
S⊂[d]
|S|=k

∑
T⊂S
|T |=k−1

ek−1(Σ(VT,[k])
2)− kek(Σ(V:,[k])

2)

 .
(111)

Lemmas 33 and the identities ek−1(Σ(V:,[k])
2) = k and ek(Σ(V:,[k])

2) = 1 allow
us to conclude

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr + σ2

k+1

[
(p− k + 1)ek−1(Σ(V:,[k])

2)− k
]

(112)

= ‖E‖2Fr + σ2
k+1(p− k)k. (113)

By definition of β (45), we have proven (47), i.e.,

EDPP ‖X −ΠFr
S X‖2Fr ≤ ‖E‖2Fr

(
1 + β

p− k
d− k

k

)
.
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D.3.2 Spectral norm bound

The bound in spectral norm is easier to derive. We start from Lemma 30:

EDPP ‖X −Π2
SX‖22 =

∑
S⊂[d],|S|=k

Det(VS,[k])
2‖X −ΠSX‖22 (114)

≤ ‖E‖22
∑

S⊂[d],|S|=k
Det(VS,[k])

2>0

k−1∏
`=1

σ2
` (VS,[k]) (115)

By definition of ek−1, it comes

EDPP ‖X −Π2
SX‖22 ≤ ‖E‖22

∑
S⊂[d],|S|=k

Det(VS,[k])
2>0

ek−1(Σ(VS,[k])
2)

≤ (p− k + 1) ek−1(Σ(V:,[k])
2) ‖E‖22

= (p− k + 1) k ‖E‖22,

where we again used the double sum trick of (111) and Lemma 33.

D.4 Proof of Theorem 18

We start with a lemma on evaluations of elementary symmetric polynomials on
specific sequences.

Lemma 34 Let λ ∈ [0, 1]k such that
λ1 ≥ · · · ≥ λk,

Λ =
k∑
i=1

λi ≥ k − 1 + 1
θ .

(116)

Then, with the functions φ, ψ introduced in Lemma 32,{
ψ(λ) ≥ 1

θ
,

φ(λ) ≤ k − 1 + θ.
(117)

Proof Let λ̂ = (1, ..., 1,Λ− k + 1) ∈ Rk. Then

λ1 ≤ λ̂1

λ1 + λ2 ≤ λ̂1 + λ̂2

...
k−1∑
i=1

λi ≤
k−1∑
i=1

λ̂i

k∑
i=1

λi =
k∑
i=1

λ̂i

(118)

so that, according to Definition 21,

λ ≺S λ̂. (119)
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Lemma 32 ensures the Schur-convexity of φ and the Schur-concavity of ψ, so that

φ(λ) ≤ φ(λ̂) = k − 1 +
1

Λ− k + 1
≤ k − 1 + θ,

and

ψ(λ) ≥ ψ(λ̂) = Λ− k + 1 ≥ 1

θ
.

D.4.1 Frobenius norm bound

Let K = VkV
ᵀ
k , and π be a permutation of [d] that reorders the leverage scores

decreasingly,

`kπ1
≥ `kπ2

≥ ... ≥ `kπd . (120)

By construction, Tpeff
= [πpeff

, ..., πd] thus collects the indices of the smallest leverage
scores. Finally, denoting by Π = (δi,πj )(i,j)∈[d]×[d] the matricial representation of
permutation π, we let

Kπ = ΠKΠᵀ = ((Kπi,πj ))1≤i,j≤d.

The goal of the proof is to bound

EDPP

[
‖X −ΠFr

S X‖2Fr|S ∩ Tpeff
= ∅
]

=

∑
Det(VS,[k])

2‖X −ΠFr
S X‖2Fr∑

Det(VS,[k])2
, (121)

where both sums run over subsets S ⊂ [d] such that |S| = k and S ∩ Tpeff(θ) = ∅.
For simplicity, let us write

Zk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2, (122)

Yk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2 Tr(ZSZ

ᵀ
S). (123)

Following steps (99) to (103) of the previous proof, one obtains

EDPP

[
‖X −ΠFr

S X‖2Fr | S ∩ Tpeff
= ∅
]
≤ ‖X −ΠkX‖2Fr + σ2

k+1

Yk,peff(θ)

Zk,peff(θ)
. (124)

By definition (45) of the flatness parameter β,

σ2
k+1 = β

1

d− k
∑
j≥k+1

σ2
j = β

1

d− k
‖X −ΠkX‖2Fr. (125)

Then, it remains to upper bound the ratio Yk,peff(θ)/Zk,peff(θ) in (124), which is the
important part of the proof. We first evaluate Zk,peff(θ) and then bound Yk,peff(θ).
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The matrix ΠVk ∈ Rd×k has its rows ordered by decreasing leverage scores. Let
Ṽ π
peff(θ) ∈ Rpeff(θ)×k be the submatrix corresponding to the first peff(θ) rows of ΠVk.

Let also

V̂ π
peff(θ) =

(
Ṽπ,peff(θ)

0d−peff(θ),k

)
be padded with zeros. Then

Kπ
peff(θ) =

[
Ṽπ,peff(θ)Ṽ

ᵀ
π,peff(θ) 0

0 0

]
= V̂ π

peff(θ)(V̂
π
peff(θ))

ᵀ ∈ Rd×d. (126)

The nonzero block of Kπ
peff(θ) is a submatrix of Kπ, and rkKπ = rkK = k. Hence

Kπ
peff(θ) has at most k nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 = λk+1 = · · · = λd. (127)

Therefore,

ek(Λ(Kπ
peff(θ))) =

∑
T⊂[d]
|T |=k

∏
j∈T

λj =
∏
i∈[k]

λi. (128)

Note moreover that

∀` ∈ [k], e`(Σ(V̂π,peff(θ))
2) = e`(Λ(Kπ

peff(θ))). (129)

By construction,

Zk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2 =

∑
S⊂[d],|S|=k

Det

[(
V̂ π
peff(θ)

)
S,:

]2

(130)

Then, Lemma 31 yields

Zk,peff(θ) = ek(Σ(V̂π,peff(θ))
2) = ek(Λ(Kπ

peff(θ))) =
∏
i∈[k]

λi. (131)

Now we bound Yk,peff(θ). We use again principal angles and trigonometric identities.
Using (104) and (109) above, it holds

Yk,peff(θ) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2 Tr(ZSZ

ᵀ
S)

=
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

∏
i∈[k]

cos2(θi(S))
∑
j∈[k]

tan2(θj(S))

=
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

ek−1

(
Σ(VS,[k])

2
)
− k ek

(
Σ(VS,[k]

)2
(132)

=
∑

S⊂[d],|S|=k

ek−1

(
Σ

([
V̂ π
peff(θ)

]
S,:

)2
)
− k ek

(
Σ

([
V̂ π
peff(θ)

]
S,:

)2
)

(133)
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By Lemma 33 applied to the matrix V̂π,peff(θ) combined to (130), we get

Yk,peff(θ) ≤ (peff(θ)− k + 1)ek−1(Σ(V̂ π
peff(θ))

2)− k ek(Σ(V̂ π
peff(θ))

2)

≤ (peff(θ)− k + 1)ek−1(Λ(Kπ
peff(θ)))− k ek(Λ(Kπ

peff(θ)))

≤
(

(peff(θ)− k + 1)φ(λ̃)− k
)
Zk,peff(θ). (134)

where λ̃ = (1, . . . , 1,Tr(Kπ
peff(θ))− k+ 1) ∈ Rk, see Lemma 34. Now, as in the proof

of Lemma 34,

φ(λ̃) = k − 1 +
1

Tr(Kπ
peff(θ))− k + 1

≤ k − 1 + θ

by (49). Thus (134) yields

Yk,peff(θ)

Zk,peff(θ)
≤ (peff(θ)− k + 1)(k − 1 + θ)− k ≤ (peff(θ)− k + 1)(k − 1 + θ). (135)

Finally, plugging (135) and (125) in (124) concludes the proof of (52).

D.4.2 Spectral norm bound

We proceed as for the Frobenius norm, using the notation of Section D.3.1. Lemma 30,
Equations (132) and (135) yield

EDPP

[
‖X −Π2

SX‖22 | S ∩ Tpeff
= ∅
]

= Z−1
k,peff(θ)

∑
S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2‖X −Π2

SX‖22,

≤ Z−1
k,peff(θ)‖X −ΠkX‖22

∑
S⊂[d],|S|=k
S∩Tpeff(θ)=∅,
Det(VS,[k])

2>0

k−1∏
`=1

σ2
` (VS,[k])

≤ Z−1
k,peff(θ)‖X −ΠkX‖22

∑
S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2>0

ek−1(Σ(VS,[k])
2)

≤
Yk,peff(θ)

Zk,peff(θ)
‖X −ΠkX‖22

≤ (peff(θ)− k + 1)(k − 1 + θ)‖X −ΠkX‖22,

which is the claimed spectral bound.
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D.4.3 Bounding the probability of rejection

Still with the notation of Section D.3.1, (130) yields

P(S ∩ Tpeff(θ) = ∅) =
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

Det(VS,[k])
2

= ek(K
π
peff(θ)) (136)

=
∏
i∈[k]

λi

= ψ(λ̂). (137)

Lemma 34 concludes the proof since

ψ(λ̂) ≥ 1

θ
. (138)

D.5 Proof of Proposition 20

First, Proposition 11 gives

E(wS) ≤
(1 + max

i∈[k]
tan2 θi(S))‖w∗‖2σ2

k+1

N
+
k

N
ν. (139)

Now (75) further gives

max
i∈[k]

tan2 θi(S) ≤
∑
i∈[k]

tan2 θi(S) = Tr(ZSZ
ᵀ
S). (140)

The proof now follows the same lines as for the approximation bounds. First, fol-
lowing the lines of Section D.3, , we straightforwardly bound

EDPP

∑
i∈[k]

tan2(θi(S)) =
∑

S⊂[d],|S|=k

∏
i∈[k]

cos2(θi(S))
∑
j∈[k]

tan2(θj(S)) (141)

and obtain (53). In a similar vein, the same lines as in Section D.4 allow bounding

EDPP

[∑
i∈[k]

tan2(θi(S))|S∩Tpeff
= ∅
]

=
∑

S⊂[d],|S|=k
S∩Tpeff(θ)=∅

∏
i∈[k]

cos2(θi(S))
∑
j∈[k]

tan2(θj(S).

(142)
and yield (54).

E Generating orthogonal matrices with prescribed lever-
age scores

In this section, we describe an algorithm that samples a random orthonormal matrix
with a prescribed profile of k-leverage scores. This algorithm was used to generate
the matrices F = V ᵀ

k ∈ Rk×d for the toy datasets of Section 6. The orthogonality
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constraint can be expressed as a condition on the spectrum of the matrix K =
VkV

ᵀ
k , namely Sp(K) ⊂ {0, 1}. On the other hand, the constraint on the k-leverage

scores can be expressed as a condition on the diagonal of K. Thus, the problem of
generating an orthogonal matrix with a given profile of k-leverage scores boils down
to enforcing conditions on the spectrum and the diagonal of a symmetric matrix K.

E.1 Definitions and statement of the problem

We denote by (fi)i∈[d] the columns of the matrix F . For n ∈ N, we write 1n the
vector containing ones living in Rn, and 0n the vector containing zeros living in Rn.
We say that the vector u ∈ Rn interlaces on v ∈ Rn and we denote

u v v

if un ≤ vn and ∀i ∈ [1 : n− 1], vi+1 ≤ ui ≤ vi.

. . . vi+2 ui+1 vi+1 ui vi ui−1 vi−1
. . .

Figure 9: Illustration of the interlacing of u on v.

Definition 35 Let k, d ∈ N, with k ≤ d. Let F ∈ Rk×d be a full rank matrix5.
Within this section, we denote σ2 = (σ2

1, σ
2
2, . . . , σ

2
k) the squares of the nonvanishing

singular values of the matrix F , and ` = (`1 = ‖f1‖2, `2 = ‖f2‖2, . . . , `d = ‖fd‖2) are
the squared norms of the columns of F , which we assume to be ordered decreasingly:

`1 ≥ `2 ≥ · · · ≥ `d.

When F is orthogonal, we can think of ` as a vector of leverage scores.

We are interested in the problem of constructing an orthogonal matrix given its
leverage scores.

Problem 1 Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd+ such that
d∑
i=1

`i = k. Build a

matrix F ∈ Rk×d such that

Sp(F ᵀF ) = [1k, 0d−k], (143)

and
Diag(F ᵀF ) = `. (144)

We actually consider here the generalization of Problem 2 to an arbitrary spectrum.

Problem 2 Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd+ such that
d∑
i=1

`i =
k∑
i=1

σ2
i . Build

a matrix F ∈ Rk×d such that

Sp(F ᵀF ) = [σ2, 0d−k] =: σ̂2 (145)

and
Diag(F ᵀF ) = `. (146)

5A frame, using the definitions of (Fickus et al., 2011a) and (Fickus et al., 2011b).
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Denote by

M(`,σ) = {M ∈ Rd×d symmetric
/

Diag(M) = `, Sp(M) = σ̂2}. (147)

The non-emptiness of M(`,σ) is determined by a majorization condition between
` and σ̂, see Appendix B for definitions. More precisely, we have the following
theorem.

Theorem 36 (Schur-Horn) Let k, d ∈ N, with k ≤ d, and let ` ∈ Rd+. We have

M(`,σ) 6= ∅ ⇔ ` ≺S σ̂. (148)

The proof by Horn (1954) of the reciprocal in Theorem 36 is non constructive. In
the next section, we survey algorithms that output an element of M(`,σ).

E.2 Related work

Several articles (Raskutti and Mahoney, 2016, Ma et al., 2015) in the randomized
linear algebra community propose the use of non Gaussian random matrices to
generate matrices with a fast decreasing profile of leverage scores (so-called heavy
hitters) without controlling the exact profile of the leverage scores.

Dhillon et al. (2005) showed how to generate matrices fromM(`,σ) using Givens
rotations; see the algorithm in Figure 10. The idea of the algorithm is to start with
a frame with the exact spectrum and repeatedly apply orthogonal matrices (Lines
4 and 6 of Figure 10) that preserve the spectrum while changing the leverage scores
of only two columns, setting one of their leverage scores to the desired value. The
orthogonal matrices are the so-called Givens rotations.

Definition 37 Let θ ∈ [0, 2π[ and i, j ∈ [d]. The Givens rotation Gi,j(θ) ∈ Rd×d is
defined by

Gi,j(θ) =



1
. . .

1
cos(θ) − sin(θ)

1
. . .

1
sin(θ) cos(θ)

1
. . .

1



. (149)

Figure 11 shows the output of the algorithm in Figure 10, for the input (`,σ) =
(`,1) for three different values of `. The main drawbacks of this algorithm are first
that it is deterministic, so that it outputs a unique matrix F for a given input (`,σ),
and second that the output is a highly structured matrix, as observed on Figure 11.

We propose an algorithm that outputs random, more “generic” matrices belong-
ing to M(`,σ). This algorithm is based on a parametrization of M(`,σ) using the
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GivensAlgorithm
(
`,σ)

1 F ←−
[

Diag(σ) 0
]
∈ Rk×d

2 while ∃i, j, k ∈ [d], i < k < j : ‖fi‖2 < `i, ‖fk‖2 = `k, ‖fj‖2 > `j

3 if `i − ‖fi‖2 ≤ ‖fj‖2 − `j
4 F ← Gi,j(θ)F , where ‖(Gi,j(θ)F )i‖2 = `i.

5 else

6 F ← Gi,j(θ)F , where ‖(Gi,j(θ)F )j‖2 = `j ,

7 return F ∈ Rk×d.

Figure 10: The pseudocode of the algorithm proposed by Dhillon et al. (2005) for
generating a matrix given its leverage scores and spectrum by successively applying
Givens rotations.

collection of spectra of all minors of F ∈ M(`,σ). This parametrization was intro-
duced by Fickus et al. (2011b), and we recall it in Section E.3. For now, let us simply
look at Figure 12, which displays a few outputs of our algorithm for the same input
as in Figure 11a. We now obtain different matrices for the same input (`,σ), and
these matrices are less structured than the output of Algorithm 10, as required.

E.3 The restricted Gelfand-Tsetlin polytope

Definition 38 Recall that (fi)i∈[d] are the columns of the matrix F ∈ Rk×d. For
r ∈ [d], we further define

Fr = F:,[r] ∈ Rk×r, (150)

Cr =
∑
i∈[r]

fif
ᵀ
i ∈ Rk×k, (151)

Gr = F ᵀ
r Fr ∈ Rr×r. (152)

Furthermore, we note for r ∈ [d],

(λr,i)i∈[k] = Λ(Cr), (153)

(λ̃r,i)i∈[r] = Λ(Gr). (154)

The (λr,i)i∈[k], r ∈ [d], are called the outer eigensteps of F , and we group them in
the matrix

Λout(F ) = (λr,i)i∈[k],r∈[d] ∈ Rk×d.

Similarly, the (λ̃r,i)i∈[r] are called inner eigensteps of F .

Example 2 For k = 2, d = 4, consider the full-rank matrix

F =

[
1 0 −1 0
0 1 0 −1

]
, (155)

Then

Λout(F ) =

[
1 1 2 2
0 1 1 2

]
. (156)
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Figure 11: The output of the algorithm in Figure 10 for k = 2, d = 10, σ = (1, 1),
and three different values of ` that each add to k. Each red dot has coordinates a
column of F . The blue circles have for radii the prescribed (

√
`i).
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Figure 12: The output of our algorithm for k = 2, d = 10, an input σ = (1, 1), and
` as in Figure 11a. Each red dot has coordinates a column of F . The blue circles
have for radii the prescribed (

√
`i).

Proposition 39 The outer eigensteps satisfy the following constraints:

∀i ∈ [k], λ0,i = 0

∀i ∈ [k], λd,i = σ2
i

∀r ∈ [d], (λr,:) v (λr+1,:)

∀r ∈ [d],
∑
i∈[d]

λr,i =
∑
i∈[r]

`i

. (157)

In other words, the outer eigensteps are constrained to live in a polytope. We de-
fine the restricted Gelfand-Tsetlin polytopeGT(k,d)(σ, `) to be the subset of Rk×d de-
fined by the equations (157). A more graphical summary of the interlacing and sum
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`1 = λ1,1 λ2,1 λ3,1 . . . λd−1,1 λd,1 = σ1

+ + + . . . + +

0 = λ1,2 λ2,2 λ3,2 . . . λd−1,2 λd,2 = σ2

+ + + . . . + +

0 = λ1,3 λ2,3 λ3,3 . . . λd−1,3 λd,3 = σ3...
...

...
...

...
...

0 = λ1,k λ2,k λ3,k . . . λd−1,k λd,k = σk

`1
∑
i≤2

`i
∑
i≤3

`i
∑

i≤d−1

`i
∑
i≤d

`i

Figure 13: The interlacing relationships (157) satisfied by the outer eigensteps of a
frame. Thick triangles are used in place of ≤ for improved readability.

constraints is given in Figure 13. The restricted GT polytope6 allows a parametriza-
tion of M(`,σ) by the following reconstruction result.

Theorem 40 (Theorem 3, Fickus et al., 2011a) Every matrix F ∈M(`,σ) can
be constructed as follows:

− pick a valid sequence of outer eigensteps noted Λout ∈ GT(k,d)(σ, `),

− pick f1 ∈ Rk such that
‖f1‖2 = `1, (158)

− for r ∈ [d], consider the polynomial pr(x) =
∏
i∈[d]

(x − λr,i), and for each r ∈

[d− 1], choose fr+1 ∈ Rk such that

∀λ ∈ {λr,i}i∈[d], ‖Pr,λfr+1‖2 = − lim
x→λ

(x− λ)
pr+1(λ)

pr(λ)
, (159)

where Pr,λ denotes the orthogonal projection onto the eigenspace Ker(λIk −
FrF

T
r ).

Conversely, any matrix F constructed by this process is in M(`,σ).

Fickus et al. (2011a) propose an algorithm to construct a vector fr satisfying Equa-
tion (159). Finally, an algorithm for the construction of a valid sequence of eigensteps
Λout ∈ GT(k,d)(σ, `) was proposed in (Fickus et al., 2011b). This yields the following
constructive result.

Theorem 41 (Theorem 4.1, Fickus et al., 2011b) Every matrix F ∈M(σ, `)
can be constructed as follows:

− Set ∀i ∈ [k], λ̃d,i = σ2
i ,

− For r ∈ {d − 1, . . . , 1}, construct {λ̃r,:} as follows. For each i ∈ {k, . . . , 1},
pick

λ̃r−1,i ∈ [Bi,r(`,σ), Ai,r(`,σ)],

6Note the difference with the Gelfand-Tsetlin polytope in the random matrix literature (Barysh-
nikov, 2001), where only the spectrum is constrained, not the diagonal.
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RandomEigensteps
(
`,σ)

1 Λout ←− O ∈ Rk×d

2 ∀i ∈ [k], λ̃d,i ←− σi
3 for r ∈ {d− 1, . . . , 1}
4 for i ∈ {k, . . . , 1}
5 Pick λ̃r−1,i ∼ U([Bi,r(`,σ), Ai,r(`,σ)])

return Λout

Figure 14: The pseudocode of the generator of random valid eigensteps taking as
input (`,σ).

where

Ai,r(`,σ) = max

{
λ̃r+1,i+1,

k∑
t=i

λ̃r+1,t −
k∑

t=i+1

λ̃r,t − `r+1

}

Bi,r(`,σ) = min

{
λ̃r+1,i, min

z=1,...,i

{
r∑
t=z

`t −
i∑

t=z+1

λ̃r+1,t −
k∑

t=i+1

λ̃r,t

}}
.

(160)

Furthermore, any sequence constructed by this algorithm is a valid sequence of inner
eigensteps.

Based on these results we propose an algorithm for the generation of orthogonal
random matrices with a given profile of leverage scores.

E.4 Our algorithm

We consider a randomization of the algorithm given in Theorem 41. First, we
generate a random sequence of valid inner eigensteps Λin using Algorithm 14. Then
we proceed to the reconstruction a frame that admits Λin as a sequence of eigensteps
using the Algorithm proposed in (Fickus et al., 2011a).

Note that Equations (158) and (159) admit several solutions. For example, for
r ∈ [d], and if fr+1 satisfies (159), −fr+1 satisfies this equation too. Fickus et al.
(2011a) actually prove that the set of solutions of these equations is invariant under
a specific action of the orthogonal group O(ρ(r, k)) where ρ(r, k) ∈ N nontrivially
depends on the eigensteps. In the reconstruction step of our algorithm, we apply a
random Haar-distributed orthogonal matrix as soon as such an invariance is prov-
able. Namely, we a random orthogonal matrix sampled from the Haar measure on
O(d) to the vector f1 and, then, we apply an independent random orthogonal matrix
sampled from the Haar measure on O(ρ(r, k)) to each reconstructed vector fr+1.

Figure 12 displays a few samples from our algorithm, which display diversity
and no apparent structure, as required for a generator of toy datasets. The question
of fully characterizing the distribution of the output of our algorithm is an open
question.
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