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GENERIC SEPARATING SETS FOR 3D ELASTICITY

TENSORS

R. DESMORAT, N. AUFFRAY, B. DESMORAT, B. KOLEV, AND M. OLIVE

Abstract. We define what is a generic separating set of invariant func-
tions (a.k.a. a weak functional basis) for tensors. We produce then two
generic separating sets of polynomial invariants for 3D elasticity tensors,
one made of 19 polynomials and one made of 21 polynomials (but easier
to compute) and a generic separating set of 18 rational invariants. As
a byproduct, a new integrity basis for the fourth-order harmonic tensor
is provided.

1. Introduction

Assuming that one could measure the elasticity tensors of two materials,
it is a natural question to ask, if one can decide by finitely many calculations,
whether the two materials have identical elastic properties (are identical as
elastic materials), in other words if the two elasticity tensors are related by
a rotation. More precisely, two elasticity tensors E1 and E2 belonging to the
vector space Ela, of fourth-order tensors having major and left/right minor
indicial symmetries

Eijkl = Eijlk = Eklij,

define the same elastic material, if and only if, there exists a rotation g ∈
SO(3) such that

(E2)ijkl = gipgjqgkrgls(E1)pqrs ,

a relation that we shall denote by

E2 = g ⋆E1,

and we say then that the two tensors are in the same orbit. When such a
rotation does not exist, the two tensors describe different elastic materials.

To give different names to different elastic materials, we need to construct
a set of functions on the space of elasticity tensors which :

(1) are constant on each orbit ;
(2) take different values on different orbits.

Such as a set of functions is known in the mathematical community as a
separating set, and as a functional basis in the field of theoretical mechanics
[48]. A separating set is minimal if no proper subset of it is a separating
set. At the present time there is no known algorithm for constructing a
minimal separating set. If the minimality aspect is left aside, an approach
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for obtaining a separating set of functions is to consider the algebra of in-
variant polynomials over the space of elasticity tensors. In the context of
real elasticity tensors and for the group of rotations, the algebra of invariant
polynomials is finitely generated [23, 41] and separates the orbits [1, Ap-
pendix C]. The generating set of such an algebra is classically known as an
integrity basis. Nevertheless, calculating explicitly an integrity basis for the
invariant algebra is an extremely difficult task. Furthermore, its important
to note that if generating basis is a separating basis, the converse is gener-
ally false. As a consequence the cardinal of a generating basis is, in general,
larger than the one of a separating basis.

The determination of an integrity basis for the elasticity tensor has a long
history, which can be traced back, at least, to the work of Betten [6, 7], who
obtained some partial results. The question was formulated in rigourous
mathematical terms by Boehler et al. in [11], where the link with invariants
of binary forms ( i.e. of homogeneous complex polynomials in two variables)
was established for the first time. However, due to the complexity of the
required computations the authors did not provide a final answer to the
problem. With the help of a Computer Algebra System (CAS), a minimal
set of 297 generators for the invariant algebra of the 3D elasticity tensor
was finally obtained in 2017, by some of the present authors, in [29], which
definitively solved this old problem.

Whether this minimal integrity basis can be reduced to obtain a sepa-
rating set of lower cardinality is nevertheless still an open problem. The
difficulty is that there is no known general procedure to produce explicit
general separating sets whereas there are constructive algorithms to obtain
integrity bases [17, 27].

There is a huge literature on integrity and functional bases for an n-uplet
of second-order symmetric tensors or more generally for a family of second-
order symmetric tensors and vectors (including, thus, skew-symmetric second-
order tensors) [49, 39, 37, 36, 45, 46]. Usually, these functional bases are
polynomial [43, 44, 36]. For higher-order tensors, results are usually sparse
or incomplete [11, 38, 28]. Up to the authors best knowledge, nothing is
known concerning the elasticity tensor but the 297 invariants of a minimal
integrity basis [29, 30].

Since most materials have no symmetry in practice (they are triclinic),
their membership to higher-symmetry classes is just a convenient approx-
imation of the reality. Therefore, the notion of separating set/functional
basis can be weakened again, in order to reduce its cardinal. To be more
specific, the notion of weak separating set — also known as a weak func-
tional basis — has been formulated in [11], in the sense that they separate
only generic tensors (defined rigorously in Section 3, using Zariski topol-
ogy). In [11], Boehler, Kirillov and Onat produced a weak separating set of
39 polynomial invariants for E ∈ Ela.

In the present paper, by formulating slightly different genericity condi-
tions, we produce a weak separating set of 21 polynomial invariants for the
elasticity tensor. This result, formulated as Theorem 4.2, is our main theo-
rem. Moreover, translating results on rational invariants of the binary form
of degree 8 by Maeda in [26], we can shorten this number to 19 (Corollary
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4.6), but the corresponding polynomial invariants are more complicated.
We can also deduce a set of 18 rational invariants which separate generic
elasticity tensors (Corollary 4.5).

The paper is organized as follows. In section 2, we recall basic notions
on integrity basis and produce a new minimal integrity basis for H

4(R3),
the space of fourth-order harmonic tensors. In section 3, we introduce var-
ious definitions of separating sets and formulate rigorously the concept of
genericity. Formulations of the main result, some corollaries are provided
in Section 4. The mathematical material needed to understand the link
between invariant theory of binary forms and invariant theory of harmonic
tensors is recalled in Appendix C. A set of 18 rational invariants which
separate generic fourth-order harmonic tensors is then provided in Appen-
dix D by translatingMaeda invariants [26] into invariants of the fourth-order
harmonic tensor.

Notations. O(3) is the orthogonal group, that is the group of all isometries
of R3 i.e. g ∈ O(3) if det g = ±1 and g−1 = gt, where the superscript t

denotes the transposition. The group of rotations is SO(3) is the special
orthogonal group, i.e. the subgroup of O(3) of elements satisfying det g = 1.

We denote by T
n(R3), the space of nth-order tensors on R

3 and by S
n(R3),

the subspace of totally symmetric tensors of order n. A traceless tensor H ∈
S
n(R3) is called an harmonic tensor and the space of nth-order harmonic

tensors is noted H
n(R3). The notation q will stand for the Euclidean

metric tensor, and since an orthonormal basis is considered q = (δij). All the
tensorial components will be expressed with respect to an orthonormal basis,
and hence no distinction will be made between covariant and contravariant
components.

The total symmetrization of a tensor T ∈ T
n(R3) is the tensor Ts ∈

S
n(R3), defined by

(T s)i1...in =
1

n!

∑

σ∈Sn

Tiσ(1)...iσ(n)
,

where Sn is the permutation group over n elements.

Example 1.1. The total symmetrization S = Ts of a third order tensor
T ∈ T

3(R3) has for components

(1) Sijk =
1

6
(Sijk + Sikj + Sjik + Sjki + Skij + Skji) .

Example 1.2. The total symmetrization of an elasticity tensor E ∈ Ela writes

(2) S = Es, Sijkl =
1

3
(Eijkl + Eikjl + Eiljk) .

Compared to elasticity tensors, S has the additional index symmetry

Sijkl = Sikjl.

The symmetric tensor product between two totally symmetric tensors
Sk ∈ S

nk(R3) is defined as

(3) S1 ⊙ S2 := (S1 ⊗ S2)s ∈ S
n1+n2(R3).
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Example 1.3. The symmetric tensor product vvv⊙www = (vvv⊗www)s of two vectors
vvv,www writes

vvv ⊙www =
1

2
(vvv ⊗www +www ⊗ vvv) , (vvv ⊙www)ij =

1

2
(viwj + vjwi) .

Example 1.4. The symmetric tensor product a⊙ b = (a⊗ b)s of two sym-
metric second order tensors a,b ∈ S

2(R3) has for components

(a⊙ b) =
1

6
(aijbkl + aikbjl + ailbjk + bijakl + bikajl + bilajk) .

The r-contraction between two tensors Tk ∈ T
nk(R3) is defined as

(T1 (r)
· T2)i1...in1−rjr+1...jn2

:= T 1
i1...in1−rk1...kr

T 2
k1...krjr+1...jn2

.

In particular, we get

(a ·b)ij = aikbkj, a :b = aijbij ,
(H : a)ij = Hijklakl, (H :K)ijkl = HijpqKpqkl

(H
...K)ij = HipqrKpqrj.

where a,b are two second-order tensors and H,K, two fourth-order tensors.
The usual abbreviations an+1 = an ·a, ab = a ·b and Hn+1 = Hn :H shall
also be used.

The symmetric r-contraction between two totally symmetric tensors Sk ∈
S
nk(R3) is defined as

(4) S1 (r)
·
s
S2 := (S1 (r)

· S2)s ∈ S
n1+n2−2r(R3),

Example 1.5. The symmetric contraction a
(1)
·
s
b of two symmetric second-

order tensors a,b ∈ S
2(R3) is nothing else than a

(1)
·
s
b = 1

2 (ab+ ba).

The generalized cross product between two totally symmetric tensors Sk ∈
S
nk(R3), which has been introduced in [31], is defined as

(5) S1 × S2 := (S2 · ε · S1)s ∈ S
n1+n2−1(R3),

where ε is the third-order Levi-Civita tensor

Example 1.6. The generalized cross product a×b of two symmetric second
order tensors a,b ∈ S

2(R3) has for components

(a× b)ijk =
1

6

(

bipεpjqaqk + bipεpkqaqj + bjpεpiqaqk + bjpεpkqaqi + bkpεpiqaqj + bkpεpjqaqi
)

.

The leading harmonic part S′ ∈ H
n(R3) of a totally symmetric tensor

S ∈ S
n(R3) means the harmonic part of highest order of S in its harmonic

decomposition (see [30, Proposition 2.8], where it was noted S0 rather than
S′).

Example 1.7. The leading harmonic part of a symmetric second order tensor
a ∈ S

2(R3) is noting else than its deviatoric part a′ = a− 1
3(tr a)q.
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Example 1.8. The leading harmonic part H = (Es)′ of an elasticity tensor
E ∈ Ela is harmonic fourth-order tensor

(6) H = S−
6

7
q⊙ (trS)′ −

1

5
(tr trS)q⊙ q,

where S = Es is totally symmetric part (2) of E, (trS)′ij = Skkij −
1
3Skkllδij

and tr trS = Skkll =
1
3(Ekkij + 2Ekikj).

The harmonic product between two harmonic tensors Hk ∈ H
nk(R3),

which has been introduced in [30], is defined as harmonic tensor

(7) H1 ∗H2 := (H1 ⊙H2)′ ∈ H
n1+n2(R3).

Example 1.9. The harmonic product of two harmonic (deviatoric) second
order tensors a′,b′ ∈ H

2(R3) writes

a′ ∗ b′ = a′ ⊙ b′ −
2

7
q⊙ (a′b′ + b′a′) +

2

35
tr(a′b′)q⊙ q,

with a′ ∗ b′ ∈ H
4(R3).

2. Integrity basis

Let us first recall some definitions and fundamental aspects concerning
integrity bases of real polynomial invariant algebras (such as the invariant

algebra R[Ela]SO(3) of elasticity tensors).
We consider a linear representation V of the 3-dimensional orthogonal

group O(3). This means that we have a mapping

(g,vvv) 7→ g ⋆ vvv, O(3)× V → V,

which is linear in vvv and such that

(g1g2) ⋆ vvv = g1 ⋆ (g2 ⋆ vvv).

Remark 2.1. Note that the representations of O(3) and SO(3) on even-order
tensors are the same because, then,

(−I) ⋆T = T, ∀T ∈ T
2n(R3),

where I is the identity in O(3).

A polynomial function p defined on V (i.e which can be written as a
polynomial in components of vvv ∈ V in any basis) is invariant if

p(g ⋆ vvv) = p(vvv), ∀g ∈ O(3), ∀vvv ∈ V.

The set of O(3)-invariant polynomial functions is a subalgebra of the poly-
nomial algebra R[V] of real polynomial functions on V, which will be denoted

by R[V]O(3).

Definition 2.2 (Integrity basis). A finite set of O(3)-invariant polynomials
{P1, . . . , Pk} over V is a generating set (also called an integrity basis) of the

invariant algebra R[V]O(3) if any O(3)-invariant polynomial J over V is a
polynomial function in P1, . . . , Pk, i.e if J can be written as

J(vvv) = p(P1(vvv), . . . , Pk(vvv)), vvv ∈ V,

where p is a polynomial function in k variables. An integrity basis is minimal
if no proper subset of it is an integrity basis.
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Example 2.3 (V = R
3 ⊕ · · · ⊕ R

3). For an n-uplet of vectors (vvv1, . . . , vvvn),
Weyl [47] proved that a minimal integrity basis of the diagonal representa-
tion of O(3)

g ⋆ (vvv1, . . . , vvvn) := (gvvv1, . . . , gvvvn)

is given by the family

vvvi · vvvj, i, j = 1, . . . , n.

Example 2.4 (V = S
2(R3)). Another classical example is given by the stan-

dard O(3)-representation on S
2(R3), the space of symmetric second-order

tensors on R
3. A minimal integrity basis is given by

tr a, tr a2, tr a3,

where a ∈ S
2(R3).

A minimal integrity basis is not unique but its cardinality as well as the
degrees of its members are independent of the basis [18]. For instance, an

alternative minimal integrity basis of R[S2(R3)]O(3) is given by the three
elementary functions

σ1 := λ1 + λ2 + λ3, σ2 := λ1λ2 + λ1λ3 + λ2λ3, σ3 := λ1λ2λ3,

where λk are the eigenvalues of the second-order symmetric tensor a. These
two minimal integrity bases are related by invertible polynomial relations,
more precisely

σ1 = tr a, σ2 =
1

2

(

(tr a)2 − tr a2
)

, σ3 =
1

6

(

(tr a)3 − 3 tr a tr a2 + 2 tr a3
)

,

and conversely

tr a = σ1, tr a2 = σ2
1 − 2σ2, tr a3 = σ3

1 − 3σ1σ2 + 3σ3.

For a couple (a,b) of second-order symmetric tensors, that is for

V = S
2(R3)⊕ S

2(R3),

a minimal integrity basis for the diagonal O(3)-representation is known since
at least 1958 [39], and can be found in many references, for instance [37, 8,
10, 50]. More precisely, the following result holds.

Proposition 2.5. The following collection of ten polynomial invariants

tr a, tr a2, tr a3, trb, trb2, trb3, tr ab, tr a2b, tr ab2, tr a2b2,

is a minimal integrity basis for R[S2(R3)⊕ S
2(R3)]O(3).

For higher-order tensors, the determination of an integrity basis is much
more complicated and one way to compute such a basis requires first to
decompose the tensor space V into irreducible representations called also
an harmonic decomposition of V (see [4, 16, 5, 3, 2, 29] for more details).
In this decomposition, the irreducible factors are isomorphic to the spaces
H

n(R3), of nth-order harmonic tensors. Such a decomposition is, in general,
not unique. For the elasticity tensor, V = Ela, we can use, for instance, the
following explicit decomposition:

(8) E = (λ, µ,d′,v′,H),
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with

(9) λ := trd, µ := trv, d′ := d− (λ/3)q, v′ := v − (µ/3)q,

where d := tr12 E (i.e. dij = Ekkij) is the dilatation tensor, v := tr13E (i.e.
vij = Ekikj) is the Voigt tensor and, in accordance with (6),

(10) H := (Es)′ = Es − q⊙ a′ −
7

30
(tr a)q⊙ q, where a :=

2

7
(d+ 2v),

Note that in any decomposition of the elasticity tensor, the fourth-order
component H is uniquely defined, which is not the case of the other compo-
nents.

A minimal integrity basis of the invariant algebra R[H4(R3)]O(3) of har-
monic fourth-order tensors was exhibited for the first time by Boehler, Onat
and Kirillov [11] and republished later by Smith and Bao [38]. In both
cases, the derivation is based on original mathematical results obtained ear-
lier by Shioda [35] and von Gall [42] on binary forms (see Appendix C).
The corresponding minimal integrity basis, provided in [11], uses the follow-
ing second-order covariants, i.e. second-order tensor valued functions d(H),
depending of H in such a way that

(11) g ⋆ d(H) = d(g ⋆H),

for all H ∈ H
4(R3) and g ∈ O(3) (see [31] for more details).

Theorem 2.6 (Boehler–Kirillov–Onat). Let H ∈ H
4(R3) and set:

(12)
d2 = tr13 H

2, d3 = tr13H
3, d4 = d2

2,
d5 = d2(H : d2), d6 = d3

2, d7 = d2
2(H : d2)

d8 = d2
2(H

2 : d2), d9 = d2
2(H : d2

2), d10 = d2
2(H

2 : d2
2).

A minimal integrity basis for H is given by the nine following invariants:

(13) Jk = trdk, k = 2, . . . , 10.

Recall that, even if a minimal integrity basis is not unique, its cardinality
and the degree of its elements are the same for all bases [18]. A remarkable
observation is that there exists a minimal integrity basis of H4(R3), involving
only the two second-order covariants d2, d3 introduced in (12).

Theorem 2.7. The following nine polynomial invariants

(14)
I2 = trd2, I3 = trd3, I4 = trd2

2,
I5 = tr(d2d3), I6 = trd3

2, I7 = tr(d2
2d3),

I8 = tr(d2d
2
3), I9 = trd3

3, I10 = tr(d2
2d

2
3).

form a minimal integrity basis of R[H4]O(3).

The proof follows from the fact that there are algebraic relations between
the two sets of invariants provided below. Since {Jk} is an integrity basis
elements of {Ik} are polynomial functions in {Jk}: I2 = J2, I3 = J3, I4 = J4,
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I6 = J6, I5 =
1
6(3J5 + 2J2J3), I7 =

1
6(3J7 + 2J4J3) and

I8 =
1

1620

(

1080J8 − 1230J6J2 + 495J5J3 − 216J2
4 + 1197J4J

2
2 + 140J2

3J2 − 237J4
2

)

,

I9 =
1

19440

(

5184J9 − 6480J7J2 + 9456J6J3 + 20255J2
2 − 7974J4J3J2 + 2500J3

3 + 1596J3J
3
2

)

,

I10 =
1

1630

(

1080J10 − 675J8J2 + 495J7J3 + 24J6J4 − 117J6J
2
2 − 171J2

4J2

+ 190J4J
2
3 + 228J4J

3
2 − 45J5

2

)

,

The converse is also observed: J5 =
1
3

(

6I5−2I2I3
)

, J7 =
1
3

(

6I7−2I4I3
)

and

J8 =
1

2160

(

3240I8 − 1980I5I3 + 2460I6I2 + 380I23 I2 + 432I24 − 2394I4I
2
2 + 474I42

)

,

J9 =
1

10368

(

38880I9 + 25920I7I2 − 8100I5I
2
2 − 5000I33 − 18912I3I6 + 7308I3I4I2 − 492I3I

3
2

)

,

J10 =
1

17280

(

25920I10 + 16200I8I2 − 15840I7I3 − 9900I5I3I2 + 2240I23 I4

+ 1900I23 I
2
2 − 384I6I4 + 14172I6I

2
2 + 4896I24 I2 − 15618I4I

3
2 + 3090I52

)

.

hence proving that {Ik} also constitutes an integrity basis.

3. Separating sets

The weaker concept of separating set, often called a functional basis in the
mechanical community [48, 9] (see [19, 25, 17] for alternative definitions in
the mathematical community), is formulated in invariant theory as follows.

Definition 3.1 (Separating set). A finite set of O(3)-invariant functions
{s1, . . . , sn} over V is a separating set if

si(vvv1) = si(vvv2), i = 1, . . . , n =⇒ ∃g ∈ O(3), vvv1 = g ⋆ vvv2.

for all vvv1, vvv2 ∈ V. A separating set is minimal if no proper subset of it is a
separating set.

In other words for elasticity tensors E,E ∈ Ela (which are of even order),
the n equalities si(E) = si(E) between their separating invariants imply that
the elasticity tensor E is obtained by rotating E (i.e. E = g ⋆E, g ∈ SO(3),
hence E and E are in the same orbit).

Note that definition 3.1 is very general and the functions s1, . . . , sn are
not required to be polynomial in vvv (resp. in E).

Remark 3.2. A remarkable fact is that an integrity basis of R[V]O(3), the
algebra of real O(3)-invariant polynomials over V, is also a separating set [1,
Appendix C]. However, the cardinal of an integrity basis can be very big
(for instance, it is of 297 for the 3D elasticity tensor [29]). But, even if no
general result exists, the cardinal n of a polynomial separating set can be
smaller than the cardinal of a minimal integrity basis (see for instance [50]).

(a) Genericity – Weak separating set. A weaker concept was suggested
in [11], but requires first to define what is meant by generic tensors (also
called tensors in general position). This can be done rigorously by intro-
ducing the Zariski topology on the real vector space V (V = Ela in next
applications), which is defined by specifying its closed sets rather than its
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open sets (see [22] for more details). A closed set in the Zariski topology is
defined as

Z := {vvv ∈ V; f(vvv) = 0, ∀f ∈ S}

where S is any set of polynomials in vvv.

Remark 3.3. A remarkable fact concerning this topology is that a non-empty
closed set is either the whole space or has Lebesgue measure zero [15, 34].

A Zariski open set is defined as the complementary set Zc of a closed
Zariski set. Note that a non-empty Zariski open set in R

N is moreover
open and dense in the canonical topology of Rn, as a normed vector space.

Example 3.4. On the vector space V = R
3 ⊕ R

3 ⊕ R
3, the following set

Z := {(vvv1, vvv2, vvv3) ∈ V; det(vvv1, vvv2, vvv3) = 0}

is a Zariski closed set (as det(vvv1, vvv2, vvv3) = 0 is a polynomial equation in the
components vi1, v

i
2, v

i
3 of vvv1, vvv2, vvv3) and

Zc = {(vvv1, vvv2, vvv3) ∈ V; det(vvv1, vvv2, vvv3) 6= 0}

is a Zariski open set.

Example 3.5. On the vector space Ela, the set of non triclinic materials (i.e.
of either monoclinic, orthotropic, tetragonal, trigonal, transversely isotropic,
cubic or isotropic materials [20]) is defined by polynomial equations in E [31].
It is a Zariski closed set. The set of triclinic materials is a non-empty Zariski
open set.

Definition 3.6 (Genericity). Given a proper closed Zariski set Z of some
(finite dimensional) vector space V, a vector vvv is called generic (or as in gen-
eral position by algebraic geometers) if it belongs to the non-empty Zariski
open set Zc.

Coming back to our definition of generic tensors, this means that, infor-
mally speaking, the probability of a randomly chosen tensor being generic
is 1 and that we omit, in the results, tensors in the Zariski closed set Z.
Note that the notion of generic element is not absolute. It depends on some
given property which defines a Zariski open subset Zc and there is a lot of
freedom in the choice of such a class of generic tensors.

Definition 3.7 (Weak separating set). Given some non-empty Zariski open
set Zc ⊂ V, a finite set of O(3)-invariant functions {s1, . . . , sm} over V is
called a weak separating set (or a weak functional basis) if

si(vvv1) = si(vvv2), i = 1, . . . ,m =⇒ ∃g ∈ O(3), vvv1 = g ⋆ vvv2.

for all vvv1, vvv2 ∈ Zc.

The notion of minimal cardinality for weak separating (functional) bases
can also be formulated in a given class of functions. We shall say that a
weak separating basis is minimal if their is no other weak separating basis
with smaller cardinal in the same class of functions. If some results exist
for the class of polynomial functions in complex algebraic geometry [19],
where some bounds on the cardinal of a minimal weak separating basis are
provided, it is not totaly clear how they can be translated into the realm of
real algebraic geometry.
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(b) Separating sets of rational functions. Besides (weak) separating
bases of polynomial functions, there are also results on separating bases of
rational functions [24, 21] (which are necessarily weak since tensors for which
the denominators vanish are forbidden). For instance, Maeda [26] provided
a separating set of 6 rational invariants for binary octavics (complex poly-
nomials homogeneous of degree 8 in two variables), which are closely related
to harmonic tensors of order 4 ( vector space H

4(R3), see Appendix C).
Using this result, we provide in Appendix D a separating set of 6 rational
invariants for H4(R3). This set is minimal because one cannot produce a set
of separating invariants of cardinality lower than the transcendence degree,
which is the maximal number of algebraic independent elements in the frac-
tional field of the invariant algebra [14, Page 26]. For the elasticity tensor,
this minimal number is

dimEla− dimO(3) = 18.

On this matter, there is a paper by Ostrosablin [33] who suggests a system
of 18 separating rational invariants, but no rigourous proof of this result
seems to be available in the literature.

(c) Local separability. Finally, there is a third (weaker) notion of separa-
bility which should not be confused with the preceding ones: local separa-
bility (formulated in Appendix A), which has been addressed, for instance,
in [13] for the elasticity tensor.

These several notions of separability differ by the size of the subset U of
V (V taken next as the vector space Ela), on which the separating property
is defined. The strongest one is the first one (separating set) because the
separating property is global and defined over the whole vector space V. In
particular, the minimal integrity basis — of 297 invariants — for elasticity
tensors produced in [29] is a global, albeit non minimal, separating set over
the full vector space Ela. A Zariski’s open sets Zc being very large (open and
dense in the canonical topology of V, the second notion (weak separating
set) separates most orbits (except a few ones which constitute a set of zero
Lebesgue measure over V. The last one (local separating set) is the weaker,
it separates only tensors in a given neighbourhood U of a given point vvv0 ∈ V

(resp. of a given elasticity tensor E0 ∈ Ela).

4. Weak separating sets for elasticity tensors

As already discussed, the harmonic decomposition E = (λ, µ,d′,v′,H)
of an elasticity tensor is given by (9)-(10), with λ, µ two invariants, with
d(E) = tr12 E and v(E) = tr13 E two second-order covariants and H(E) a
fourth-order (harmonic) covariant of E (satisfying (11)).

In [11], Boehler, Kirillov and Onat introduced a set of generic elasticity
tensors and provided, for this set, a weak separating set of 39 polynomial
invariants. Their generic tensors are defined as those for which the second-
order covariants d2 = tr13H

2 and d3 = tr13 H
3 of the considered elasticity

tensor E do not share a common principal axis. This is equivalent to say that
the symmetry class of the pair of second-order tensors (d2,d3) is triclinic (its
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symmetry group is reduced to the identity). This condition defines a Zariski
open set Zc. Some polynomial equations defining the complementary set Z
were detailed in [11] using tensor’s components. An intrinsic and covariant
formulation of these polynomial conditions can be formulated as follows
(see [31, Theorem 8.5])

(d2vvv5)× vvv5 6= 0 or (d3vvv5)× vvv5 6= 0,

where vvv5 := ε :(d2d3 − d3d2) is a first-order covariant of H (and therefore
of E). In the present work, we shall consider a smaller Zariski open set by
restricting to elasticity tensors for which d2 is furthermore orthotropic (three
distinct eigenvalues). This is equivalent to add the polynomial condition
d2

2 × d2 6= 0 (see [31, Lemma 8.1]).

Remark 4.1. Note that, if the pair (d2,d3) is triclinic, then H (and hence
E) is triclinic, since a tensor cannot be less symmetric than its covariants.
However, the converse does not hold: it is not true that for any triclinic
elasticity tensor E, the pair of second-order covariants (d2,d3) is triclinic,
the later condition is stronger.

We will now formulate our main theorem. Recall that a′ = a− 1
3(tr a)q

stands for deviatoric part of a second-order tensor, (ab)s := 1
2(ab + ba) is

the symmetrized matrix product, and [a,b] := ab− ba is the commutator
of two second-order symmetric tensors a, b.

Theorem 4.2. Let E = (λ, µ,d′,v′,H) be an elasticity tensor, d2 = tr13H
2

and d3 = tr13 H
3. Then, the following 21 polynomial invariants, λ = trd,

µ = trv,

I2 := trd2, I3 := trd3, I4 := trd2
2, I5 := tr(d2d3), I6 := trd3

2,

I7 := tr(d2
2d3), I8 := tr(d2d

2
3), I9 := trd3

3, I10 := tr(d2
2d

2
3),

D3 := d′ :d2, D4 := d′ :d3, D5 := d′ :d2
2, D6 := d′ :(d2d3)

s, D11 := d′ :[d2,d3]
2,

V3 := v′ :d2, V4 := v′ :d3, V5 := v′ :d2
2, V6 := v′ :(d2d3)

s, V11 := v′ :[d2,d3]
2,

separate generic tensors E, satisfying the following conditions:
(1) the pair (d2,d3) is triclinic, and (2) d2 is orthotropic.

Remark 4.3. Note that if condition (1) is satisfied, then, either d2 or d3

is orthotropic (by Lemma 4.4). Thus, one could omit condition (2) (as in
[11]) and formulate a new separating result on this larger Zariski open set.
However, the price to pay is to add the two invariants d′ : d2

3 and v′ : d2
3 to

the list in Theorem 4.2, increasing its cardinal from 21 to 23 (but still below
the 39 invariants of [11]). Indeed, in that case, d3 can play the role of d2 in
the proof of Theorem 4.2,

Theorem 4.2 makes use of the following lemma (whose proof is postponed
to Appendix B).

Lemma 4.4. Let (a,b) be a triclinic pair of symmetric second-order tensors.
Then at least one of them is orthotropic, say a, and in that case

B =
(

q,a,b,a2, (ab)s, [a,b]2
)

is a basis of S2(R3), the space of symmetric second-order tensors.
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Proof of Theorem 4.2. Let E = (λ, µ,d′,v′,H) be an elasticity tensor satis-
fying the conditions (1) and (2) of Theorem 4.2. Then, by Lemma 4.4,

B =
(

q,d2,d3,d2
2, (d2d3)

s, [d2,d3]
2
)

is a basis of S2(R3). Thus, if we set

ǫǫǫ1 := d2, ǫǫǫ2 := d3, ǫǫǫ3 := d2
2, ǫǫǫ4 := (d2d3)

s, ǫǫǫ5 := [d2,d3]
2,

and define ǫǫǫ′ as the deviatoric part of ǫǫǫ, then, B′ = (ǫǫǫ′α) is a basis of the
5-dimensional vector space H

2(R3), i.e. of the space of deviatoric second-
order tensors. In particular, the second-order harmonic components (d′,v′)
of E can be expressed in this basis as

d′ =
5

∑

α=1

d′αǫǫǫ
′

α, v′ =
5

∑

α=1

v′αǫǫǫ
′

α.

We will now show that the components d′α and v′α are rational expressions
of the polynomial invariants Ik, Dk and Vk introduced in Theorem 4.2. To
do so, we shall introduce the Gram matrix G = (Gαβ), where

Gαβ = ǫǫǫ′α : ǫǫǫ
′

β

are the components of the canonical scalar product on H
2(R3) in this basis.

Note that G is positive definite and that its components are polynomial
invariants of H. They can thus be expressed as polynomial functions of the
invariants I2, . . . , I10, which form an integrity basis of R[H4]O(3). Now, we
have

d′ :ǫǫǫ′β =

5
∑

α=1

d′αGαβ , v′ : ǫǫǫ′β =

5
∑

α=1

v′αGαβ ,

and since d′ : ǫǫǫ′ = d′ : ǫǫǫ, and v′ : ǫǫǫ′ = v′ : ǫǫǫ, we get

(D3 D4 D5 D6 D11) = (d′1 d
′

2 d
′

3 d
′

4 d
′

5)G,

and

(V3 V4 V5 V6 V11) = (v′1 v
′

2 v
′

3 v
′

4 v
′

5)G.

Inverting these linear systems, we deduce that d′α and v′α are rational
expressions of Ik, Dk and Vk, where the common denominator detG depends
only on the Ik. Consider now two generic elasticity tensors

E = (λ, µ,d′,v′,H), and E = (λ, µ,d
′

,v′,H)

for which the 21 invariants defined in Theorem 4.2 are the same. Then, by
Theorem 2.7 and Remark 3.2, there exists g ∈ O(3) such that

H = g ⋆H.

We get thus

d2 = g ⋆ d2, d3 = g ⋆ d3.

Hence the two bases of S2(R3), (ǫǫǫ′α(H)) and (ǫǫǫ′α(H)) are related by g

ǫǫǫ′α(H) = g ⋆ ǫǫǫ′α(H),

and the corresponding Gram matrices are equal, G = G. Moreover, the

components of d′, v′ in (ǫǫǫ′α(H)) and the components of d
′

, v′ in (ǫǫǫ′α(H))
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are the same (since the invariants Dk and Vk have the same value on both
tensors). Therefore, we have

d
′

= g ⋆ d′, v′ = g ⋆ v′.

Finally, since λ = λ and µ = µ, we get

E = (H,d
′

,v′, λ, µ) = (g ⋆H, g ⋆ d′, g ⋆ v′, λ, µ) = g ⋆E,

This ends the proof. �

Note that in the proof of Theorem 4.2, the nine invariants Ik are first used
to separate the two fourth-order harmonic tensors H and H (the fourth-
order hamonic components of the two elasticity tensors E and E). Thus
these nine invariants can be substituted by any other separating set for
the vector space H

4(R3) of harmonic fourth-order tensors without changing
the final result. In Appendix D, we provide a set of 6 separating rational
invariants for H4(R3)

i2, i3, i4, k4, k8, k9,

defined in Theorem D.3, obtained by translating the 6 generators of the field
of rational invariants of the binary octavic calculated by Maeda in [26]. We
get therefore the following first corollary.

Corollary 4.5. The following 18 rational invariants

λ, µ, i2, i3, i4, k4, k8, k9,

D3, D4, D5, D6, D11, V3, V4, V5, V6, V11

separate generic tensors E = (λ, µ,d′,v′,H), satisfying the following condi-
tions: (1) the pair (d2,d3) is triclinic, and (2) d2 is orthotropic.

In Theorem D.3, it can be observed that the denominator of each rational
invariant

i2, i3, i4, k4, k8, k9,

is a power of the polynomial invariant of degree 12

M12 := ‖d2
2 × d2‖

2.

where the generalized cross product × was defined in (5). Besides, it was
shown in [31, Lemma 8.1] that d2

2 ×d2 6= 0 if and only if d2 is orthotropic.
We have thus the following second corollary.

Corollary 4.6. The following 19 polynomial invariants

λ, µ, M12 K14 := M12 i2, K27 := M12
2 i3,

K40i := M12
3 i4, K40k := M12

3 k4, K80 := M12
6 k8, K93 := M12

7 k9,

D3, D4, D5, D6, D11, V3, V4, V5, V6, V11,

separate generic tensors E = (λ, µ,d′,v′,H), satisfying the following condi-
tions: (1) the pair (d2,d3) is triclinic, and (2) d2 is orthotropic.
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5. Conclusion

After having obtained in Section 2 an integrity basis {Ik} for fourth-order
harmonic tensors H by means of two of its second-order covariants only
(d2(H) and d3(H)), we have proposed in Theorem 4.2 a weak separating
set of 21 polynomial invariants

{si(E)} = {λ, µ, Ik,Dl, Vl}, k = 2, · · · , 10, l = 3, 4, 5, 6, 11,

for generic triclinic elasticity tensors E. Such a set is also called a weak
functional basis in the mechanical community. It is such that the 21 equali-
ties si(E) = si(E) of separating invariants of generic E,E ∈ Ela imply that
elasticity tensor E is obtained by rotation of elasticity tensor E. There is
no need to assume that E is in a neighbourhood of E (contrary to the case
of the locally separating set given in Theorem A.3).

We also provide in Corollary 4.5 a minimal separating basis of 18 ra-
tional invariants for generic elasticity tensors (leading to a minimal weak
separating basis of 19 polynomial invariants in Corollary 4.6). This result
is important from a theoretical point of view (as 18 = dimEla− dimO(3)
is the transcendence degree so that this set is minimal). We point out that
the notion of genericity is not absolute, it depends on some given prop-
erty which defines a closed subset (by polynomial equations for the Zariski
topology used in present work) and that in all cases the probability of a
randomly chosen elasticity tensor being generic is 1. Using the genericity
condition defined in [11], we improve these authors’ result of 39 separat-
ing polynomial invariants by the set of 23 polynomial separating invariants
{λ, µ, Ik,Dl, Vl,d

′ : d2
3,v

′ : d2
3} (Remark 4.3).

Appendix A. Local separability

Local separability can be formulated as follows.

Definition A.1 (Locally separating set). A finite set of O(3)-invariant func-
tions {s1, . . . , sp} over V is locally separating in the neighbourhood U ⊂ V of
vvv0 (for the usual topology of V) if and only if

si(vvv1) = si(vvv2), i = 1, . . . , p =⇒ ∃g ∈ O(3), vvv1 = g ⋆ vvv2.

for all vvv1, vvv2 ∈ U .

Such a set can be considered as a “local chart” (i.e local coordinates)
around the orbit of vvv0 (resp. E0) in the orbit space V/O(3) (resp.
Ela/O(3)), which is not a smooth manifold anyway. A locally separating
set of 18 invariants (but not polynomial) for elasticity tensors which have 6
distinct Kelvin moduli [12] has been produced in [13].

Remark A.2. Since an integrity basis J = (J1, . . . , J297) is known for the
elasticity tensor [29], one can find a locally separating set of 18 invariants
(i.e. the minimal number) around each tensor E0 for which the Jacobian
matrix

dJ =

(

∂Jp
∂Eijkl

)

has maximal rank 18. Indeed, one can extract from dJ , a submatrix

(dJp1 , . . . , dJp18)
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of rank 18, construct a local cross-section as in [32, Page 161] and show that
Jp1 , . . . , Jp18 are locally separating around E0.

We have then the following result (rank (dJp1 , . . . , dJp18) equal to 18
checked on a randomly chosen elasticity tensor E0):

Theorem A.3. Let E = (λ, µ,d′,v′,H) be an elasticity tensor. Then, the
following 18 polynomial invariants,

λ = trd, µ = trv, trd2, trv2, trd3, trv3,

I2 = trd2, I3 = trd3, I4 = trd2
2, d : d2, v : d2, d2 : d2,

v2 : d2 d : H : d, v : H : v, d : H : v, tr(dd2v), d : (H2)s : v,

separate locally generic elasticity tensors.

Appendix B. Proof of Lemma 4.4

Proof. Note first that a and b cannot be both transversely isotropic (i.e.
having both only two different eigenvalues), otherwise the pair (a,b) would
have necessarily a common eigenvector and would be not be triclinic. Sup-
pose thus that a is orthotropic. Without loss of generality, we can assume
that a = diag(λ1, λ2, λ3) is diagonal with λi 6= λj for i 6= j. But then,
(q,a,a2) is a basis of the space of diagonal matrices, noted Diag, and there-
fore B contains e11, e22, e33 where

eij =

{

eeei ⊗ eeei, if i = j;
eeei ⊗ eeej + eeej ⊗ eeei, if i 6= j.

We will now show that B contains also e12, e13, e23. Let’s write

b = x e23 + y e13 + z e12, mod Diag.

where modulo Diag means that the equality holds up to a diagonal ma-
trix that we don’t need to precise. We cannot have (x, y) = (0, 0), nor
(x, z) = (0, 0), nor (y, z) = (0, 0), otherwise a and b would share a common
eigenvector and would not be triclinic. We have then

2(ab)s = (λ2 + λ3)x e23 + (λ1 + λ3)y e13 + (λ1 + λ2)z e12, mod Diag.

and

[a,b]2 = ((λ1−λ2)λ3+λ1λ2−λ2
1)yz e23+((λ2−λ1)λ3−λ2

2+λ1λ2)xz e13

+ (−λ2
3 + (λ2 + λ1)λ3 − λ1λ2)xy e12, mod Diag.

The question is then reduced to check whether b, (ab)s and [a,b]2 are
linearly independent modulo Diag. To do so, we calculate the determinant
of the matrix

M =





b23 2(ab)s23 [a,b]223
b13 2(ab)s13 [a,b]213
b12 2(ab)s12 [a,b]212





and find

detM = (λ2 − λ1)(λ3 − λ1)(λ3 − λ2)
(

x2y2 + y2z2 + z2x2
)

,

which does not vanish since a is orthotropic. This ends the proof. �
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Appendix C. Rational invariants

In this appendix, we detail the link between polynomial and rational
invariants of Hn(C3) and the space of binary forms S2n. Recall that a binary
form f of degree k is a homogeneous complex polynomial in two variables
u, v of degree k:

f(ξξξ) = a0u
k + a1u

k−1v + · · ·+ ak−1uv
k−1 + akv

k,

where ξξξ = (u, v) and ai ∈ C. The set of all binary forms of degree k, noted
Sk, is a complex vector space of dimension k + 1. The special linear group

SL(2,C) :=

{

γ :=

(

a b
c d

)

, ad− bc = 1

}

acts naturally on C
2 and induces a left action on Sk, given by

(γ ⋆ f)(ξξξ) := f(γ−1ξξξ),

where γ ∈ SL(2,C).
Binary forms of degree 2n are closely related to harmonic tensors of degree

n (we refer to [29, 31] for more details) in the following way. Every totally
symmetric tensor S of order n defines an homogeneous polynomial of degree
n

p(xxx) = S(xxx, . . . ,xxx)

which can be seen to be an isomorphism. In this correspondence, harmonic
tensors (with vanishing traces) correspond to harmonic polynomials (with
vanishing Laplacian). Now, there is an equivariant isomorphism between
the space Hn(C

3) of complex harmonic polynomials of degree n and binary
forms of degree 2n. This isomorphism is induced by the Cartan map

(15) φ : C2 → C
3, (u, v) 7→

(

u2 + v2

2
,
u2 − v2

2i
, iuv

)

,

and is given by
φ∗ : Hn(C

3) → S2n, h 7→ h ◦ φ.

This isomorphism is moreover SL(2,C)-equivariant. Indeed, the adjoint rep-
resentation Ad of SL(2,C) on its Lie algebra sl(2,C) (which is isomorphic
to C

3), preserves the quadratic form detm, where m ∈ sl(2,C), and induces
a group morphism from SL(2,C) to

SO(3,C) :=
{

P ∈ M3(C); P
tP = I, detP = 1

}

.

The isomorphism φ∗ between Hn(C
3) and S2n is thus equivariant in the

following sense:

φ∗(Adγ ⋆h) = γ ⋆ φ∗(h), h ∈ Hn(C
3), γ ∈ SL(2,C),

and the invariant algebras C[Hn(C
3)]SO(3,C) and C[S2n]

SL(2,C) are isomor-
phic.

Definition C.1. The transvectant of index r of two binary forms f ∈ Sp
and g ∈ Sq is defined as

(16) {f ,g}r =
(p− r)!(q − r)!

p!q!

r
∑

i=0

(−1)i
(

r

i

)

∂rf

∂ur−i∂vi
∂rg

∂ui∂vr−i
,

which is a binary form of degree p+ q−2r (which vanishes if r > min(p, q)).
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The invariant algebra of Sn is generated by iterated transvectants [32].
The tensorial operations between totally symmetric tensors, introduced in
the notations section, allow to translate these transvectants into tensorial
operations. Each of them has a polynomial counterpart (see [31]), which we
detail below. In what follows, totally symmetric tensors S1,S2, of respective
order n1, n2, correspond to the polynomials p1,p2, of respective degree n1,
n2.

• The symmetric tensor product (3) S1 ⊙ S2 corresponds to the stan-
dard product of polynomials

p = p1 p2.

• The symmetric r-contraction (4) S1
(r)
·
s
S2 corresponds to the poly-

nomial

p =
(n1 − r)!

n1!

(n2 − r)!

n2!

∑

k1+k2+k3=r

r!

k1!k2!k3!

∂rp1
∂xk1∂yk2∂zk3

∂rp2
∂xk1∂yk2∂zk3

.

• The generalized cross product (5) S1 × S2 corresponds to the poly-
nomial

p =
1

n1n2
det(xxx,∇p1,∇p2),

where ∇p is the gradient of p.
• The harmonic product (7) H1 ∗H2 corresponds to the polynomial

p = (p1 p2)
′.

Using these operations and the Cartan map (15), we can translate the
transvectants as binary operations between tensors. In the following propo-
sition we have made no difference between an harmonic tensor H and its
polynomial counterpart (which is an abuse of notation). Moreover, the trace
of a symmetric tensor of order n is defined as the contraction between any
two indices.

Proposition C.2. Let F ∈ H
p(C3) and G ∈ H

q(C3) be two harmonic
tensors and set f := φ∗F and g := φ∗G. Then we have

(17) {f ,g}2r = 2−rφ∗(F
(r)
·
s
G)′

and

(18) {f ,g}2r+1 = κ(p, q, r)φ∗(trr(F ×G))′

where

κ(p, q, r) =
1

22r+1

(p+ q − 1)!(p − r − 1)!(q − r − 1)!

(p + q − 1− 2r)!(p − 1)!(q − 1)!
.

Besides polynomial invariants, one can also define rational invariants for a
given representation V of a group G. These are defined as rational functions
on V, which are invariant under the action of G. These functions form a
field, the field of rational invariants and is noted K(V)G. An important
result is the following theorem which is a corollary of a more general result
due to Popov and Vinberg [40, Theorem 3.3] (see also [14, Page 16]).
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Theorem C.3. Let V be a linear representation of G, where G is either
SL(2,C), SO(3,C) or SO(3,R) and the base field K is either R or C. Then
the field of rational invariants K(V)G is the field of fractions of the invariant
algebra K[V]G. In other words, any rational invariant k can be written as
P/Q where P and Q belong to K[V]G.

A finite system of rational invariants S = {k1, . . . , kN} generates the field
K(V)G if any rational invariant k ∈ K(V)G can be written as a rational
expression in k1, . . . , kN .

Remark C.4. A remarkable fact is that a finite system S of rational invariants
generates the field K(V)G if and only if S is a weak separating set (see [40,
Lemma 2.1].

Note that Theorem C.3 allows to translate any generating set ofK(S8)
SL(2,C)

into a generating set of K(H4)SO(3,R).

Appendix D. Maeda Invariants

A minimal generating set of 9 generators for the invariant algebra of S8
is known since at least 1880 (see [42, 35]). In 1990 [26, Theorem B], Maeda
produced a system of 6 rational invariants which generate the invariant field
C(S8)

SL(2,C).

Theorem D.1 (Maeada, 1990). The invariant field of binary octavics over
C is generated by the following six algebraic independent rational functions

IM2 := {θθθ,θθθ}2/M, IM3 := {θθθ3, t}6/M
2, IM4 := {θθθ4, {t, t}2}8/M

3

JM
2 := {{θθθ, f}1, {t, t}2}8 {θθθ

6, j}12/M
6,

JM
3 :=

(

36{θθθ2f , j}12/M
2 − 28{{θθθ2, f}3, t}6/5M

)

{θθθ6, j}12/M
5,

JM
4 := 2{fθθθ3, t{t, t}2}14/M

3 + 20{{f , θθθ3}1, j}12/7M
3 − 70{{f , θθθ3}4, t}6/99M

2,

where f ∈ S8 is a binary form and

Q := {f , f}6, t := {{Q,Q}2,Q}1, θθθ := {f , t}6,

M := {t, t}6, j := {{t, t}2, t}1.

Remark D.2. We found a few minor numerical errors in [26] and did the
following corrections, which were used in Theorem D.1.

• In [26, Lemma 2.10(3)], we should read

{t, {t, t}2}1 = −j = ∆3λ3/108;

• In [26, Lemma 2.12], we should read

λ6∇ = −108{θθθ6, j}12∆
3/λ3;

• In [26, Lemma 2.13], we should read

λJ2/∇ = 72{{θθθ, f}1, {t, t}2}8/∆λ2,

J3/∇ = 108{θθθ2f , j}12/λ
5 − 28{{θθθ2, f}3, t}6/5λ

3,

J4 = 54{θθθ3f , t{t, t}2}14/λ
6 + 540{{f , θθθ3}1, j}12/7λ

6 − 70{{f , θθθ3}4, t}6/11λ
4.
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Let H ∈ H
4 and f = φ∗H, the corresponding binary form of degree 8,

where φ∗ has been defined in Appendix C. Using transvectants’ translations
obtained in Proposition C.2, we can recast Maeda’s invariants of f as rational
invariants of H. We get first

φ−∗Q = φ−∗{f , f}6 =
1

8
d′

2,

φ−∗t = φ−∗{{Q,Q}2,Q}1 =
1

211
d 2
2 × d2 =

1

211
T6,

M = φ−∗{t, t}6 =
1

225
‖T6‖

2 =
1

225
M12,

φ−∗θθθ = φ−∗{f , t}6 =
1

214
www7 =

1

214
H

...T6,

φ−∗j = φ−∗{{t, t}2, t}1 =
1

235

(

(T6
(1)
·
s
T6)

′ ×T6

)

′

=
1

235
J18,

where φ−∗ stands for the inverse of φ∗ and where we have used the following
observations.

(1) If H ∈ H
n(R3) and q is the Euclidean tensor, then,

(⊙kq)×H = 0, ∀k ≥ 1,

where ⊙kq is the symmetric tensor product of k copies of q.
(2) If H ∈ H

n(R3) and www ∈ H
1(R3), then, www ×H is harmonic.

(3) If a ∈ S
2(R3), then a2 × a is harmonic (see [31, Remark 8.2]) and

a2 × a = a′
2
× a′.

(4) If T1,T2 ∈ T
n(R3), then, T1

(n)
· T2 = 〈T1,T2〉 is their scalar product

and

〈T1,T
s
2〉 = 〈Ts

1,T2〉, 〈T1, (T
s
2)

′〉 = 〈(Ts
1)

′,T2〉.

We get then

φ−∗{θθθ2, f}3 =
5

6
tr[(www7 ∗www7)×H] = −

1

4
(H ·www7)×www7,

which is an harmonic third-order tensor, by (2) and the fact that H ·www7 is it-
self harmonic. We have finally the following result, where we have introduced
the notation ∗kwww7 for the harmonic product www7 ∗ . . . ∗www7 = (www7 ⊗ . . .⊗www7)

′

of k copies of www7. We point out, moreover, that the first-order covariant www7,
the third-order covariant T6 as well as the sixth-order covariant J18 are all
harmonic.
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Theorem D.3. The invariant field of H4(R3) is generated by the following
six algebraic independent rational functions

i2 =
‖www7‖

2

M12
,

i3 =
〈∗3www7,T6〉

M2
12

,

i4 =
〈∗4www7,T6 ·T6〉

M3
12

k4 =
1

5M3
12

〈H ∗ (∗3www7),T6 ∗ (T6
(1)
·
s
T6)

′〉+
1

7M3
12

〈H× (∗3www7),J18〉

−
7

99M2
12

〈H : (∗3www7),T6〉.

k8 =
〈www7 ×H,T6 ·T6〉 〈∗

6www7,J18〉

M6
12

,

k9 =
〈∗6www7,J18〉

M5
12

(

36

M2
12

〈(∗2www7) ∗H,J18〉+
28

5M12
〈(H ·www7)×www7,T6〉

)

,

where H ∈ H
4(R3) is the harmonic tensor, and

T6 := d2
2 × d2, M12 := ‖d2

2 × d2‖
2,

www7 := H
...T6, J18 := (T6

(1)
·
s
T6)

′ ×T6.
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94235 Cachan Cedex, France

E-mail address: desmorat@lmt.ens-cachan.fr
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