
HAL Id: hal-01966145
https://hal.science/hal-01966145v1

Submitted on 16 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain-Specific Languages in Scientific Computing
Konrad Hinsen

To cite this version:
Konrad Hinsen. Domain-Specific Languages in Scientific Computing. Computing in Science and
Engineering, 2018, 20 (1), pp.88-92. �10.1109/MCSE.2018.011111130�. �hal-01966145�

https://hal.science/hal-01966145v1
https://hal.archives-ouvertes.fr

Domain-specific languages in scientific computing

If you have been following developments in software engineering over the recent
years, you have probably noticed that the term DSL (domain-specific language)
has become a minor buzzword in that field. You may have concluded that this
is a hot new idea that is certainly not ready for application in real life. What I
want to show in this article is that computational scientists (and others) have
been using DSLs for decades and will continue to do so. What is new is not
DSLs per se, but the name and the attention given to them.

As the name says, a DSL is first of all a language. In the context of computing,
this means a formal language, i.e. a language that can be processed mechanically
by algorithms. The definition of a formal language consists of two parts: syntax
defines which byte sequences are valid elements in the language, and semantics
assigns a meaning to each valid element. For example, the syntax of HTML
(HyperText Markup Language) defines start tags (e.g. <h1>) and end tags (e.g.
</h1>), and prescribes that they must occur as matching pairs, whereas HTML
semantics says that the text between <h1> and </h1> is a top-level heading.

The qualifier “domain-specific” indicates that a language was designed specif-
ically for a restricted application domain, as opposed to general-purpose or
broad-spectrum languages that aim at being useful in many application do-
mains. HTML is a DSL, because it was designed to represent Web documents
and nothing else. Python is an example of a general-purpose language, because
you can encode almost any kind of digital information in Python.

Given that there are general-purpose languages like Python, what’s the point of
more limited languages like HTML? Why don’t we just store Web documents as
Python scripts, using the ElementTree module for example? There are several
good reasons. To start with, the same Web document would be longer and
more complex when written in Python than it is in HTML. Web documents
would thus be more difficult to read and write for human authors. Moreover, a
Web browser would have to know the entire Python language, and come up with
some way to detect if the Python script presented to it really is a Web document.
It can’t just run the script and see what happens, because the script might be
malicious and delete all the files on the computer. From a security point of view,
a limited language that doesn’t allow malicious operations is a clear advantage.
And for a language intended to be processed by many application programs,
simplicity makes everybody’s life easier.

As this example shows, a DSL is (1) more than, (2) less than, and (3) different
from a general-purpose language. It is more in providing domain-specific func-
tionality that a general-purpose language would have to acquire via a library.
It is less in not providing superfluous functionality that makes the information
more difficult to process and at worst could become dangerous. It is differ-
ent from a general-purpose language in being optimized for a narrow range of
information types right from the start, allowing a more concise representation.

1

To end the theoretical part of my discussion of DSLs, let me add that the
distinction between “domain-specific” and “general-purpose” is more one of in-
tended use than of technical characteristics. As an example, consider the TeX
language that many scientists use for writing their publications. Its intended
purpose is being a domain-specific language for typesetting, but technically it
has all the required properties for a general-purpose language, in particular
Turing-completeness. TeX can therefore be (ab-)used for other applications,
such as the simulating a Mars rover (http://sdh33b.blogspot.fr/2008/07/icfp-
contest-2008.html). Exploring the limits of a language has its merits beyond
the intellectual challenge of winning a contest, in particular when it comes to
detecting security problems. However, I still consider TeX a DSL rather than
a general-purpose language, in spite of the possibility of using it for Mars rover
simulations.

The two examples I have given until now, HTML and TeX, are both related
to electronic documents, and that application domain has many more DSLs to
offer. HTML is complemented by other Web-standard DSLs such as MathML
for formulas or SVG for vector graphics. More recently, lightweight markup
languages such as Markdown or reStructuredText have become very popular.
And at the printing-press end of the publishing chain, we find DSLs such as
PostScript and PDF.

At this point I can almost hear protesting murmurs. PDF is not a language,
it’s a file format! But then, isn’t HTML a file format as well? Yes, if you prefer.
There is in fact a significant overlap between file formats and DSLs. The two
terms represent different points of view rather than distinct concepts. The term
“file format” emphasizes the technical aspect of data management: how to store
data in a file such that a program can read it. The term “language” emphasizes
the human-computer interfacing aspect: representing information in such a way
that is makes sense to both computers and their users. Purely machine-oriented
file formats, and in particular binary formats, would not be considered DSLs,
and therefore PDF is indeed a borderline case (it’s a container file format inside
which page contents are defined in PostScript, which is a DSL by any reasonable
definition). But every file format meant to be read or written by humans, be
they software developers or users, qualifies as a DSL.

In scientific computing, we find two dominant approaches to the human-
computer interface, not considering graphical users interfaces because they are
used for a very different type of interaction. The traditional one is to write
application programs, usually in a compiled language such as Fortran or C++,
that have a broad but fixed functionality. Such programs tend to require a
large number of parameters and input files, which they read from a file typically
referred to as an “input”, “control” or “configuration file”. Since these files are
written by humans, their formats should be treated as DSLs. A more recent
alternative approach is to create a collection of interoperating libraries, and let
users write scripts that combine items from these libraries for doing a specific
computation. The scientific Python ecosystem is probably the best-known

2

example for this approach. The problem-specific information is contained in a
script, i.e. it is expressed in a general-purpose language rather than a DSL.

I will illustrate these two approaches by a toy example: the computation of the
electrostatic potential of a set of point charges. A traditional program would
require an input file looking like this:

0. 0. 0. 1.
0. 1. 0. -1.
1. 0. 0. -1.
1. 1. 0. 1.

The program’s user manual would explain that each line describes one point
charge by four floating-point numbers separated by spaces, the first three num-
bers being the Cartesian coordinates in nanometers, and the last number being
the charge in elementary charge units. Without this explanation, the file would
be impossible to interpret for a human reader. Even for a reader who knows
that the file describes four point charges, it is not obvious if they are stored by
line or by column, nor if the charge comes first or last, nor what the units are.

Next, let’s look at a Python script using a hypothetical library called
ElectrostaticPotential:

from ElectrostaticPotential import ChargeSystem
import numpy as np

charges = [(np.array([0., 0., 0.]), 1.),
(np.array([0., 1., 0.]), -1.),
(np.array([1., 0., 0.]), -1.),
(np.array([1., 1., 0.]), 1.)]

energy = ChargeSystem(charges).potential_energy()
print("The energy is", energy)

In this case it would be the library’s user manual that explains how to store the
positions and charges in Python data structures, and in which units the values
must be given. For the reader of the file, the Python code provides much useful
context. Contrary to the input file containing nothing but 16 numbers, the script
explicitly refers to charges and potentials. A reader with a basic knowledge of
electrostatics and the Python language could easily identify the position and
charge values from this context, but would remain in the dark concerning their
units.

The sixteen-number program input file clearly suffers from a lack of explicit con-
text (the type of information, including the units) and from a lack of structure
(which values are the charges?) that would permit basic error checking. The
Python script adds the structure and some of the context, but still lacks unit
information. On the other hand, the Python script also contains too much infor-
mation for the purpose of describing a point charge system: it refers to a specific
library (ElectrostaticPotential) and to a specific computation (potential en-

3

ergy). Moreover, it also contains scientifically irrelevant technical details, such
as the use of three different sequence data structures (lists, tuples, arrays). If
I want to compute something else, say the total charge of my system, using a
different library, I have to write another script from scratch, probably using
somewhat different data structures. I end up having two copies of my point
charge system definition that I may have to keep in sync for a while as my
research project evolves.

So what would a proper DSL for point charge systems look like? A good starting
point is to consider how the information would be presented in a scientific article.
My choice would be a table:

position [nm] charge [e]
0. 0. 0. 1.
0. 1. 0. -1.
1. 0. 0. -1.
1. 1. 0. 1.

This table contains exactly the information we want to store, neither more nor
less. This could be translated straightforwardly into a machine-readable file:

position [nm]	charge [e]
0. 0. 0.	1.
0. 1. 0.	-1.
1. 0. 0.	-1.
1. 1. 0.	1.

To make sure that this table syntax is a valid formal language, I would have to
show that it can be parsed unambiguously by a computer program. The proof
would consist of actually writing a parser, but I can spare myself that effort
because others have already done it: I have borrowed the table syntax from
an extension to the lightweight markup language Markdown, which is parsed
by the popular file format converter pandoc (http://www.pandoc.org/), among
others.

Compared to the original input file, this point-charge-systems DSL has the
advantage of being immediately comprehensible to a human reader, because all
information is explicit. Note that the presence of a unit indication does not
imply that every program reading such a file must be able to handle arbitrary
length and charge units. It might well report an error if the units are different
from what it expects. In fact, the definition of the DSL (which I have not
given) might well prescribe that the input table must have exactly two columns
with exactly the headings given in the example, making the first line completely
redundant. It’s up to the DSL designer to choose the right compromise between
generality and simplicity. The main difference between the DSL and file format

4

point of view is that the former can lead to requiring redundant information for
the benefit of human readers, and require software to verify it as part of error
checking.

The main obstacle to human-friendly DSLs is the effort required to implement
them. Computational scientists are not specialists in parser development, so it’s
not something they are particularly eager to do. There are, however, various
libraries and tools, called parser generators, that make the task easier. But even
if you prefer to avoid writing parsers altogether (like myself, as I will happily
admit), there are useful compromises that are much easier to implement while
retaining many of the advantages of human-optimized DSLs. The general idea
is to pick a syntax for generic data structures and express your DSL in terms
of them. You can then use an off-the-shelf parser for the data structure syntax,
and don’t have to write your own. As a bonus, you may find that your favorite
text editor already supports such data structure syntax.

Let me show you some concrete examples. A popular generic data structure
syntax is YAML (http://www.yaml.org/), which calls itself a data serialization
language. One way to encode our point charge system in YAML is

columns:
- position: nm
- charge: e

records:
- [[0., 0., 0.], 1.]
- [[0., 1., 0.], -1.]
- [[1., 0., 0.], -1.]
- [[1., 1., 0.], 1.]

Parsing this with the PyYAML library (https://github.com/yaml/pyyaml) re-
turns a simple Python data structure that any Python programmer should know
how to process:

{'columns': [{'position': 'nm'},
{'charge': 'e'}],

'records: [[[0.0, 0.0, 0.0], 1.0],
[[0.0, 1.0, 0.0], -1.0],
[[1.0, 0.0, 0.0], -1.0],
[[1.0, 1.0, 0.0], 1.0]]}

Another generic data structure syntax is known as s-expressions. It is probably
the oldest one, having been developed originally for the Lisp programming lan-
guage in the 1950s. A possible encoding of our point charge system in terms of
s-expressions looks like this:

(point-charges ((position nm) (charge e))
((0. 0. 0.) 1.)
((0. 1. 0.) -1.)
((1. 0. 0.) -1.)

5

((1. 1. 0.) 1.))

Again parsers exist for use with many programming languages. Python pro-
grammers can turn to the sexpdata library (http://sexpdata.readthedocs.io/)
and obtain a Python data structure with next to no effort:

[Symbol('point-charges),
[[Symbol('position'), Symbol('nm')],
[Symbol('charge'), Symbol('e')]],

[[0.0, 0.0, 0.0], 1.0],
[[0.0, 1.0, 0.0], -1.0],
[[1.0, 0.0, 0.0], -1.0],
[[1.0, 1.0, 0.0], 1.0]]

One of the big ideas of Lisp is to use the flexible data structure notation of
s-expressions not only for data, but also for code. This feels weird at first to
anyone coming to Lisp from other languages, but to those who persist until they
get used to it, the syntactical uniformity starts to show its advantages. One of
them is the ease of adding small DSLs to one’s programs using Lisp macros. If
macros were invented today, they would perhaps be called DSL compilers, be-
cause that’s exactly what they are. Note however that these are so-called embed-
ded DSLs, because they are used inside a program, not in separate files. Python
programmers can try this out for themselves using Hy (http://docs.hylang.org/),
which is an alternative s-expression syntax for Python. Hy can also be consid-
ered a Pythonic dialect of Lisp, because it supports macros. Using Hy macros,
you can develop DSLs that are sub- or supersets of Python, or both, with rela-
tively little effort, as long as your DSL syntax fits into the overall s-expression
syntax.

In case you end up addicted to DSL development, your ultimate drug is the
Racket language (http://www.racket-lang.org/), which claims to be “the world’s
first ecosystem for developing and deploying new languages.” Racket also has a
Lisp heritage, and favors s-expressions for everything, but it also lets you plug
in your own parser for your own syntax if you prefer. With such a language-
development toolkit, designing and implementing DSLs requires no bigger effort
than designing and implementing graphical user interfaces (GUIs). Note that
I am not saying that either one is trivial, but both are within the reach of
motivated software developers. DSLs are a better match than GUIs for many
scientific computing tasks, so I hope scientific software developers will explore
this option more intensively than they did in the past. Some examples from the
Racket ecosystem worth looking at to appreciate the potential of DSLs are Scrib-
ble (https://docs.racket-lang.org/scribble/), a DSL for electronic documents,
Slideshow (https://docs.racket-lang.org/slideshow/index.html?q=slideshow), a
DSL for slide-based presentations, or Video ((http://lang.video/), a DSL for
video editing.

The one guiding principle to keep in mind when designing DSLs is to focus on
the human user’s perspective, starting with your own one. Ask yourself how

6

you would ideally write down your scientific data or computation for use by
a computer. Assume first that there are no software-related constraints, as if
you were taking notes for sharing with a colleague. Then try to express the
same information using generic data structures, for example in YAML or in
s-expressions. Finally, if you believe that moving to a nicer syntax is worth the
additional effort, write your own parser.

Konrad Hinsen is a researcher at the Centre de Biophysique Moléculaire in
Orléans and at the Synchrotron SOLEIL in Saint Aubin. His research interests
include protein structure and dynamics and scientific computing. Hinsen has
a PhD in theoretical physics from RWTH Aachen University. Contact him at
konrad.hinsen@cnrs.fr.

7

	Domain-specific languages in scientific computing

