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Kernel nonnegative matrix factorization
without the curse of the pre-image

Fei Zhu, Paul Honeine, Member, IEEE , Maya Kallas

Abstract—The nonnegative matrix factorization (NMF) is widely used in signal and image processing, including bio-informatics, blind

source separation and hyperspectral image analysis in remote sensing. A great challenge arises when dealing with a nonlinear

formulation of the NMF. Within the framework of kernel machines, the models suggested in the literature do not allow the representation

of the factorization matrices, which is a fallout of the curse of the pre-image. In this paper, we propose a novel kernel-based model

for the NMF that does not suffer from the pre-image problem, by investigating the estimation of the factorization matrices directly in

the input space. For different kernel functions, we describe two schemes for iterative algorithms: an additive update rule based on a

gradient descent scheme and a multiplicative update rule in the same spirit as in the Lee and Seung algorithm. Within the proposed

framework, we develop several extensions to incorporate constraints, including sparseness, smoothness, and spatial regularization with

a total-variation-like penalty. The effectiveness of the proposed method is demonstrated with the problem of unmixing hyperspectral

images, using well-known real images and results with state-of-the-art techniques.

Index Terms—Kernel machines, nonnegative matrix factorization, reproducing kernel Hilbert space, pre-image problem, hyperspectral

image, unmixing problem

✦

1 INTRODUCTION

THE NONNEGATIVE matrix factorization (NMF) has
become a prominent analysis technique in many

fields, owing to its power to extract sparse and tractable
interpretable representations from a given data matrix.
The scope of application spans feature extraction, com-
pression and visualization, within pattern recognition,
machine learning, and signal and image processing [6],
[7]. It has been popularized since Lee and Seung discov-
ered that, when applied to an image, “NMF is able to
learn the parts of objects” [8]. Since then, NMF has been
successfully applied in image classification [9], [10], face
expression recognition [11], [12], audio analysis [13], [14],
objet recognition [15], [16], computational biology [17],
gene expression data [18], [19], and clustering [20]. More-
over, the NMF is tightly connected to spectral clustering
[21], [22], [23]. See also [24] for a review.

The NMF consists in approximating a nonnegative
matrix with two low-rank nonnegative ones. It allows
a sparse representation with nonnegativity constraints,
which often provides a physical interpretation to the
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Université de Technologie de Troyes, Troyes, France.
Email : fei.zhu@utt.fr and paul.honeine@utt.fr

• M. Kallas is with the Centre de Recherche en Automatique de Nancy
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factorization thanks to the resulting part-based represen-
tation, as opposed to conventional subtractive models.
Typically, this idea is described with the issue of spectral
unmixing in hyperspectral imagery, as illustrated next.
A hyperspectral image details the scene under scrutiny
with spectral observations of electromagnetic waves
emitted/reflected from it. Typically, it corresponds to
the acquisition of a ground scene from which sunlight
is reflected. A hyperspectral image consists of a three-
dimensional data cube, two of the dimensions being
spatial, and the third one being the reflectance. In other
words, a spectral characteristic is available at each pixel.
For example, the AVIRIS sensors have 224 contiguous
spectral bands, covering from 0.4 to 2.5 µm, with a
ground resolution that varies from 4 to 20 m (depending
on the distance of the airborne to the ground). Due
to such spatial resolution, any acquired spectrum is a
superposition of spectra of several underlying materials.
The (spectral) unmixing of a given hyperspectral image
aims to extract the spectra of these single “pure” materi-
als, called endmembers, and to estimate the abundance
of each endmember in every pixel, i.e., every position of
the area under scrutiny. It is obvious that both abun-
dances and spectra of endmembers are nonnegative.
The NMF provides a decomposition suitable for such
physical interpretation.

The physical interpretation of the NMF is however
not for free. To illustrate this, consider the well-known
singular-value-decomposition (SVD), which allows to
solve efficiently the unconstrained matrix factorization
problem, under the risk of losing the physical meaning.
It is known that the SVD has polynomial-time complex-
ity and has a unique solution. As opposed to the SVD,
the NMF is unfortunately a NP-hard and an ill-posed
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problem, in general. In fact, it is proven in [25] that
the NMF is NP-hard; see also [26]. NMF is ill-posed,
as illustrated by the fact that the decomposition is not
unique; see [27] and references therein. In practice, the
non-uniqueness issue is alleviated by including priors
other than the nonnegativity, the most known being
sparseness and smoothness constraints.

First studied in the 1977 in [28], the NMF problem
was reinvented several times, scilicet with the work of
Paatero and Tapper in [29]. It has gained popularity
thanks to the work of Lee and Seung published in
Nature [8]. Many optimization algorithms have been
proposed for NMF, such as the multiple update rules [30]
and nonnegative least squares [31]. Sparseness, which
allows the uniqueness and enhances interpretation, is
often imposed either with projections [32] or with ℓ1-
norm regularization [33]. Smoothness also reduces the
degrees of freedom, typically in the spectral unmixing
problem, either by using piecewise smoothness of the
estimated endmembers [34], [35], [36], or by favoring
spatial coherence with a regularization similar to the
total-variation (TV) penalty [37]. Additional constraints
are the orthogonality [38], [39], the minimum-volume
[40], and the sum-to-one constraint which is often im-
posed on the abundances [41]. As illustrated in all these
developments, the NMF and most of its variants are
based on a linear mixing assumption. Providing non-
linear models for NMF is a challenging issue [42].

Kernel machines have been offering an elegant frame-
work to derive nonlinear techniques based on linear
ones, by mapping the data using some nonlinear func-
tion to a feature space, and applying the linear algorithm
on the mapped data [43]. The key idea is the kernel trick,
where a kernel function allows to evaluate the inner
product between transformed data without the need of
an explicit knowledge of the mapping function. This
trick allows to easily extend the mapping to functional
spaces, i.e., reproducing kernel Hilbert space, and infinite
dimensional spaces, namely when using the prominent
Gaussian kernel. Kernel machines have been widely
used for decisional tasks, initially with the so-called
support vector machines for classification and regression
[44]. Unsupervised learning has been tackled in [45] with
the kernel principal component analysis (KPCA), and
more recently in [46] with the kernel entropy component
analysis. It is worth noting that an attractive property of
kernel machines is that the use of the linear inner prod-
uct kernel should lead to the underlying conventional
linear technique, e.g., classical PCA when the linear
kernel is employed in KPCA.

Recently, a few attempts have been made to derive a
kernel-NMF, for the sake of a nonlinear variant of the
conventional NMF [2], [4], [5]. To this end, the linear
model in the latter is defined by writing each column
of the matrix under scrutiny as the linear combination
of the columns of the first matrix to be determined,
the second matrix being defined by the weights of the
linear combination. By defining the input space with
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Fig. 1: The linear NMF model: X ≈ EA, under the
constraints E ≥ 0 and A ≥ 0. Throughout this paper,
t = 1, 2, . . . , T and n = 1, 2, . . . , N , where the factoriza-
tion rank N is assumed to be known or estimated using
any off-shelf technique [50].

the columns of the studied matrix, these columns are
mapped with a nonlinear transformation to some fea-
ture space where the linear model is applied. Unfortu-
nately, the obtained results cannot be exploited, since the
columns of the first unknown matrix lie in the feature
space. One needs to get back from the (often infinite
dimensional) feature space to the input space. This is
the curse of the pre-image problem, a major drawback
inherited from kernel machines [47]. It was first revealed
in denoising with KPCA, where the denoised feature
should be mapped back to the input space [48]. This
ill-posed problem yields an even more difficult problem
when dealing with the nonnegativity of the result [49].

In this paper, we propose an original kernel-based
framework for nonlinear NMF that does not suffer from
the curse of the pre-image problem, as opposed to other
techniques derived within kernel machines (see Fig. 2
and Fig. 3 for a snapshot of this difference). To this end,
we explore a novel model defined by the mapping of
the columns of the matrices (the investigated matrix and
the first unknown one), these columns lying in the input
space. It turns out that the corresponding optimization
problem can be efficiently tackled directly in the input
space, thanks to the nature of the underlying kernel
function. We derive two iterative algorithms: an additive
update rule based on a gradient descent scheme, and a
multiplicative update rule in the same spirit of [8]. We
investigate expressions associated to the polynomial and
Gaussian kernels, as well as the linear one which yields
the conventional linear NMF. Based on the proposed
framework, we describe several extensions to incorpo-
rate constraints, including sparseness and smoothness,
as well as a TV-like spatial regularization. The relevance
of the proposed approach with its extensions is shown
on well-known hyperspectral images.

The rest of the paper is organized as follows: First,
we introduce the NMF in its ubiquitous form, and
demonstrate the trouble of applying the NMF in the
feature space as it is defined in literature. In Section 3,
we describe the proposed framework for the kernel-
NMF. Several extensions of the kernel-NMF are devel-
oped in Section 4 for incorporating constraints. Section 5
illustrates the relevance of the proposed techniques for
unmixing two real hyperspectral images Cuprite and
Moffett. Section 6 concludes this paper.
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Fig. 2: Illustration of the straightforward application of
the NMF in the feature space, as studied in [2], [3], [4],
[5]. All elements eΦn for n = 1, 2, . . . , N belong to the
feature space H spanned by the images Φ(xt) for t =
1, 2, . . . , T . One has no access to these elements, nor to
their pre-images (shown with ?) in the input space X .

2 THE NMF, FROM LINEAR TO KERNEL

2.1 A primer on the NMF

The conventional NMF consists in approximating a non-
negative matrix X with a product of two low-rank
nonnegative matrices E and A, namely

X ≈ EA (1)

subject to E ≥ 0 and A ≥ 0; See Figure 1 for notations.
The former nonnegativity constraint is relaxed in the so-
called semi-NMF. The optimization problem is written
in terms of the nonnegative least squares optimization,
with argminA,E≥0

1
2‖X − EA‖2F , where ‖ · ‖F is the

Frobenius norm.
Under the nonnegativity constraints, the estimation of

the entries of both matrices E and A is not convex.
Luckily, the estimation of each matrix, separately, is
a convex optimization problem. Most NMF algorithms
take advantage of this property, with an iterative tech-
nique that alternates the optimization over each matrix
while keeping the other one fixed. The most commonly
used algorithms are the gradient descent rule and the
multiplicative update rule (expressions are given in Sec-
tion 3.2.1). See [51, Chapter 13] for a recent survey of
several standard algorithms. See also [7] and references
therein.

It is easy to notice that the matrix model (1) can be
considered vector-wise, by dealing separately with each
column of the matrix X . Let X = [x1 x2 · · · xT ],
E = [e1 e2 · · · eN ], and ant be the (n, t)-th entry in A.
Then the NMF consists in estimating the nonnegative
vectors en and scalars ant, for all n = 1, 2, . . . , N and
t = 1, 2, . . . , T , such that

xt ≈
N
∑

n=1

ant en. (2)

Following this model, the resulting optimization prob-

lem is argminant,en≥0
1
2

∑T

t=1 ‖xt −
∑N

n=1 ant en‖
2. It is

this vector-wise model that is investigated in deriving
kernel-based NMF.
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Fig. 3: Illustration of the kernel-NMF proposed in this
paper. As opposed to the one shown in Fig. 2, the
proposed approach estimates the elements en for n =
1, 2, . . . , N directly in the input space X , which is the
input space of observations. This strategy allows us
to overcome the curse of the pre-image problem, by
estimating directly the spectra.

Without loss of generality, we illustrate the NMF with
the problem of unmixing in hyperspectral imagery. In
this case, following the notation in (2)1, each spectral
xt of the image is decomposed into a set of spectra
e1, e2, . . . , eN (i.e., endmembers), while a1t, a2t, . . . , aNt

denote their respective abundances. Such physical prob-
lem allows us to incorporate additional constraints and
impose structural regularity of the solution, as detailed
in Section 4.

2.2 On the NMF applied in the feature space: the pre-
image problem

Recently, a few attempts have been made to derive
nonlinear, kernel-based, NMF. These methods originate
in mapping the columns of X with a nonlinear func-
tion Φ(·), namely transforming xt into Φ(xt) for t =
1, 2, . . . , T . Let H be the resulting feature space, with the
associated norm ‖Φ(xt)‖H and the corresponding inner
product 〈Φ(xt),Φ(xt′)〉H. The latter defines the so-called
kernel function κ(xt,xt′) in kernel machines.

Written in the feature space, the NMF model is

Φ(xt) ≈
N
∑

n=1

ant e
Φ
n , (3)

written in matrix form as X
Φ ≈

[

eΦ1 eΦ2 · · · eΦN

]

A,

where X
Φ =

[

Φ(x1) Φ(x2) · · · Φ(xT )
]

. Here, the
elements eΦn lie in the feature space H, since Φ(xt)
belongs to the span of all eΦn . Essentially, all kernel-based
NMF proposed so far have been considering this model
[2], [4], [5]. Unfortunately, the model (3) suffers from
an important weakness, inherited from kernel machines:
one has no access to the elements in the feature space,
but only to their inner products with the kernel function.
The fact that the elements eΦn lie in the feature space H
leads to several drawbacks in NMF, as shown next.

1. It is worth noting that the NMF model is symmetric, that is
(1) is equivalent to X

⊤
≈ A

⊤
E

⊤. In other words, the meaning of
abundance matrix and endmember matrix is somewhat arbitrary in
the definition (1).
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Back to the model (3), one has for all t, t′ = 1, 2, . . . , T :

〈Φ(xt′),Φ(xt)〉H ≈

N
∑

n=1

ant 〈Φ(xt′), e
Φ
n 〉H.

Here, the left-hand-side is equivalent to κ(xt′ ,xt). Un-
fortunately, the inner product 〈Φ(xt′), e

Φ
n 〉H cannot be

evaluated using the kernel function. To circumvent this
difficulty, one should restrict the form of eΦn , as inves-
tigated in [4] where the authors write them in terms
of a linear combination of Φ(xt). By rearranging the
coefficients of the linear combination in a matrix W ,
the problem takes the form X

Φ ≈ X
Φ
WA. While this

simplifies the optimization problem, it is however quiet
different from the conventional NMF problem (1).

Another downside of the model (3) is that one cannot
impose the nonnegativity of the elements in the feature
space, and in particular eΦn . Therefore, the constraint
eΦn ≥ 0 should be dropped. Only the coefficients ant can
be set to nonnegative values. In this case, one can no
longer tackle the NMF problem, but the relaxed semi-
NMF problem, where only the constraint A ≥ 0 is
imposed [5].

The most important drawback is that one has no access
to the elements e

Φ
n . Having a given matrix X , only the

matrix A is determined. To estimate a matrix E, one
needs to solve the so-called pre-image problem. This ill-
posed problem consists of estimating an input vector
whose image, defined by the nonlinear map Φ(·), is as
close as possible to a given element in the feature space
[47]. In other words, one determines each column en of
E by solving Φ(en) ≈ eΦn , for all n = 1, 2, . . . , N , which is
a non-convex, non-linear, ill-posed problem. This issue is
obvious in all previous work on kernel-based NMF; see
for instance [52]. Including the nonnegativity constraint
to the pre-image problem is a challenging problem, as
investigated in our recent work [53], [49].

Few attempts were conducted to circumvent some of
these difficulties. The homogeneous kernel is considered
in [3], restricting the derivation to this kernel as argued
by the authors. The authors of [52] approximate the
kernel by one associated to a nonnegative map, which
requires to solve another optimization problem prior to
processing the one associated to the NMF. Moreover, the
pre-image problem needs to be solved subsequently.

For all these reasons, applying the nonnegative matrix
factorization in the feature space has been limited so
far to the kernel matrix factorization, with application
to classification problems as a dimensionality reduction
technique. Still, one has no access to the bases in the
resulting relevant representation. Next, we propose a
framework where both matrices can be exhibited, with-
out suffering from the curse of the pre-image problem.
The core of the difference between these two approaches
is illustrated in Fig. 2 and Fig. 3.

3 A NOVEL FRAMEWORK FOR KERNEL-NMF

In this section, we propose a novel framework to derive
kernel-NMF, where the underlying model is defined by
entries in the input space, and therefore without the
pain of solving the pre-image problem. To this end, we
explore the the characteristics of the investigated kernel.

We consider the following matrix factorization model:

X
Φ ≈ E

Φ
A.

where E
Φ = [Φ(e1) Φ(e2) · · · Φ(eN )]. The nonnegativity

constraint is imposed to A ≥ 0 and en ≥ 0 for all n =
1, 2, . . . , N . One can also consider the semi-NMF variant.
Therefore, we have the following model:

Φ(xt) ≈

N
∑

n=1

ant Φ(en). (4)

This means that we are estimating the elements en

directly in the input space, as opposed to the model
given in (3) where the elements eΦn lie in the feature
space.

To estimate all en and ant, we consider a simple
alternating technique to minimize the cost function

J =
1

2

T
∑

t=1

∥

∥

∥Φ(xt)−

N
∑

n=1

ant Φ(en)
∥

∥

∥

2

H
. (5)

By expanding the above expression, the optimization
problem becomes:

min
ant,en

T
∑

t=1

(

−

N
∑

n=1

antκ(en,xt)+
1

2

N
∑

n=1

N
∑

m=1

antamtκ(en, em)
)

,

where κ(xt,xt) is removed from the expression since it
is independent of ant and en. By taking its derivative
with respect to ant, we obtain the following expression:

∇ant
J = −κ(en,xt) +

N
∑

m=1

amt κ(en, em).

By taking the gradient of J with respect to the vector
en, we obtain:

∇en
J =

T
∑

t=1

ant

(

−∇en
κ(en,xt)+

N
∑

m=1

amt ∇en
κ(en, em)

)

.

(6)
Here, ∇en

κ(en, ·), which denotes the gradient of the
kernel with respect to its argument en, can be easily
derived for most valid kernels, as given in [53], [49] for a
problem different from the NMF. See Section 3.2 for the
case of the linear, polynomial and Gaussian kernels. But
before, we derive two iterative algorithms for solving the
above kernel-NMF, by alternating the estimation of ant
and en.
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3.1 Algorithms

3.1.1 Additive update rule

In the first iterative algorithm, an additive update rule is
presented to solve the optimization problem. It is based
on a gradient descent scheme, alternating over both ant
and en, and is followed by a rectification function to
impose their nonnegativities.

By using a gradient descent scheme, we update ant
according to ant = ant−ηnt ∇ant

J , where the stepsize ηnt
can take different values for each pair (n, t). Replacing
∇ant

J with its expression, we get the following update
rule:

ant = ant − ηnt

(

N
∑

m=1

amt κ(en, em)− κ(en,xt)
)

. (7)

A similar procedure is applied to estimate the elements
en. The obtained update rule is given by

en = en − ηn∇en
J, (8)

where the stepsize ηn can depend on n, and the expres-
sion of ∇en

J is given in (6). To impose the nonnegativity
of the matrices, the negative values obtained by the
above update are set to zero. This is done by using the
rectification function x = max(x, 0) over all ant and the
entries in all the vectors en.

3.1.2 Multiplicative update rule

The additive update rule is a simple procedure, however,
the convergence is generally slow, and is directly related
to the stepsize value used. In order to overcome these
issues, we propose a multiplicative update rule, in the
same spirit as in the conventional NMF [30].

To derive a multiplicative update rule for ant, the
stepsize ηnt in (7) is chosen such that the first and the
third terms in its right-hand-side cancel, that is

ηnt =
ant

∑N

m=1 amt κ(en, em)
.

Therefore, by substituting this expression into (7), we get
the following update rule:

ant = ant ×
κ(en,xt)

∑N

m=1 amt κ(en, em)
. (9)

Compared with the additive rule, the above multi-
plicative rule has several interesting properties, such
as the absence of any tunable stepsize parameter and
the nonexistence of any rectification function. The latter
property is due to the multiplicative nature which en-
sures that elements cannot become negative when one
initializes with a nonnegative right-hand-side of (9).

A similar procedure is applied to estimate the ele-
ments en, for n = 1, 2, . . . , N . The trick is that the
expression of the gradient (6) can always be decomposed
as ∇en

J = P − Q, where P and Q have nonnegative
entries. This is called the split gradient method [54]. It is
obvious that this decomposition is not unique. Still, one
can provide a multiplicative update for a given kernel
function, as shown next.

3.2 Kernels

All kernels studied in the literature about kernel ma-
chines can be investigated in our framework. In the
following, we derive expressions of the update rules for
the most known kernel functions.

3.2.1 Back to the conventional linear NMF

A key property of the proposed kernel-NMF framework
is that the conventional NMF is a special case, when the
linear kernel is used with κ(en, z) = z⊤en, for any vector
z from the input space. The gradient of the kernel is
∇en

κ(en, z) = z in this case. By substituting this result in
the above expressions, we get the additive update rules






ant = ant − ηnt

(

∑N

m=1 amt e
⊤
men − x⊤t en

)

;

en = en − ηn
∑T

t=1 ant

(

− xt +
∑N

m=1 amt em

)

,

as well as the multiplicative update rules


















ant= ant ×
x⊤t en

∑N

m=1 amt e
⊤
men

;

en = en ⊗

∑T

t=1 ant xt
∑T

t=1ant
∑N

m=1 amt em

.

(10)

In the latter expression for updating en, the element-wise
operations are used, with the division and multiplica-
tion, the latter being the Hadamard product given by ⊗.
These expressions yield the well-known classical NMF.
It is worth noting that in the case of the linear kernel,
namely when the map Φ(·) is the identity operator, the
optimization problem (5) is equivalent to the minimiza-
tion of the (half) Frobenius norm between the matrices
X and EA.

3.2.2 The polynomial kernel

The polynomial kernel is defined as κ(en, z) = (z⊤en +
c)d. Here, c is a nonnegative constant balancing the
impact of high-order to low-order terms in the kernel.
The kernel’s gradient is given by:

∇en
κ(en, z) = d (z⊤en + c)(d−1)z.

We consider the most common quadratic polynomial
kernel with d = 2. Replacing ∇en

κ(en, z) with this result,
we obtain the additive update rules


















ant = ant − ηnt

(

∑N

m=1 amt(e
⊤
men + c)2 − (x⊤t en + c)2

)

;

en = en − ηn
∑T

t=1 ant

(

− 2(x⊤t en + c)xt

+2
∑N

m=1 amt(e
⊤
men + c) em

)

,

and the multiplicative update rules


















ant= ant ×
(x⊤t en + c)2

∑N

m=1 amt (e⊤men + c)2
;

en = en ⊗

∑T

t=1 ant(x
⊤
t en + c)xt

∑T

t=1ant
∑N

m=1 amt(e⊤men + c)em
.

(11)
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3.2.3 The Gaussian kernel

The Gaussian kernel is defined by κ(en, z) =
exp( −12σ2 ‖en − z ‖2). In this case, its gradient is

∇en
κ(en, z) = −

1

σ2
κ(en, z)(en − z).

The update rules of ant can be easily derived, in both
additive and multiplicative cases. For the estimation of
en, the additive rule is

en = en − ηn

(

+
1

σ2

T
∑

t=1

ant κ(en,xt)(en − xt)

−
1

σ2

T
∑

t=1

N
∑

m=1

antamt κ(en, em)(en − em)
)

.

As for the multiplicative algorithm, we split the cor-
responding gradient into the subtraction of two terms
with nonnegative entries. This is possible since all the
matrices are nonnegative, as well as the kernel values.
We get the update rule:

en=en⊗

∑T

t=1 ant

(

xtκ(en,xt) +
∑N

m=1 amtenκ(en, em)
)

∑T

t=1ant

(

enκ(en,xt) +
∑N

m=1 amtemκ(en, em)
) ,

(12)
where the division is component-wise.

4 EXTENSIONS OF KERNEL-NMF

The above work provides a framework to derive exten-
sions of the kernel-NMF by including some constraints
and incorporating structural information. Several exten-
sions are described in the following with constraints im-
posed on the endmembers and the abundances, typically
motivated by the unmixing problem in hyperspectral
imagery defined by the model in (4).

4.1 Constraints on the endmembers

Different constraints can be imposed on the endmem-
bers, essentially to improve the smoothness of the es-
timates. It turns out that the derivatives, with respect
to the abundances, of the unconstrained cost function
J in (5) and the upcoming constrained cost functions
are identical. Thus, the resulting update rules for the
estimation of the abundances remain unchanged, as
detailed in (7) for the additive scheme and (9) for the
multiplicative scheme.

4.1.1 Smoothness with 2-norm regularization

In the estimation of en, one is interested in regular so-
lutions, namely with less variations, e.g., less spiky [55].
This property is exploited by the so-called smoothness

constraint, by minimizing 1
2

∑N

n=1 ‖en‖
2 in the input

space. By combining this penalty term with the cost
function (5), we get

J2-norm =
1

2

T
∑

t=1

‖Φ(xt)−

N
∑

n=1

ant Φ(en)‖
2
H +

λ

2

N
∑

n=1

‖en‖
2.

The parameter λ controls the balance between the recon-
struction accuracy (first term in the above expression)
and the smoothness of all en (second term).

To estimate the endmember en, we consider the gra-
dient of J2-norm with respect to it, which yields the
following additive update rule:

en=en−ηn

(

T
∑

t=1

ant

(

N
∑

m=1

amt∇en
κ(en, em)−∇en

κ(en,xt)
)

+λen

)

.

Using the split gradient method [54], we get the corre-
sponding multiplicative update rule. It turns out that one
gets the same expressions as in the unconstrained case,
with (10), (11) or (12), where the term λen is added to
the denominator.

We can also consider a similar constraint in the fea-
ture space within the kernel-NMF framework. The cost
function becomes

JH2-norm =
1

2

T
∑

t=1

‖Φ(xt)−

N
∑

n=1

ant Φ(en)‖
2
H+

λH
2

N
∑

n=1

‖en‖
2
H.

From the gradient with respect to en, we obtain the
additive update rule

en=en− ηn

(

T
∑

t=1

ant

(

N
∑

m=1

amt∇en
κ(en, em)−∇en

κ(en,xt)
)

+ λH∇en
κ(en, en)

)

.

Depending on the used kernel, the expression of the
multiplicative update rule is similar to the one given in
the unconstrained case, with (10), (11) or (12), by adding
the term λH∇en

κ(en, en) to the denominator.
It is easy to see that, when dealing with the linear

kernel where ∇en
κ(en, en) = en, the corresponding

update rules are equivalent to the ones given with the
constraint in the input space. Moreover, it turns out
that smoothing in the feature space associated to the
Gaussian kernel makes no sense, since ∇en

κ(en, en) = 0.

4.1.2 Smoothness with fluctuation regularization

In [56], Virtanen imposes smoothness on every endmem-
ber, in a sense that the fluctuations between neighboring
values within ei is small. The cost function of the kernel-
NMF with a similar constraint is expressed as:

Jfluct=
1

2

T
∑

t=1

‖Φ(xt)−

N
∑

n=1

ant Φ(en)‖
2
H+

γ

2

N
∑

n=1

L−1
∑

l=2

|eln−e(l−1)n|,

where γ is a tradeoff parameter. The derivative of the
penalizing term with respect to eln equals to:







+γ when eln < e(l−1)n and eln < e(l+1)n;
−γ when eln > e(l−1)n and eln > e(l+1)n;
0 otherwise.

Adopting the descent gradient scheme (8) and in-
corporating the above expression into ∇en

J given in
(6), we can easily get the modified additive and mul-
tiplicative update rules for the endmembers estimation.
The corresponding expressions are omitted due to space
limitation.
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4.1.3 Smoothness with weighted-average regularization

Another smoothness regularization raised by Chen and
Cichocki in [57] aims to reduce the difference between
eln and a weighted average eln = αe(l−1)n + βeln, where
β = 1 − α. For each endmember en, this can be written
in a matrix form as:

en = Ten,

where

T =











β 0 · · · 0
αβ β · · · 0

...
. . .

...
αL−1β · · · αβ β











.

For each en, the cost function is defined as:

Rn =
1

L
‖en − en‖

2 =
1

L
‖(I − T)en‖

2.

By considering all endmembers, for n = 1, 2, . . . , N , and
introducing a regularization parameter ρ that controls
the smoothing process, we get the cost function:

Jav =
1

2

T
∑

t=1

‖Φ(xt)−
N
∑

n=1

ant Φ(en)‖
2
H+

ρ

2L

N
∑

n=1

‖(I−T)en‖
2.

The gradient of the penalty term with respect of en

takes the form ρQen, where Q = 1
L
(I − T)

⊤
(I−T). The

additive update rule of the endmembers is easy to derive
using the descent gradient method. The multiplicative
update rule depends on the used kernel, with expres-
sions similar to (10), (11) and (12), by adding the term
ρQen to the denominator.

4.2 Constraints on the abundances

To satisfy a physical interpretation, two types of con-
straints are often imposed on the abundances, the sparse-
ness and the spatial regularity. It turns out that the these
constraints have no influence on the update rules for
the endmembers estimation as given in Section 3. As a
consequence, we shall study in detail the estimation of
the abundances.

4.2.1 Sparseness regularization

Sparseness has been proved to be very attractive in
many disciplines, namely by penalizing the ℓ1-norm
of the weight coefficients [32]. Typically in the hyper-
spectral unmixing problem, each spectrum xt can be
represented by using a few endmembers, namely only
a few abundances ant are non-zero. Since the latter are
nonnegative, the ℓ1-norm of their corresponding vector is
∑N

n=1 ant. This leads to the following sparsity-promoting
cost function

Jsparse =
1

2

T
∑

t=1

∥

∥

∥Φ(xt)−

N
∑

n=1

ant Φ(en)
∥

∥

∥

2

H
+ µ

T
∑

t=1

N
∑

n=1

ant,

where the parameter µ controls the tradeoff between
the reconstruction accuracy and the sparseness level. By

Mn(i, j) Mn(i, j + 1)Mn(i, j − 1)

Mn(i− 1, j)

Mn(i + 1, j)

Fig. 4: Schematic illustration of the spatial regularization.
Mn(i, j) represents the abundance of the n-th endmem-
ber for the (i, j)-th pixel. Each of the four neighbors
imposes a spatial regularization effect on the center pixel.

considering the derivative of Jsparse with respect to ant,
the additive update rule is obtained as follows:

ant = ant − ηnt
(

N
∑

m=1

amt κ(en, em)− κ(en,xt) + µ
)

.

To get the multiplicative update rule, we set the stepsize

to ηnt = ant/(
∑N

m=1 amt κ(en, em) + µ), which leads to

ant = ant ×
κ(en,xt)

∑N

m=1 amt κ(en, em) + µ
.

4.2.2 Spatial regularization

Spatial regularization that favors spatial coherence is
essential in many image processing techniques, as often
considered in the literature with the total-variation (TV)
penalty. This penalty was recently studied in [37] for
the linear unmixing problem in hyperspectral imagery.
Motivated by this work, we derive in the following a TV-
like penalty for incorporating spatial regularity within
the proposed framework. It is worth noting that the
derivations of the spatial regularization can be viewed
as the application on the abundances of the method
given in Section 4.1.3, by extending the one-direction
smoothness (of eln) into the two-dimensional spatial
regularization (of ank).

When transforming (i.e., folding) a hyperspectral im-
age of size T = a × b pixels into a matrix X , the t-th
column of X is filled with the (i, j)-th spectrum from
the original image, with i = ⌈ t

b
⌉ and j = t− (i − 1)b. In

the following, we denote by Mn the matrix of the n-th
abundance defined by the entries Mn(i, j) = ank, with
k = (i − 1)b+ j for i = 1, 2, . . . , a and j = 1, 2, . . . , b. For
any inner element Mn(i, j) belonging to the n-th abun-
dance map, we shall use for spatial regularization the
four geographical neighboring directions, as illustrated
in Fig. 4.

The four spatial weighted averages of Mn(i, j) from its
left, right, up and down sides are denoted as Mn(i, j)→,
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Mn(i, j)←, Mn(i, j)↓ and Mn(i, j)↑. They are expressed
as follows:























Mn(i, j)→ = αMn(i, j − 1)→ + βMn(i, j)

Mn(i, j)← = αMn(i, j + 1)← + βMn(i, j)

Mn(i, j)↓ = αMn(i − 1, j)↓ + βMn(i, j)

Mn(i, j)↑ = αMn(i + 1, j)↑ + βMn(i, j)

Rewriting in matrix form, we get






















M
⊤

n (i, :)→ = T→M
⊤
n (i, :)

M
⊤

n (i, :)← = T←M
⊤
n (i, :)

Mn(:, j)↓ = T↓Mn(:, j)

Mn(:, j)↑ = T↑Mn(:, j) ,

where

T→ =











β 0 · · · 0
αβ β · · · 0

...
. . .

. . .
...

αb−1β · · · αβ β











, and T← = T
⊤
→,

T↓ =











β 0 · · · 0
αβ β · · · 0

...
. . .

. . .
...

αa−1β · · · αβ β











, and T↑ = T
⊤
↓ .

For each abundance an, the associated cost function is:

Rn=
1
2

a
∑

i=1

b
∑

j=1

ωl

b
‖(I−T→)M⊤

n (i, :)‖
2+

ωr

b
‖(I−T←)M⊤

n (i, :)‖
2

+
ωu

a
‖(I−T↓)Mn(:, j)‖

2+
ωd

a
‖(I−T↑)Mn(:, j)‖

2.

Here, ωl, ωr, ωu and ωd control spatial effect ratios of left,
right, up and down direction. In particular, ωl = ωr =
ωu = ωd signifies an average allocation of spatial effects.

Considering the spatial regularization term
∑N

n=1 Rn for
all N abundance maps, the cost function of the spatially-
regularized kernel-NMF is

Jspatial =
1

2

T
∑

t=1

‖Φ(xt)−

N
∑

n=1

ant Φ(en)‖
2 +

N
∑

n=1

Rn. (13)

To get the update rule of the abundances for this
cost function, only the derivative with respect to ant is
required. By locating ant in Mn using ant = Mn(i, j),
with i = ⌈ t

b
⌉ and j = t− (i− 1)b, we obtain:

∇ant

(

∑N

n=1 Rn

)

= ∇Mn(i,j)Rn = G(i, j),

where

G = ωlMnQ→ + ωrMnQ← + ωuM
⊤
n Q↓ + ωdM

⊤
n Q↑

with






















Q→ = 1
b
(I − T→)

⊤
(I − T→)

Q← = 1
b
(I − T←)

⊤
(I − T←)

Q↓ =
1
a
(I − T↓)

⊤
(I − T↓)

Q↑ =
1
a
(I − T↑)

⊤
(I − T↑).

By computing ∇ant
Jspatial with the above expression, we

get the additive update rule for ant:

ant = ant − ηnt
(

N
∑

m=1

amt κ(en, em)− κ(en,xt) +G(i, j)
)

,

as well as the multiplicative update rule, where we use

ηnt = ant/
(
∑N

m=1 amtκ(en, em) +G(i, j)
)

:

ant = ant ×
κ(en,xt)

∑N

m=1 amt κ(en, em) +G(i, j)
.

5 EXPERIMENTS

In this section, the relevance of the derived kernel-NMF
and its extensions is studied on real hyperspectral im-
ages. The studied images are well-known [58], acquired
by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). The raw images consists of 244 spectral bands,
with the wavelength ranging from 0.4µm to 2.5µm.
The first image is a sub-image of 50 × 50 pixels taken
from the well-known Cuprite image, where L = 189
spectral bands (out of 244) are of interest. The geographic
composition of this area is known to be dominated by
muscovite, alunite and cuprite, as investigated in [59].
The second image is from the Moffett Field image, with
a studied sub-image of 50 × 50 pixels. This scene is
known to consist of three materials: vegetation, soil and
water. Before analysis, the noisy and water absorption
bands were removed, yielding L = 186 spectral bands
as recommended in [60].

We introduce two criteria to evaluate the unmixing
performance. Reconstruction error in the input space
(RE) measures the mean distance between any spectrum
and its reconstruction using the estimated endmembers
and abundances, with

RE =

√

√

√

√

1

TL

T
∑

t=1

‖xt −
N
∑

n=1

antet‖2.

Similarly, we define the reconstruction error in the fea-
ture space (REΦ) as

REΦ =

√

√

√

√

1

TL

T
∑

t=1

‖Φ(xt)−

N
∑

n=1

antΦ(et)‖2H.

5.1 State-of-the-art methods

Most state-of-the-art unmixing algorithms either extract
the endmembers (such as with VCA and N-Findr) or
estimate the abundances (such as with FCLS, and non-
linear K-Hype and GBM-sNMF). In this case, the solving
the unmixing problem requires the join use of two algo-
rithms, one for endmember extraction and one for abun-
dance estimation. The proposed kernel-NMF estimates
simultaneously the endmembers and the abundances, in
the same spirit as some recently developed algorithms
(such as MinDisCo and ConvexNMF). In the following,
we succinctly present all the comparing algorithms.
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The endmember extraction is often operated sepa-
rately of the abundance estimation. The commonly used
techniques are the N-Findr [61] and the vertex compo-
nent analysis (VCA) [62]. These techniques rely on the
linear unmixing model and assume the existence of end-
members in the image. They are convex-geometry-based
techniques that inflate the simplex formed by the spectra,
where the endmembers correspond to the vertices of the
largest simplex englobing the spectra. Since they provide
comparable results, they are used whenever needed by
the abundance estimation techniques.

The most known abundance estimation technique is
the fully constrained least squares algorithm (FCLS) [63].
By considering the linear mixing model, it is a least
square technique that estimates the abundances under
the nonnegativity and sum-to-one constraints. Nonlinear
unmixing with the estimation of the abundances has
been recently investigated, with a model that has two
terms, a conventional linear mixing model and an addi-
tive nonlinear one. In [64], the nonlinearity is defined
using a kernel-based formulation, yielding the linear-
mixture/nonlinear-fluctuation model (K-Hype). More re-
cently, the generalized bilinear model is considered in
[65], and solved using a semi-nonnegative matrix fac-
torization (GBM-sNMF). All these techniques require a
complete knowledge of the endmembers, identified with
either N-Findr or VCA.

We also considered two non-kernel techniques that
jointly extract the endmembers and estimate the abun-
dances. The minimum dispersion constrained NMF
(MinDisCo) [66] integrates the dispersion regularity into
the NMF, by minimizing the variance of each endmem-
ber and imposing the sum of abundance fractions for
every pixel to converge to 1. The resulting problem is
solved with an alternate projected gradient scheme. In
terms of convex optimization, the convex NMF (Con-
vexNMF) proposed in [4] restricts the basic matrix (end-
member matrix in our problem) by nonnegative linear
combinations of samples, thus facilitating the interpreta-
tion.

Furthermore, we compared to other kernel-based
NMF approaches. Kernel convex-NMF (KconvexNMF)
and kernel semi-NMF based on nonnegative least
squares (KsNMF), are the kernelized methods corre-
sponding respectively to the ConvexNMF in [4] and the
alternating nonnegativity constrained least squares with
the active set method in [31], as proposed in [5]. Due
to the curse of the pre-image in the methods studied
in [2], [5], neither the endmembers can be represented
explicitly nor the reconstruction error can be evaluated.
As opposed to these methods, the Mercer-based NMF
introduced in [52] (MercerNMF) provides comparable
results. It is based on constructing a Mercer kernel that
has a kernel map close to the one from the Gaussian
kernel, under the nonnegative constraint on the embed-
ded data. Conventional NMF is finally performed on
these mapped data. It is noteworthy that learning the
nonnegative embedding is computationally expensive.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

c

RE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

c 

REφ

(a) Cuprite image

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

c

RE

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

c 

REφ

(b) Moffett image

Fig. 5: Influence on the reconstruction errors of the pa-
rameter c of the polynomial kernel for the unconstrained
kernel-NMF with the multiplicative update rules.

5.2 Search for the appropriate parameters

To provide comparable results, we estimated the optimal
values of the parameters by conducting experiments on
the unconstrained kernel-NMF with the multiplicative
scheme (denoted by Poly⊗ and Gauss⊗), since the latter
does not depend on the stepsize parameter as in the case
of the additive scheme (denoted by Poly⊕ and Gauss⊕).
In order to explore the influence brought by the different
regularizations to the unmixing performance, we used
the same parameter values in the case of the constrained
extensions of the kernel-NMF. Note that the number of
iterations was set to 200 for all experiments.

In the case of the polynomial kernel, we used the
quadratic kernel with d = 2 since it is related to the
generalized bilinear model as suggested in [64]. The
influence of the additive constant c is illustrated in
Fig. 5, yielding c = 0.44 for the Cuprite and c = 0.72
for the Moffett scene. A similar process was taken to
determine the bandwidth parameter σ of the Gaus-
sian kernel, employing the same candidate values set
{0.2, 0.3, . . . , 9.9, 10, 15, 20, . . . , 50} for both images. The
reconstruction errors are shown in Fig. 6. We fixed
σ = 2.5 and σ = 3.3 for the Cuprite and the Moffett
images, respectively.

Concerning the stepsize parameter in the additive
scheme, it is not only image-wise, but also involves a
tradeoff between the estimation accuracy and the con-
vergence rate.
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Fig. 6: Influence on the reconstruction errors of the
Gaussian bandwidth parameter σ for the unconstrained
kernel-NMF with the multiplicative update rules.

TABLE 1: Unmixing performance

Cuprite Moffett

RE ×10
−2 REΦ

×10
−2 RE ×10

−2 REΦ
×10

−2

FCLS 3.20 - 15.61 -

K-Hype 2.12 - 5.27 -

GBM-sNMF 0.98 - 2.09 -

MinDisCo 1.65 - 2.92 -

ConvexNMF 1.61 - 2.58

KconvexNMF - 20.80 - 35.95

KsNMF - 1.38 - 2.30

MercerNMF - 2.74 - 2.77

th
is

p
ap

er

Lin⊕ 0.96 0.96 2.90 2.90

Lin⊗ 0.93 0.93 0.73 0.73

Poly⊕ 5.61 31.80 7.53 33.52

Poly⊗ 3.60 30.59 2.68 14.85

Gauss⊕ 2.16 0.94 2.12 0.98

Gauss⊗ 1.05 0.50 1.24 0.45

5.3 Performance of the kernel-NMF

Experiments were conducted on the linear (Lin⊕/Lin⊗),
the polynomial (Poly⊕/Poly⊗) and the Gaussian
(Gauss⊕/Gauss⊗) kernels. The endmembers and the
corresponding abundance maps estimated using these
algorithms are shown in Fig. 7 for the Cuprite image
and in Fig. 8 for the Moffett image. The efficiency of
the kernel-NMF is compared to the aforementioned well-
known unmixing techniques, as presented in TABLE 1.
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(b) Polynomial kernel
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(c) Gaussian kernel
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Fig. 7: Cuprite image: Endmembers and corresponding
abundance maps, estimated by the unconstrained kernel-
NMF with Lin⊗, Poly⊗ and Gauss⊗ update rules.

Despite the fact that the linear kernel leaded to small
reconstruction error in the input space, it does not out-
perform the Gaussian kernel in the feature space. As
reflected in Fig. 7, the inherent nonlinear correlation of
the Cuprite image is revealed using the Gaussian kernel,
which recognizes the three regions in the abundance
maps; whereas linear kernel is only capable to distin-
guish two regions. Considering the reconstruction error
in the feature space, the unconstrained kernel-NMF with
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Fig. 8: Moffett image: Endmembers and corresponding
abundance maps, estimated by the unconstrained kernel-
NMF with Lin⊗, Poly⊗ and Gauss⊗ updates rules.

the Gaussian kernel surpasses not only its counterparts
with the linear and the polynomial kernels, but also all
other methods including the kernel-based ones.

We also conducted an analysis on the different ex-
tensions. The results corresponding to the proposed
regularizations are detailed in Fig. 9 and Fig. 10 for the
smoothness of the endmembers, while constraints on the
abundance maps are shown in Fig. 11 for the sparseness
regularization and Fig. 12 for the spatial regularization.

6 CONCLUSION

In this paper, we presented a new kernel-based NMF,
where the matrices are estimated in the input space. By
exploring the nature of the used kernel functions, this ap-
proach circumvents the curse of the pre-image problem.
Additive and multiplicative update rules were proposed,
and several extensions were derived in order to incor-
porate constraints such as sparseness, smoothness and
spatial regularity. The efficiency of these techniques was
illustrated on well-known real hyperspectral images. As
for future work, we are extending this approach for di-
mensionality reduction such as the principal component
analysis. Other kernel functions are investigated, as well
as the choice of the parameters.
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Fig. 9: Influence of the smoothness with fluctuation regularization, illustrated on an endmember estimated from
the Cuprite image, with different values of the regularization parameter γ.
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Fig. 11: Influence of the sparseness regularization of the abundance maps for the Moffett image.

ω = 0
Ab. 1

 

 

10 20 30 40 50

10

20

30

40

50

Ab. 2

 

 

10 20 30 40 50

10

20

30

40

50

Ab. 3

 

 

10 20 30 40 50

10

20

30

40

50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

ω = 1
Ab. 1

 

 

10 20 30 40 50

10

20

30

40

50

Ab. 2

 

 

10 20 30 40 50

10

20

30

40

50

Ab. 3

 

 

10 20 30 40 50

10

20

30

40

50

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

ω = 2
Ab.1

 

 

10 20 30 40 50

10

20

30

40

50

Ab.2

 

 

10 20 30 40 50

10

20

30

40

50

Ab.3

 

 

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

ω = 4
Ab.1

 

 

10 20 30 40 50

10

20

30

40

50

Ab.2

 

 

10 20 30 40 50

10

20

30

40

50

Ab.3

 

 

10 20 30 40 50

10

20

30

40

50 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Fig. 12: Influence of the spatial regularization of the abundance maps for the Cuprite image, with α = 0.5.
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of Compiègne, France. In 2012, she received the
Ph.D. in Optimization and Security Systems at
the University of Technology of Troyes (UTT),
France, and the Ph.D. in Sciences Engineering

from the UL, Lebanon. She was a Temporary Lecturer and Researcher
at UTT from September 2012 till August 2013. Since September 2013,
she has been an assistant professor at the Center for Automation
Research Nancy, Lorraine University. Her research focuses on kernel
methods, statistical learning, pattern recognition, feature extraction,
classification, prediction, and diagnosis of nonlinear systems.


	Introduction
	The NMF, from linear to kernel
	A primer on the NMF
	On the NMF applied in the feature space: the pre-image problem

	A novel framework for kernel-NMF
	Algorithms
	Additive update rule
	Multiplicative update rule

	Kernels
	Back to the conventional linear NMF
	The polynomial kernel
	The Gaussian kernel


	Extensions of kernel-NMF
	Constraints on the endmembers
	Smoothness with 2-norm regularization
	Smoothness with fluctuation regularization
	Smoothness with weighted-average regularization

	Constraints on the abundances
	Sparseness regularization
	Spatial regularization


	Experiments
	State-of-the-art methods
	Search for the appropriate parameters
	Performance of the kernel-NMF

	Conclusion
	References
	Biographies
	Fei Zhu
	Paul Honeine
	Maya Kallas


