Adaptive Least-Squares One-Class Machines - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2012

Adaptive Least-Squares One-Class Machines

Résumé

In this paper, we derive an adaptive one-class classification algorithm. We propose a least-squares formulation of the problem, where the model complexity is controlled by a parsimony criterion. We consider the linear approximation criterion, and we couple it with a simple adaptive updating algorithm for online learning. We conduct experiments on synthetic datasets and real time series, and illustrate the relevance of the proposed method over existing methods, and show its low computational cost.
Fichier non déposé

Dates et versions

hal-01966121 , version 1 (27-12-2018)

Identifiants

  • HAL Id : hal-01966121 , version 1

Citer

Zineb Noumir, Paul Honeine, Cédric Richard. Adaptive Least-Squares One-Class Machines. [Research Report] UTT-ICD-2012-3-31, Université de technologie de Troyes. 2012, pp.1 - 12. ⟨hal-01966121⟩
58 Consultations
0 Téléchargements

Partager

More