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Computing the k-coverage of a wireless network

Anais Vergne, Laurent Decreusefond, and Philippe Martins

LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

Abstract—Coverage is one of the main quality of service of a
wireless network. k-coverage, that is to be covered simultaneously
by k network nodes, is synonym of reliability and numerous
applications such as multiple site MIMO features, or handovers.
We introduce here a new algorithm for computing the k-coverage
of a wireless network. Our method is based on the observation
that k-coverage can be interpreted as k layers of 1-coverage,
or simply coverage. We use simplicial homology to compute the
network’s topology and a reduction algorithm to indentify the
layers of 1-coverage. We provide figures and simulation results
to illustrate our algorithm.

I. INTRODUCTION

Wireless networks encompass cellular networks, WiFi ac-
cess points, sensor networks, and so on. With the increasing
usage of high data rates mobile devices such as smartphones
and tablets, and the development of the Internet of Things
(IoT), they have become indispensable in our everyday lives.
A common key quality of service of this type of networks is
the coverage. The coverage of a wireless network is the set
of points that are in the sensing range of at least one network
node. The greater the covered area, the more mobile devices
can have access to it. For cellular networks, coverage can even
be a governmental obligation. The absence of coverage holes
inside the covered area is needed to offer a continuous access
to services.

However, network nodes are often not regularly deployed
on lattice or according to the hexagonal model in practice, see
[1] for cellular networks in France for example. And, deciding
whether a set of network nodes does cover a given area is not
that easy for arbitrary deployments. Simplicial homology can
help us do that, considering the network nodes GPS positions
and their coverage ranges, it is possible to build a purely
combinatorial object, namely an abstract simplicial complex,
of which it is possible to compute the topology. Basically an
abstract simplicial complex is the generalization of the concept
of graph, it is made of k-simplices where O-simplices are
vertices, 1-simplices are edges, 2-simplices are triangles, 3-
simplices are tetrahedron and so on. In particular, geometrical
simplicial complexes such as the Cech complex and the
Vietoris-Rips complex, represent exactly and approximatively
respectively, the topology of the union of the coverage disks as
stated in [2]. Then algebraic topology, [3], is a mathematical
tool that can compute the number of connected components, of
coverage holes, and of 3D voids, namely the Betti numbers of
the simplicial complex representing the network, as explained
in [4]. Since, the computational time to obtain the Betti num-
bers can explode with the size of the simplicial complex, many
works focus on faster ways to compute them, for instance in a

decentralized way [5], using persistent homology [6], thanks
to chain complexes reduction [7] , or with witness complexes
reduction [8]. In our work we use simplicial complex reduction
to reduce a simplicial complex to the minimum number of
points needed to provide 1l-coverage. Precisely, we use the
reduction algorithm presented in [9], that can also be found
for coverage hole detection in [10] and for energy efficiency
in cellular networs in [11].

Coverage can thus be computed mathematically thanks to
algebraic topology. However k-coverage computing is not that
simple. Indeed, a point is said to be k-covered when it is in
the covered area of at least & network nodes. Consequently, an
area is k-covered whenever every point in it is k-covered. The
expected k-coverage in wireless networks has been studied
in [12] in order to propose a node scheduling scheme that
conserves energy while retaining network coverage. In [13],
the authors use k-order Voronoi diagrams to compute the
density of network nodes required to achieve k-coverage.

In this article, we propose a method and an algorithm
for computing the k-coverage of a given wireless network.
Theoretically it is easy to compute the probability for a point
to be k-covered for a wireless network generated by a Poisson
point process. However it is more difficult to apprehend the k-
coverage of a whole area. Moreover, probabilistic results can
not be applied to every wireless network. That is why we need
simplicial homology representation to compute the topology
of a given network as a whole. We then exhibit that the k-
coverage can be seen as k layers of 1-coverage and give an
algorithm that compute the k-coverage of a wireless network.
For operating purposes, the k£ layers of network nodes that
ensure each 1-coverage are returned by our algorithm.

First in Section II, we define the k-coverage and discuss its
application for wireless networks such as IoT sensor networks
and cellular networks. We present a probabilistic network
model and give some theoretical results in Section III, and
introduce few needed mathetical tools in Section I'V. Then in
Section V, we give our algorithm for computing k-coverage,
and simulation results in Section VI. Finally we conclude in
Section VII.

II. k-COVERAGE

Cellular networks, Wireless Local Area Networks
(WLANSs), and sensor networks take part in the family
of wireless networks. In these networks, coverage define the
utility of the network. In cellular networks or WLANS, users
can access the service only if they are covered by a network
node. In sensor networks, sensor can communicate only if



they are in the sensing range of each other. In a wireless
network, a point is said to be covered if it is in the sensing
range of a network node, that is to say if it is in the coverage
of this node. An area is then covered, when every point of
it is covered. By extension, an area is k-covered when every
point of the area is in the coverage of at least k& network
nodes. A wireless network providing k-coverage for an area
with a large & is then a densely deployed network.

In the literature, k-coverage is more often used for sensor
networks such as Low-Power Wide Area Networks (LP-
WAN:Ss), and Internet of Things (IoT) [12], [13]. Indeed the
benefits of k-coverage include better reliability, better accuracy
in sensor measurements, greater throughput by using multiple
channels, etc. And these uses concern primarily sensor nodes.
Moreover, sensor nodes are small, live on battery, and are
cheap to buy and replace, so they can be deployed in large
quantities, thus providing easily k-coverage with a great k.

However, k-coverage can also be of interest for cellular
networks, where it becomes synonym of multi-site transmitter.
The first application is the handover. Actually, a handover is
performed when a user changes cells during a communication.
It is called a soft-handover when the user is connected simul-
taneously to multiple cells for the transition between cells,
or for interference mitigation in dense area in 3G networks.
Therefore, a user in a k-covered area would have the possi-
bility to have handovers with % different cells, which means
that telecommunication operators could make trafic off-loading
decisions by directing users to less-busy cells, or offer better
radio channels thanks to antenna diversity. In 4G and later
networks, k-coverage means also that MIMO transmissions
from multiple base stations to a user can be performed. That
is the basis of the Coordinated Multi-Point Joint Processing
(CoMP JP) scheme that allows great capacity gains [14]. In
CoMP JP, two or more base stations can cooperate to serve
simultaneously a user leading to a throughput multiplied by 2
or more.

III. PROBABILISTIC ANALYSIS

We represent the wireless network nodes by a Poisson point
process:

Definition 1. Let du = Adx be the Lebesgue measure on
E C R?%, N is a spatial Poisson point process of intensity
A>0on E if:

o N(A) the number of points that fall in A C E follows a
Poisson law
_ e—M(A)M(A)k
k!

o If A, B C E such that ANB = (), then N(A) and N(B)
are independant.

P[N(A) = k]

We can note that 1(A) = AS(A) where S(A) is the area of
A. Moreover, conditionnally to N(A) = n for A C E, then
the points of N are independantly and uniformly distributed
on A.

We suppose that every network node has the same sensing
range r. Thus its coverage area is a disk of radius » > 0. Then
for x € F, the probability for x to be k-covered is given by:

k
P[z k-covered| = P[Jy;,...,yx € Nz € ﬂ B(y;,r)],

i=1

where B(y,r) is the ball of center y € E and radius r > 0.
We immediatly have that:

k

Plz k-covered] = P[Iy1,...,yx € N|z € ﬂ B(y;, )]
i=1

- P[Elylw - Uk € N|V7’ay7. € B(I,T)]

= P[N(B(z,7)) = K]

= 1—P[N(B(x,7)) < K]
k—1
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We can see in Fig. | the probability for a point to be k-
covered for k = 1,...,6, depending on A7r2. As r is fixed,
only A varies. Logically, as A grows, the probability to be
k-covered tends to 1, and the greater k is, the smaller the
probability to be k-covered is.
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Fig. 1. Probability for a point to be k-covered depending on A7r?

The probability that a point z € E is exactly k-covered and
not (k + 1)-covered is then:

P[x exactly k-covered] =

We can derive the mean k for which a point x € FE is



k-covered and not (k + 1)-covered:

o0

E[k] = Z kP[x exactly k-covered|

k=1
i e—)\Trr2 ()‘WTQ)]C
2 (k—1)!

Il
)
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P k!
= .
Therefore, the mean & for which a point x € E is k-covered
and not (k — 1)-covered is directly proportional to A.
However, considering the probability for a point to be k-
covered is not sufficient to benefit from the advantages of k-
coverage. Indeed, in wireless networks, reception devices such
as phones are mobile. Therefore, one needs a whole area to
be k-covered to offer k-coverage applications such as joint
processing or handover. The probability of k-coverage of one
point is an upper-bound of the probability of a whole area to
be completely k-covered without any hole. Indeed it is easier
to ensure that a point is covered, than a whole area without any
hole. So probabilistic results can not be used for engineering
purposes. That is why we need to consider another approach :
to study and compute the coverage of the network as a whole,
that is mathematically to study the topology of the network.

IV. SIMPLICIAL HOMOLOGY AND ALGEBRAIC TOPOLOGY

Considering a set of points representing network nodes, the
first idea to apprehend the topology of the network would be to
look at the neighbors graph: if the distance between two points
is less than a given parameter then an edge is drawn between
them. However this representation is too limited to transpose
the network’s topology. First, only 2-by-2 relationships are
represented in the graph, there is no way to grasp interactions
between three or more nodes. Moreover, there is no concept
of coverage in a graph. That is why we are interested in more
complex objects.

Indeed, graphs can be generalized to more generic combi-
natorial objects known as simplicial complexes. While graphs
model binary relations, simplicial complexes can represent
higher order relations. A simplicial complex is thus a combina-
torial object made up of vertices, edges, triangles, tetrahedra,
and their n-dimensional counterparts. Given a set of vertices
X and an integer k, a k-simplex is an unordered subset of
k + 1 vertices {zo,...,x} where x; € X,Vi € {0,...,k}
and x; # x; for all ¢ # j. Thus, a O-simplex is a vertex,
a l-simplex an edge, a 2-simplex a triangle, a 3-simplex a
tetrahedron, etc. See Fig. 2 for instance.

Any subset of vertices included in the set of the k+1 vertices
of a k-simplex is a face of this k-simplex. A k-face is then a
face that is a k-simplex. The inverse notion of face is coface.
An abstract simplicial complex is a set of simplices such that
all faces of these simplices are also in the set of simplices.
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Fig. 2. Examples of k-simplices.

In this article, we are intersted in representing the topology
of a wireless network, we introduce the two following abstract
simplicial complexes:

Definition 2 (Cech complex). Let w be a finite set of points
in R?, and r a real positive number. The Cech complex of
parameter r of w, C.(w), is the abstract simplicial complex
whose k-simplices correspond to the unordered (k+ 1)-tuples
of vertices in w such that the intersection of the k + 1 balls
centered on them is non empty.

Definition 3 (Vietoris-Rips complex). Let w be a finite set of
points in R, and € a real positive number. The Vietoris-Rips
complex of parameter € of w, R.(w), is the abstract simplicial
complex whose k-simplices correspond to the unordered (k +
1)-tuples of vertices in w which are pairwise within distance
less than € of each other.

The Cech complex provides the representation of the exact
topology of the network (see the Nerve lemma in [2]) but
can be tricky to compute due to the check of whether three
disks intersect or not. One can see easily that the Vietoris-Rips
complex Ry,(w) is an approximation of the Cech complex
C.(w) that is way easier to compute since it is a clique
complex based only on the neighbors graph information. This
approximation is quite good: in the case of a random uncor-
related deployment with network nodes deployed according
to a Poisson point process the error is less than 0.06% in
the computation of the covered area [15]. An example of a
Cech complex representing a wireless network can be seen in
Fig. 3. We can see 4 coverage holes in the network that are
highlighted in the simplicial complex representation.

Fig. 3. A Cech complex representing a wireless network

Given an abstract simplicial complex, one can define an
orientation on the simplices by defining an order on the



vertices, where a change in the orientation, that is a swap
between two vertices, corresponds to a change in the sign.
Then let us define the vector spaces of the k-simplices of a
simplicial complex, and the associated boundary maps:

Definition 4. Let S be an abstract simplicial complex.
For any integer k, 6.(S) is the vector space spanned by
the set of oriented k-simplices of S.

Definition 5. Let S be an abstract simplicial complex and

€% (S) the vector space of its k-simplices for any k integer.
The boundary map Oy, is defined as the linear transformation

Ok €x(S) = ©x—1(S) which acts on the basis elements

[0, ..., 2k] of €& (S) via:
k .

8k[$07. .. ,{L‘k] = Z (—1)1[1:0, ey L1, Tj41y - ,xk].
=0

For example, for a 2-simplex we have:

Z1 Z1
) X9 Zo T2
82([1:0,1‘1,$2D = [l‘l,fEQ} - [1’071’2] + [1‘0,%‘1}

As its name indicates, the boundary map applied to a linear
combination of simplices gives its boundary. The boundary
of a boundary is the null application. Therefore the following
theorem can be easily demonstrated (see [3] for instance):

Theorem 1. For any k integer, O o Op+1 = 0.

Let S be an abstract simplicial complex. Then we can
denote the k-th boundary group of S as Bj(S) = im Jk41,
and the k-th cycle group of S as Zi(S) = ker Jx. We have
By(S) C Zi(S). We are now able to define the k-th homology
group and its dimension:

Definition 6. The k-th homology group of an abstract simpli-
cial complex S is the quotient vector space:

_ Z(9)

Hi(8) = Bi(S)

The k-th Betti number of the abstract simplicial complex S is:
Br(S) = dim Hy(S).

According to its definition, the k-th Betti number counts
the number of cycles of k-simplices that are not boundaries
of (k + 1)-simplices, that are the k-th dimensional holes. In
small dimensions, they have a geometrical interpretation:

o [ is the number of connected components,
e (31 is the number of coverage holes,
e (32 is the number of 3D-voids.

For any k£ > d where d is the dimension, we have 35 = 0.
For further reading on algebraic topology, see [3].

V. ALGORITHM

Thanks to simplicial homology, we have a representation
for a wireless network that allows the computation of the
network’s topology, that is its coverage, or 1-coverage. Com-
puting the k-coverage is another problem. In order to do that,
we choose to view the k-coverage as k layers of coverage:

Lemma 1. An area is k-covered, for k integer, if there exists
k sets of network nodes without any common nodes such that
each set provides 1-coverage on the area.

Proof. If there exists k sets of network nodes that provide 1-
coverage, then let « be any point in the area, x is covered
by each layer. Thus, there exists k nodes, one per layer, that
cover z. And the area is k-covered.

Reciprocally, it is not possible to find k£ sets of nodes such
that each provide 1-coverage. We can suppose that there exists
k — 1 sets of nodes that provide exactly 1-coverage, and a last
set with the remaining nodes that do not provide 1-coverage.
That is there exists at least one coverage hole in the coverage
provided by the k-th set. Then let = be a point in this coverage
hole, then z is in the coverage range of exactly one node in
each of the first £ — 1 sets, since these sets of node provide
exactly 1-coverage. The point z is inside a coverage hole of the
remaining nodes, then there is no other node which coverage
range covers x. And x is not k-covered. O

Therefore, to compute the k-coverage of a wireless network,
we intend to count the number of 1-coverage layers. To slice
the network in layers, we use the simplicial complex reduction
algorithm that we presented in [9]. This reduction algorithm
takes as input a simplicial complex, then removes points and
their cofaces (that is the simplices they are part of) until it
is no more possible without creating neither a coverage hole
nor a disconnectivity in the network. At the end, we obtain
a simplicial complex that provides the same coverage as the
initial complex with a minimal set of points. Then the set of
network nodes associated to these points provide at least 1-
coverage on the whole covered area, but not 2-coverage on
the whole area or more points could be removed and the
simplicial complex could be further reduced. However, locally
2-coverage is provided by the reduced complex, since we
consider coverage disks and disks can not tile the plane, there
will always exist intersection of disks. It is important to note
that the reduction algorithm needs the definition of a boundary
(via a list of points) to delimit the area to be covered, here it
is the boundary of the area where one need to compute the
k-coverage. We can see an example of the reduction algorithm
on a Vietoris-Rips simplicial complex in Fig. 4.

Our algorithm for computing k-coverage then takes as input
the positions of the network nodes, compute the simplicial
complex to represent their topology. Then, the reduction
algorithm is applied, its result constitutes of the first layer
of 1-coverage. This first layer is then discarded, the simplicial
complex is built on the remaining points and the we re-apply
the reduction algorithm on it. We continue while the number of



Fig. 4. A complex reduced by the reduction algorithm presented in [9]

connected components stays at 1, and the number of coverage
holes stays at 0. At the end, our algorithm provides the % index
of k-coverage of the wireless network, and also supplies the &
sets of points/network nodes that are the k layers of coverage.
The pseudo-code of the algorithm is given in Alg. 1.

Algorithm 1 k-coverage computing algorithm.
Require: set V' of n vertices, coverage radius 7.
S :=Ro. (V) or C.(V)
Computation of 5y(S) and 3;(5)
k=0
while 3,(S) =1 and $1(S) =0 do
k=k+1
Apply reduction algorithm to S
Save reduced complex as k-th layer
Save list of discarded vertices as V'
S :=Rop (V') or C.(V)
Computation of 5y(S) and S31(S)
end while return k£ and the k layers of coverage

Our algorithm provides a lower-bound for k-coverage, that
is that k-coverage is guaranteed in every point of the area.
More specifically, when the algorithm returns the value k for
a wireless networks on the area A, that means that:

e Vz € A, x is k-covered,

e Jz € A, x is not (k + 1)-covered,

o There may exist some z € A that are [-covered with

[ > k (at the intersection of coverage disks).

VI. SIMULATION RESULTS

In this section, we give some figures illustrating the func-
tioning of our algorithm and present some simulation results
on the k-coverage of a wireless network simulated by a
Poisson point process.

We can see an example of the execution of our k-coverage
computation algorithm for the wireless network represented by
a Vietoris-Rips complex of Fig. 5. This network was simulated
with N = 40 points randomly placed in a square of size
10, plus a boundary of fixed points on the square to delimit
the area of the square in which we want to compute the k-
coverage. The coverage radius is set to 2.5. In order to obtain
nicer figures, the process used to draw the points positions is

of hard-core type, that is it is forbidden for 2 points to be too
close to each other.

0 1 2 s 4 5 6 T i a1

Fig. 5.

A wireless network and its Vietoris-Rips representation

We can see in Fig. 6 that our algorithm exhibits 3 layers
of coverage, that means that the wireless network provides
3-coverage. The last layer presents a coverage hole in the
bottom right corner, so 4-coverage is not available in that part,
and thus on the square. In each subfigure, points in red are
the remaining points that are not yet part of a layer. On the
left of each subfigure is the wireless network representation
with the coverage disks, and on the right is the Vietoris-Rips
representation.

¥
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Fig. 6. The 3 layers of coverage and the last incomplete layer.

We also provide an example of our k-coverage algorithm
running of the Cech complex of Fig. 7. The configuration
set-up is the same as before, except the number of points is
initially set to N = 50.
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Fig. 7. A wireless network and its Cech representation

This network has more points and provides 4 layers of
coverage that is 4-coverage as we can see in Fig. 8.

2 3 4 5 ] 7 3 ]

Fig. 8. The 4 layers of coverage and the last incomplete layer.

Finally, we provide some simulation results on the k-
coverage of a wireless network generated by a Poisson point
process. We look at the value of k, where k is the maximum
index such that the network provides k-coverage, depending
on the intensity of the process, that is the mean number of

points by surface unit, and whether the topology is computed
via a Vietoris-Rips or a Cech complex.

We consider a set of points generated with a Poisson point
process of intensity A on a square with side of size 10. We
add points on the boundary of the square to delimit the area
to be covered. The coverage radius is set to 2.5, one can note
that 772 ~ 20. We compute % the mean value of k such that
the complex provides k-coverage and not (k + 1)-coverage,
on average on 1000 simulations.

~ TABLE I
MEAN k FOR A VIETORIS-RIPS AND FOR FOR A CECH COMPLEX

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
A2 1 2 3 4 5 6 7 8

k 0.004 0.081 0.268 0.590 0.967 1.396 1.820

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Amr2 1 2 3 4 5 6 7 s

k 0.002 0.079 0.237 0.540 0.859 1.297 1.695

We can see in Table I the result of the simulations. More-
over, these results are plotted in the graph of Fig. 9. We can
compare these results to the theoretic ones of the mean k
for which a point = is k-covered: E[k] = A7r?. We can see
that, as expected, the simulated values are below the theoretic
ones. This is because, theoretically we are only capable of
computing the probability of a point to be k-covered, but
not the probability that a whole area is k-covered without
any coverage holes. The second one, that we can approach
by simulation, is smaller than the first one. Furthermore, our
algorithm guarantees k-coverage, but locally points may be
l-covered with | > k.

Fig. 9. Mean k computed by our algorithm.

VII. CONCLUSION

In this article, we propose a method and an algorithm
for computing the k-coverage of a wireless network. The k-
coverage is the fact for a point to be covered by k£ network
nodes, this definition can be extended to a whole area: an area
is k-covered if every point in it is k-covered. Theoretically it
is easy to compute the probability for a point to be k-covered
for a wireless network generated by a Poisson point process.
However it is more difficult to apprehend the k-coverage for a
whole area, and we need simplicial homology representation
to compute the topology of the network as a whole. We then



exhibit that the k-coverage can be seen as k layers of 1-
coverage and give an algorithm that compute the k-coverage
of a wireless network. We provide some figures and simulation
results to illustrate our algorithm.
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