

Jardin de courbes 1. Relation force-vitesse Sylvain Louvet

▶ To cite this version:

Sylvain Louvet. Jardin de courbes 1. Relation force-vitesse. 2018. hal-01966066v1

HAL Id: hal-01966066 https://hal.science/hal-01966066v1

Preprint submitted on 27 Dec 2018 (v1), last revised 13 Aug 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Galerie 1

Jardin de courbes 1. Relation force-vitesse

Sylvain LOUVET ¹ 27/12/2018

Résumé

Une fibre musculaire squelettique est tétanisée à une longueur fixe jusqu'à un plateau (T0) puis elle subit un échelon de force (T). Après quelques millisecondes la fibre se raccourcit à une vitesse constante (V). Une relation entre T et V est proposée dans le Papier 1 (Louvet 2018) Nous confrontant l'équation à une vingtaine d'exemples extraits de la littérature physiologique. L'équation répond correctement à différents critères expérimentaux comme la typologie musculaire, la température interne de la fibre, la variation de l'espace inter-filamentaire (*lattice*) ou la longueur initiale du sarcomère

¹ Laboratoire de Mécanique des Solides, UMR 6610, Chasseneuil Futuroscope, France Email : <u>sylvain.louvet@univ-nantes.fr</u>

. Gallery 1

Curve garden 1. Force-velocity relationship

Abstract

A skeletal muscle fiber is tetanized at a fixed length to a plateau (T0) and then undergoes a force step (T). After a few milliseconds the fiber is shortening at a constant speed (V). A relation between T and V is proposed in Paper 1 (ref). We confront the equation with twenty examples extracted from the physiological literature. The equation correctly answers various experimental criteria such as the muscular typology, the internal temperature of the fiber, the variation of the inter-filamentary space (lattice) or the initial length of the sarcomere.

Introduction

Tous les termes apparaissant dans les égalités et équations suivantes sont explicités dans le Papier 1.

Rappels

«T0 » est la tension tétanique isométrique

«T » est la tension constante inférieure à T0 après un échelon de force

«pT » est la tension relative égale à :

$$\mathbf{pT} = \frac{\mathbf{T}}{\mathbf{T0}} \tag{FV.1}$$

« V » est la vitesse de raccourcissement constante de la fibre musculaire lors de la phase 4 d'un échelon de force

« u » est le module de la vitesse de raccourcissement d'un demi-sarcomère (hs) tel que :

$$\mathbf{u} = \frac{|\mathbf{V}|}{\mathbf{N}_{hs}} \tag{FV.2}$$

où « N_{hs}» est le nombre de hs par myofibrille

Les évènements {startF}, {startS} et {startVS} se réfèrent à l'initiation « rapide (F pour *fast*) », « lente (S pour *slow*) » ou « très lente (VS pour *very slow* », respectivement, d'une tête de myosine II vers l'état de *working stroke* (WS).

L'évènement {SlowDE} se réfère au détachement lent (SDE pour *slow detachment*) d'une tête de myosine II.

Abscisses dans un demi-sarcomère droit

 $\mathbf{X}_{down} = \left(-\delta \mathbf{X}_{Max} + \delta \mathbf{X}_{T}/2\right)$ (FV.3a)

$$\mathbf{X}_{VS} = [\mathbf{X}_{up} - \mathbf{u} \cdot \boldsymbol{\tau}_{preVS}] \cdot \mathbf{1}_{[\mathbf{u} \cdot \boldsymbol{\tau}_{preVS} < \delta \mathbf{X}_{Max}]}(\mathbf{u})$$
(FV.3b)

 $\mathbf{X}_{\text{SDE}} = \left(\mathbf{X}_{\text{T}} - \mathbf{u} \cdot \boldsymbol{\tau}_{\text{preSDE}} \right) \cdot \mathbf{1}_{\left[\mathbf{u} \cdot \boldsymbol{\tau}_{\text{preSDE}} < \boldsymbol{\delta} \mathbf{X}_{\text{E}} \right]} (\mathbf{u})$ (FV.3c)

Proportions

$$\mathbf{P}_{\mathbf{F}}(\mathbf{u}) = \mathbf{p}_{\text{startF}} \cdot \left(1 - \mathbf{e}^{-\frac{\delta \mathbf{X}_{\text{pre}} - \mathbf{u} \cdot \boldsymbol{\tau}_{\text{preSB}}}{\mathbf{u} \cdot \boldsymbol{\tau}_{\text{SB}}}} \right)$$
(FV.4a)

$$\mathbf{P}_{\mathbf{S}}(\mathbf{u}) = \left[\mathbf{p}_{\text{startS}} + \mathbf{p}_{\text{startF}} - \mathbf{P}_{\mathbf{F}}(\mathbf{u})\right]$$
(FV.4b)

$$\mathbf{P}_{VS}(\mathbf{u}) = \left(\mathbf{1} - \mathbf{p}_{startF} - \mathbf{p}_{startS}\right) \cdot \mathbf{1} \left[\mathbf{u} \cdot \tau_{preVS} < \delta X_{Max}\right] (\mathbf{u})$$
(FV.4c)

$$P_{SDE}(\mathbf{u}) = P_{F}(\mathbf{u}) \cdot \left(1 - e^{-\frac{\delta X_{T}}{\mathbf{u} \cdot \tau_{startF}}}\right) \cdot \mathbf{1} \left[u \cdot \tau_{preSDE} < \delta X_{E} \right] (\mathbf{u}) + P_{S}(\mathbf{u}) \cdot \left(1 - e^{-\frac{\delta X_{T}}{\mathbf{u} \cdot \tau_{startS}}}\right) \cdot \mathbf{1} \left[u \cdot \tau_{preSDE} < \delta X_{E} \right] (\mathbf{u}) + P_{VS}(\mathbf{u}) \cdot \left(1 - e^{-\frac{\delta X_{T} - \mathbf{u} \cdot \tau_{preVS}}{\mathbf{u} \cdot \tau_{startVS}}}\right) \cdot \mathbf{1} \left[u \cdot \tau_{preSDE} < \delta X_{E} \right] (\mathbf{u})$$
(FV.4d)

Relation entre pT et u en absence de viscosité

$$\mathbf{pT}(\mathbf{u}) = \mathbf{pT}_{\mathbf{F}}(\mathbf{u}) + \mathbf{pT}_{\mathbf{S}}(\mathbf{u}) + \mathbf{pT}_{\mathbf{VS}}(\mathbf{u}) - \mathbf{pT}_{\mathbf{SDE}}(\mathbf{u})$$
(FV.5)

$$pT_{F}(u) = \frac{P_{F}(u) \cdot \delta X_{Max}}{|X_{down}| \cdot \delta X_{T}} \cdot \left[\frac{\delta X_{Max}}{2} - u \cdot \tau_{startF} + u^{2} \cdot \frac{\tau_{startF}^{2}}{\delta X_{Max}} \cdot \left(1 - e^{-\frac{\delta X_{Max}}{U \cdot \tau_{startF}}} \right) \right]$$
(FV.6a)

$$pT_{S}(u) \frac{P_{S}(u) \cdot \delta X_{Max}}{\left|X_{down}\right| \cdot \delta X_{T}} \cdot \left[\frac{\delta X_{Max}}{2} - u \cdot \tau_{startS} + u^{2} \cdot \frac{\tau_{startS}^{2}}{\delta X_{Max}} \cdot \left(1 - e^{-\frac{\delta X_{Max}}{U \cdot \tau_{startS}}}\right)\right]$$
(FV.6b)

$$pT_{VS}(\mathbf{u}) = \frac{P_{VS}(\mathbf{u}) \cdot \left(\mathbf{X}_{VS} + |\mathbf{X}_{down}|\right)}{|\mathbf{X}_{down}| \cdot \delta \mathbf{X}_{T}} \left[\frac{\left(\mathbf{X}_{VS} + |\mathbf{X}_{down}|\right)}{2} - \mathbf{u} \cdot \tau_{startVS} + \frac{\mathbf{u}^{2} \cdot \tau_{startVS}^{2}}{\left(\mathbf{X}_{VS} + |\mathbf{X}_{down}|\right)} \cdot \left(1 - e^{-\frac{\mathbf{X}_{VS} + |\mathbf{X}_{down}|}{\mathbf{u} \cdot \tau_{startVS}}}\right) \right]$$
(FV.6c)

$$pT_{SDE}(\mathbf{u}) = \frac{P_{SDE}(\mathbf{u}) \cdot \left(\mathbf{X}_{SDE} + |\mathbf{X}_{down}|\right)}{|\mathbf{X}_{down}| \cdot \delta \mathbf{X}_{T}} \cdot \left[\frac{\left(\mathbf{X}_{SDE} + |\mathbf{X}_{down}|\right)}{2} - \mathbf{u} \cdot \boldsymbol{\tau}_{SDE} + \frac{\mathbf{u}^{2} \cdot \boldsymbol{\tau}_{SDE}^{2}}{\left(\mathbf{X}_{SDE} + |\mathbf{X}_{down}|\right)} \cdot \left(1 - e^{-\frac{\mathbf{X}_{SDE} + |\mathbf{X}_{down}|}{\mathbf{u} \cdot \boldsymbol{\tau}_{SDE}}}\right)\right]$$
(FV.6d)

De (FV.1) et (FV.2), on déduit la relation entre T et V

Relation entre pT* et u en présence de viscosité

$$\mathbf{pT}^{*}(\mathbf{u}) = \mathbf{pT}(\mathbf{u}) - \mathbf{pT}_{\mathbf{Visc}}(\mathbf{u})$$
(FV.7)

$$pT_{\text{Visc}} = pT_{\text{Vi}_{\text{Max}}} \cdot \left(1 - \frac{u_{\text{Visc}1} \cdot e^{-\frac{u-u_0}{u_{\text{Visc}1}}}}{\left(u_{\text{Visc}1} - u_{\text{Visc}2}\right)} - \frac{u_{\text{Visc}2} \cdot e^{-\frac{u-u_0}{u_{\text{Visc}2}}}}{\left(u_{\text{Visc}2} - u_{\text{Visc}1}\right)} \right) \cdot \mathbf{1}_{\left[u_0;+\infty\right[}(u)$$
(FV.8)

Relation entre nombre de têtes de myosine en working stroke (Λ) et u

$$\Lambda(\mathbf{u}) = \Lambda_{\mathbf{F}}(\mathbf{u}) + \Lambda_{\mathbf{S}}(\mathbf{u}) + \Lambda_{\mathbf{VS}}(\mathbf{u}) - \Lambda_{\mathbf{SDE}}(\mathbf{u})$$
(FV.9)

$$\Lambda_{\rm F}(\mathbf{u}) = \frac{\Lambda_0 \cdot \mathbf{P}_{\rm F}(\mathbf{u})}{\delta X_{\rm T}} \cdot \left[\delta X_{\rm Max} - \mathbf{u} \cdot \tau_{\rm startF} \cdot \left(1 - e^{-\frac{\delta X_{\rm Max}}{\mathbf{u} \cdot \tau_{\rm startF}}} \right) \right]$$
(FV.10a)

$$\Lambda_{S}(\mathbf{u}) = \frac{\Lambda_{0} \cdot \mathbf{P}_{S}(\mathbf{u})}{\delta \mathbf{X}_{T}} \cdot \left[\delta \mathbf{X}_{Max} - \mathbf{u} \cdot \boldsymbol{\tau}_{startS} \cdot \left(1 - e^{-\frac{\delta \mathbf{X}_{Max}}{\mathbf{u} \cdot \boldsymbol{\tau}_{startS}}} \right) \right]$$
(FV.10b)

$$\Lambda_{VS}(\mathbf{u}) = \frac{\Lambda_0 \cdot \mathbf{P}_{VS}(\mathbf{u})}{\delta \mathbf{X}_{T}} \cdot \left[\left(\mathbf{X}_{VS} + |\mathbf{X}_{down}| \right) - \mathbf{u} \cdot \tau_{startVS} \cdot \left(1 - e^{-\frac{\mathbf{X}_{VS} + |\mathbf{X}_{down}|}{\mathbf{u} \cdot \tau_{startVS}}} \right) \right]$$
(FV.10c)

$$\Lambda_{\text{SDE}}(\mathbf{u}) = \frac{\Lambda_0 \cdot \mathbf{P}_{\text{SDE}}(\mathbf{u})}{\delta \mathbf{X}_{\text{T}}} \left[\left(\mathbf{X}_{\text{SDE}} + \left| \mathbf{X}_{\text{down}} \right| \right) - \mathbf{u} \cdot \tau_{\text{SDE}} \left(1 - e^{-\frac{\mathbf{X}_{\text{SDE}} + \left| \mathbf{X}_{\text{down}} \right|}{\mathbf{u} \cdot \tau_{\text{SDE}}} \right) \right]$$
(FV.10d)

où « Λ_0 » est le nombre de têtes de myosine en *working stroke* lors du plateau tétanique

De (FV.5) et (FV.9), on déduit la relation entre pT et pA ($pA=A/A_0$) et de (FV.7) et (FV.9), on déduit la relation entre pT^{*} et pA.

Méthode

Les équations précédentes sont confrontées aux points expérimentaux présentés dans les figures classiques de la relation Force/Vitesse publiées dans la littérature physiologique

Sur les pages impaires sont affichées sous forme de tables les valeurs des variables introduites dans les équations (FV.1) à (FV.10d), laissant ainsi toute latitude à la lectrice ou au lecteur de vérifier l'exactitude des calculs.

Chaque table se décompose en 4 parties :

- Partie 1 relative à la fibre : animal, muscle, température (Γ), tension du plateau tétanique (T0), longueur (L_{fm})
- Partie 2 relative au sarcomère et au demi-sarcomère (hs) : nombre de demi-sarcomères par myofibrille (N_{hs}), longueur initiale du sarcomère (LO_s), pourcentage de têtes en WS par hs en conditions isométriques tétaniques selon le mode rapide, lent et très lent (p_{startF} , p_{startS} , $p_{startVS}$)
- Partie 3 relative à la tête de myosine et à sa géométrie avec rotations du levier ($\delta\theta_{Max}$, $\delta\theta_{T}$, $\delta\theta_{pre}$) associées aux raccourcissements correspondants (δX_{Max} , δX_{T} , δX_{pre})
- Partie 4 relative à la tête de myosine et au *cross-bridge cycle* avec constantes de temps des réactions irréversibles : liaison forte (τ_{preSB} , τ_{SB}), initiation rapide, lente et très lente du *working stroke* (τ_{startF} , τ_{startS} , τ_{preVS} , $\tau_{startVS}$), détachement lent (τ_{preSDE} , τ_{SDE}).

Sur les pages paires, les tracés en trait continu représentent les relations Force-Vitesse d'après les équations (FV.5) et (FV6a) à (FV.6d). La couleur du trait correspond à la couleur de la colonne de la table placée en vis-à-vis du graphique.

Statistique

Une régression linéaire est effectuée entre les valeurs de tensions mesurées (points relevés sur les figures des articles recensés) et les valeurs de tensions théoriques calculées à vitesses identiques. La droite de régression passe par l'origine, soit :

 $\mathbf{Y} = \mathbf{p} \cdot \mathbf{X}$

Où « Y » caractérise les valeurs de tensions théoriques et « X » celle des tensions mesurées..

La pente (p) est égale à :

$$p = \frac{\sum_{i=1}^{n} X_i \cdot Y_i}{\sum_{i=1}^{n} X_i^2}$$

Par définition, le coefficient de détermination vaut :

$$r^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - p \cdot X_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

Plus p et r² sont proches de 1, plus le modèle se révèle adéquat.

Ces 2 coefficients, p et r², apparaissent dans les 2 lignes du bas de chaque colonne de chaque table.

Thésaurus

Courbe FV1 (p. 9-10) : données de référence d'après Fig 2A dans (Edman 1988)

Courbe FV2 (p 11-12) : influence de la longueur initiale du sarcomère d'après Fig 3A, 3B, 3C et 3D dans (Edman 1988)

Courbe FV3 (p 13-14) : influence de la distance inter-filamentaire d'après Fig 4A et 4B dans (Edman 1988)

Courbe FV4 (p.15-16) : influence de la température d'après Fig 5 dans (Edman 1988)

Courbe FV5 (p 17-18) : comparaison de 3 types de fibres de même type dans des conditions différentes (L0s=2.6µm, R=1.4) d'après Fig 3D, 4B et 5 dans (Edman 1988)

Courbe FV6 (p 19-20) : comparaison entre 2 expérimentions (Ford 1985 et Edman 1988)

Courbe FV7 (p 21-22) : influence de la typologie d'après Fig 3 dans (Edman 1976)

Courbe FV8 (p 23-24) : comparaison entre 2 expérimentations (Edman 1976 et 1977)

Courbe FV9 (p 25-26) : comparaison entre 2 expérimentations pour le même type de muscle mais pour 2 espèces différentes de grenouilles (Edman 1988 et Piazzesi 2002)

Courbe FV10 (p 27-28) : influence de la température d'après Fig 3 dans (Elangovan 2012)

Courbe FV11 (p 29-30) : influence conjuguées de la typologie et de la température d'après Fig 3A et 3B dans (Rantunga 1984)

Courbe FV12 (p 31-32) : test des équations (FV.7) et (FV.8) se rapportant à la présence de la viscosité d'après Fig 2A dans (Edman 1988)

Résultats

Courbe FV1 d'après Fig 2 dans (Edman 1988)

But : Données et graphique référent avec vérification de l'homogénéité intrinsèque du modèle.

Table FV1 : Valeurs des paramètres

	REF : Fig 2A	Fig 2B
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽²⁾	AT ⁽²⁾
Г	1°C	1°C
ТО	163 kPa	165 kPa
\mathbf{L}_{fm}	6.3 mm	0.6 mm
N _{hs}	6000	570
L0s	2.1 μm	2.1 μm
P _{startF}	0.61	0.61
P _{startS}	0.27	0.27
P _{startVS}	0.12	0.12
δX _{Max}	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm
δX _{pre}	6 nm	6 nm
τ _{preSB}	3.7 ms	3.55 ms
$ au_{ m SB}$	6.5 ms	7 ms
T _{startF}	0.7 ms	0.7 ms
T _{startS}	27 ms	27 ms
$ au_{ m preVS}$	75 ms	75 ms
𝕂 _{startVS}	70 ms	70 ms
T _{preSDE}	5 ms	5 ms
C _{SDE}	12 ms	12 ms
••••••••••••••••••••••••••••••••••••••	nn e nove more more more more more more more mor	1.003
r ²	99.97%	99.95%

Fig FV1 : Relations Force-Vitesse (L est la longueur de la fibre) en trait bleu-vert d'après les équations du modèle. Les points proviennent de la Fig 2A dans (Edman 1988). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Les données de la 3^{eme} colonne de la Table FV1 se rapporte aux points relevés sur la Fig 2A dans (Edman 1988), i.e. à l'étude du raccourcissement d'un segment de 0.6 mm interne à la fibre, données quasi identiques à celle de la 2^{eme} colonne se référant au raccourcissement total de la fibre. Ceci démontre l'homogénéité de la relation (FV.2) au sein de la fibre ou d'un nombre quelconque de hs en série.

Le tracé en pointille pour les valeurs élevées de tension (T > 0.12 Nmm^2) correspond à la courbe des vitesses lentes si l'évènement **SlowDE** est absent, i.e. si l'équation (FV.6d) est omise. On vérifie avec les valeurs de l'exemple :

$$\mathbf{pT0}^* = \frac{(\delta \mathbf{X}_{\mathbf{Max}})^2}{2 \cdot |\mathbf{X}_{\mathbf{down}}| \cdot \delta \mathbf{X}_{\mathbf{T}}} = 1.1$$

Dans l'insert, le nombre de têtes de myosine en WS décroit légèrement pour les tensions élevées jusqu'à 85% de T0, remonte ensuite à 100% à 78% T0, puis on note une décroissance linéaire jusqu'aux très faibles valeurs de tension. Si la proportion de têtes en WS par hs en isométrie tétanique est prise égale à 30%, on obtient (0.05·30%) soit 1.5% de têtes encore en WS pour la vitesse maximale.

Courbe FV2 d'après Fig 3 dans (Edman 1988)

But Influence de la longueur initiale du sarcomère (L0_s)

	1.85 µm (Fig 34 ds Edman)	2.1 μm (Fig 3B ds Edman)	2.3 µm (Fig 3C ds Edman)	2.6 µm (Fig 3D ds Edman)
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽²⁾	AT ⁽²⁾	AT ⁽²⁾	AT ⁽²⁾
Г	1°C	1°C	1°C	1°C
ТО	246 kPa	257 kPa	237 kPa	186 kPa
$L_{\rm fm}$	8.35 mm	8.35 mm	8.35 mm	8.35 mm
N _{hs}	8000	8000	8000	8000
L0 _s	1.85 μm	2.1 μm	2.3 μm	2.6 µm
P _{startF}	0.63	0.62	0.61	0.57
P _{startS}	0.24	0.26	0.27	0.27
P _{startVS}	0.13	0.12	0.12	0.16
δX _{Max}	11.5 nm	11.5 nm	11.5 nm	11.5 nm
δΧτ	6.8 nm	8 nm	8 nm	8 nm
δX _{pre}	6 nm	6 nm	6 nm	6 nm
τ _{preSB}	3.7 ms	3.6 ms	3.6 ms	3.8 ms
$ au_{ ext{SB}}$	9 ms	7.5 ms	8.5ms	9 ms
T _{startF}	0.7 ms	0.7 ms	0.7 ms	0.7 ms
T _{startS}	27ms	27ms	27 ms	27 ms
τ _{preVS}	75 ms	75 ms	75 ms	75 ms
T _{startVS}	70 ms	70 ms	70 ms	70 ms
τ _{preSDE}	5 ms	5 ms	5 ms	5 ms
T _{SDE}	12 ms	12 ms	12 ms	12 ms
son e ener e <u>p</u>	1.01 1.01	um : voo : na :		na (
r ²	99.95%	99.9%	99.91%	99.84%

Table FV2 : Valeurs des paramètres

Fig FV2 : Relations Force-Vitesse en trait continu d'après les équations du modèle. Les points proviennent des FIg 3A, 3B, 3C et 3D dans (Edman 1988). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

- la valeur de L0_s varie avec celle de p_{startVS} en association avec une convexité de la courbe de moins en moins marquée pour les tensions élevées (pT>78%)
- Les valeurs de τ_{preSB} ne sont pas très différentes et les vitesses maximales sont communes pour les 4 tracés. Ceci valide l'hypothèse formulée dans le Papier 4 selon laquelle les éléments massifs (disques Z associés aux filaments d'actine et disques M associés aux filaments de myosine) sont les structures responsables de la viscosité et les têtes de myosine jouent un rôle négligeable.
- le tracé relatif à $L0_s=2.1\mu m$ est quasi superposable à celui du tracé référent de la courbe FV1 si T est exprimé en valeur relative (voir valeurs de la Table FV1). C'est la longueur pour laquelle T0 est la plus grande et les 2 constantes de temps, τ_{preSB} et τ_{SB} , les plus basses : il s'agit de la longueur pour laquelle le raccourcissement de la fibre parait le plus efficient
- l'étendue δX_T est diminuée pour L0_s=1.85 µm, probablement à cause du recouvrement inter-filamentaire excessif

Courbe FV3 d'après Fig 4 dans (Edman 1988)

But tester l'influence de la distance inter-filamentaire par compression osmotique

Table FV4 :Valeurs des paramètres

	R=1	R=1.44
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽²⁾	AT ⁽²⁾
Г	1.6°C	1.6°C
ТО	164 kPa	130 kPa
L _{fm}	6.3 mm	6.3 mm
N _{hs}	6000	6000
L0 _s	2.1 μm	2.1 μm
P _{startF}	0.62	0.58
P _{startS}	0.24	0.25
P _{startVS}	0.14	0.17
δX _{Max}	11.5 nm	11.5 nm
δX_{T}	8 nm	8 nm
δX _{pre}	6 nm	5 nm
$ au_{ m preSB}$	3.7 ms	5.7 ms
$ au_{ m SB}$	7 ms	12 ms
$ au_{\mathrm{startF}}$	0.7 ms	0.7 ms
T _{startS}	30 ms	30 ms
$ au_{ m preVS}$	80 ms	80 ms
𝕶 _{startVS}	90 ms	90 ms
$ au_{ m preSDE}$	5 ms	5 ms
ℓ _{SDE}	12 ms	12 ms
p		na (
r ²	99.82%	99.92%

Fig FV3 : Relations Force-Vitesse en trait continu d'après les équations du modèle. Les points en vert et jaune foncé proviennent des Fig 4A et 4B dans (Edman 1988). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Pour R=1(solution Ringer standard), on retrouve les valeurs de la courbe référent (voir Table FV1)

L'élévation de R par accroissement de la tonicité de la solution Ringer a pour conséquence d'augmenter la pression osmotique et de diminuer l'espace inter-filamentaire (*lattice*). On note que les 2 tracés sont parallèles pour les tensions faibles et moyennes. L'incurvation de la courbe est moins marquée pour les tensions élevées avec R=1.44.

Pour R=1.44 par rapport à R=1, on observe une diminution de T et de Vde l'ordre de 20% et 30%, respectivement, une diminution de δX_{Tpre} , une augmentation de constantes temporelles τ_{preSB} et τ_{preSB}

Courbe FV4 d'après Fig 5 dans (Edman 1988)

But : tester l'influence de la température interne de la fibre musculaire

	1.6°C	11° C
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽²⁾	AT ⁽²⁾
Г	1.6°C	11°C
ТО	137 kPa	163 kPa
L _{fm}	5.5 mm	5.5 mm
N _{hs}	5200	5200
LOs	2.1 μm	2.1 µm
P _{startF}	0.6	0.6
P _{startS}	0.25	0.25
P _{startVS}	0.15	0.15
δX _{Max}	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm
δX _{pre}	6 nm	6 nm
$ au_{ m preSB}$	4.6 ms	2.4 ms
$ au_{ m SB}$	13 ms	6 ms
τ _{startF}	0.7 ms	0.7 ms
T _{startS}	27 ms	12 ms
$ au_{ m preVS}$	75 ms	30 ms
T _{startVS}	70 ms	50 ms
$ au_{ m preSDE}$	5 ms	3 ms
T _{SDE}	12 ms	8 ms
t hat had t	1.004	400 - 100 -
r ²	99.83%	99.95%

Table FV4 : Valeurs des paramètres

Fig FV4 : Relations Force-Vitesse en trait continu d'après les équations du modèle. Les points en gris et rouge proviennent de la FIg 5 dans (Edman 1988). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Remarques

L'élévation de la température interne de la fibre musculaire de 1.6°C à 11°C provoque :

- une augmentation de 20% de T0
- une diminution de 50% en moyenne des constantes de temps

Courbe FV5 d'après Fig 3D , Fig 4B et Fig 5 dans (Edman 1988)

But : comparaison de 3 fibres de même type places dans des conditions différentes et spécifiques

On reprend les valeurs relatives à la fibre vue en FV5 où $L0_s=2.6\mu m$, celles de la fibre vue en FV5 où $L_{fm}=5 mm$ et celles de la fibre vue en FV4 où R=1.44

Table FV5 : Valeurs des paramètres

	L0s=2.6 µm (Fig FV2)	R=1.44 L _{fm} =5.5 m (Fig FV3) (Fig FV4)	
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽²⁾	AT ⁽²⁾	AT ⁽²⁾
Г	1°C	1.6°C	1.6°C
ТО	186 kPa	130 kPa	137 kPa
L _{fm}	8.35 mm	6.3 mm	5.5 mm
N _{hs}	8000	6000	5200
L0 _s	2.6 µm	2.1 µm	2.1 μm
P _{startF}	0.57	0.58	0.6
P _{startS}	0.27	0.25	0.25
P _{startVS}	0.16	0.17	0.15
δX _{Max}	11.5 nm	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm	8 nm
δX _{pre}	6 nm	5 nm	6 nm
$ au_{ m preSB}$	3.8 ms	5.7 ms	4.6 ms
$ au_{ m SB}$	9 ms	12 ms	13 ms
T _{startF}	0.7 ms	0.7 ms	0.7 ms
T _{startS}	27 ms	30 ms	27 ms
$ au_{ m preVS}$	75 ms	80 ms	75 ms
T _{startVS}	70 ms	90 ms	70 ms
τ _{preSDE}	5 ms	5 ms	5 ms
T _{SDE}	12 ms	12 ms	12 ms
P	1.015	- nu	1.004
r ²	99.84%	99.92%	99.83%

Fig FV5 : Relations Force-Vitesse en trait continu d'après les équations du modèles. Les points proviennent des FIg 3D, 4B et 5 dans (Edman 1988). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Le tracé correspondant à R=1.44, i.e. à la diminution de la distance inter-filamentaire est le plus pénalisé en terme de tension et de vitesse

Les 2 constantes de temps, τ_{preSB} et τ_{SB} , sont particulièrement élevées dans les 3 cas.

Le nombre relatif de têtes en WS (pA) décroit lentement jusqu'à pT=70% puis linéairement jusqu'à 5% par rapport à pT dans les 3 cas

Courbe FV6 d'après Fig 2 dans (Ford and others 1985)

But : comparer des expérimentations réalisées sur des fibres extraites de même muscle chez le même animal par deux auteurs différents

	Ford 1988 (expt: 15 nov/5dec 73)	Ford 1988 (expt : 23 oct 73)	Edman 1988 Fig 2B
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽²⁾	AT ⁽²⁾	AT ⁽²⁾
Г	1°C	1°C	1°C
ТО	295 kPa	285 kPa	163 kPa
$L_{\rm fm}$	5.8 mm	5.8 mm	6.3 mm
N _{hs}	5500	5500	6000
L0s	2.2 μm	2.2 µm	2.1 μm
P _{startF}	0.62	0.57	0.61
P _{startS}	0.27	0.27	0.27
P _{startVS}	0.11	0.16	0.12
δX _{Max}	11.5 nm	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm	8 nm
δX _{pre}	6 nm	6 nm	6 nm
τ _{preSB}	5 ms	3.7 ms	3.7 ms
$ au_{ ext{SB}}$	11 ms	6.8 ms	6.5 ms
𝕶₅tartF	0.8 ms	0.8 ms	0.7 ms
𝕂 _{startS}	28 ms	27 ms	27 ms
τ _{preVS}	75 ms	75 ms	75 ms
𝕇 _{startVS}	70 ms	70 ms	70 ms
τ _{preSDE}	5 ms	5 ms	5 ms
$ au_{ ext{SDE}}$	12 ms	12 ms	12 ms
• • • • • • • • • • • • • • • • • • •	0.997	1 : mar 1 mar 1 1.005	n en
\mathbf{r}^2	99.71%	99.83%	99.97%

Table FV6 : Valeurs des paramètres

Fig FV6 : Relations Force-Vitesse en trait continu d'après les équations du modèles. Les points mauves et marrons proviennent de la FIg 3 dans (Ford and others 1985) et les points couleur bleuvert de la Fig 2A dans (Edman 1988). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Pour l'expérimentation réalisée le 23 octobre 1976, les valeurs sont proches de celles données pour la courbe référent FV1 (voir données de la Table FV1)

Pour les points tirés des expérimentations des mois de novembre et de décembre, on note une augmentation caractéristique des 2 coefficients temporels τ_{preSB} et τ_{eSB} , 2 marqueurs de la présence de la viscosité.

Courbe FV7 d'après FIg 3 dans (Edman and others 1976)

But : comparer des expérimentations réalisées sur des fibres extraites de même muscle avec une typologie différente

	fm I	fm IIa	fm IIb
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	ST ⁽²⁾	ST ⁽²⁾	ST ⁽²⁾
Г	2°C	2°C	2.5°C
ТО	184 kPa	250 kPa	300 kPa
$L_{\rm fm}$	8.6 mm	11 mm	12.3 mm
$\mathbf{N}_{\mathbf{hs}}$	8400	10700	12000
L0 _s	2.1 μm	2.1 μm	2.1 μm
P _{startF}	0.65	0.61	0.63
P _{startS}	0.35	0.32	0.32
P _{startVS}	0	0.07	0.05
δX _{Max}	11.5 nm	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm	8 nm
δX _{pre}	6 nm	6 nm	6 nm
τ _{preSB}	4.5 ms	5.7 ms	3.7 ms
τ _{sb}	20 ms	20 ms	11 ms
T _{startF}	0.7 ms	0.7 ms	0.7 ms
T _{startS}	50 ms	27 ms	25 ms
τ _{preVS}	75 ms	75 ms	75 ms
T _{startVS}	70 ms	70 ms	70 ms
τ _{preSDE}	5 ms	5 ms	5 ms
$ au_{ ext{SDE}}$	10 ms	10 ms	10 ms
r nar raer van raer nar raer van raer v P		0.1907/00.1907/00.1007/00.1907/00.1907/00.1907/00.1907/00.1907/00.1907/00.1907/00.1907/00.1907/00.1907/00.1907/	0.998
r ²	99.86%	99.84%	99.85%

Table FV7 : Valeurs des paramètres

⁽¹⁾ Rana Temporaria ⁽²⁾ SemiTendinosis

Fig FV7 : Relations Force-Vitesse avec la force (T en mN) et la vitesse (|V| en mm/s) en trait continu bleu d'après les équations du modèles. Les points rouges, bleus ciel et bleus foncé proviennent de la FIg 3 dans (Edman and others 1976) relativement à 3 fibres classés en type I,Iia,et IIb respectivement. En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

La typologie n'est pas spécifiée dans l'article original. Mais un travail réalisé sur le semitendinosus de Rana Temporaria indique que 3 types de fibres sont présents dans ce muscle ; voir Introduction et Table 2 dans (Chayen and others 1987). D'après la longueur et la valeur de T0, nous avons classé, peut-être abusivement, les 3 fibres selon les 3 types classiques (I, IIa et IIb). De manière caractéristique, on observe que les valeurs des constantes de temps « τ_{SB} et τ_{statS} » varient selon la typologie postulée tandis que les données géométriques intrinsèques des têtes de myosine « δX_{Max} , δX_T , δX_{pre} » sont identiques dans les 3 cas.

Courbe FV8 d'après Fig 2 dans (Edman and Hwang 1977) et FIg 3 dans (Edman and others 1976)

But : comparer de 2 expérimentations réalisées sur deux fibres extraites de même type

	1977	1976 (fmIIa)
Animal	Rana T ⁽¹⁾	Rana T ⁽¹⁾
Muscle	ST ⁽²⁾	ST ⁽²⁾
Г	2°C	2°C
TO	230 kPa	250 kPa
$L_{\rm fm}$	10.2 mm	11 mm
$\mathbf{N}_{\mathbf{hs}}$	9400	10730
L0 _s	2.1 μm	2.1 μm
P _{startF}	0.6	0.6
P _{startS}	0.33	0.33
P _{startVS}	0.07	0.07
δX _{Max}	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm
δX _{pre}	6 nm	6 nm
$\tau_{ m preSB}$	5 ms	5.7 ms
$ au_{ m SB}$	19 ms	20 ms
T _{startF}	0.7 ms	0.7 ms
T _{startS}	26 ms	27 ms
τ _{preVS}	50 ms	75 ms
$ au_{ m startVS}$	70 ms	70 ms
τ _{preSDE}	5 ms	5 ms
$ au_{ m SDE}$	10 ms	10 ms
fand haaf haaf haaf haaf haaf haaf haaf haa	er hater bade hader hader 09998	1966 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 0.997
r ²	99.94%	99.84%

Table FV8 : Valeurs des paramètres

⁽¹⁾ Rana Temporaria ⁽²⁾ SemiTendinosis

Fig FV8 : Relations Force-Vitesse en trait continu d'après les équations du modèle. Les points couleur vert foncé proviennent de la Fig 2 dans (Edman and Hwang 1977) et les points couleur bleu ciel de la Fig 2A dans (Edman and others 1976) pour la fibre de type IIa (longueur 11mm). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Remarques :

Similitude des données et des tracés entre 2 fibres du même type dans des expérimentations différentes.

Courbes FV9 d'après Fig 3A dans (Piazzesi and others 2002) et Fig 2A dans (Edman and Hwang 1977)

But : comparer de 2 fibres extraites du même muscle chez 2 espèces différentes de grenouilles.

Table FV9 : Valeurs des paramètres

	Piazzesi 2002	Edman 1988
	(Fig 3A)	(Fig 2A)
Animal	Rana E ⁽¹⁾	Rana T ⁽¹⁾
Muscle	AT ⁽³⁾	AT ⁽²⁾
Γ	2°C	1°C
ТО	155 kPa	163 kPa
$\mathbf{L_{fm}}$	5 mm	6.3 mm
N _{hs}	4800	6000
L0s	2.1 μm	2.1 μm
P _{startF}	0.63	0.61
P _{startS}	0.3	0.27
P _{startVS}	0.07	0.12
δX _{Max}	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm
δX _{pre}	6 nm	6 nm
τ _{preSB}	3.7 ms	3.7 ms
$ au_{ ext{SB}}$	7 ms	6.5 ms
T _{start} F	0.8 ms	0.7 ms
T _{startS}	26 ms	27 ms
$ au_{ m preVS}$	75 ms	75 ms
T _{startVS}	70 ms	70 ms
τ _{preSDE}	5 ms	5 ms
U SDE	15 ms	12 ms
, , , , , , , , , , , , , , , , , , ,	1.005	1.01 m m m m m m m
r ²	99.81%	99.97%

Fig FV9 : Relation Force-Vitesse avec la force (T en mN) et la vitesse (|V| en mm/s) en trait continu vert et bleu ciel d'après les équations du modèles. Les points verts proviennent de la Fig 2 dans (Edman and Hwang 1977) et les points bleu-vert de la Fig 2A dans (Edman 88). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Similitude des données et des tracés entre 2 fibres extraites du même muscle pour 2 espèces différentes de grenouille.

Dans l'insert, on observe une différence notable pour les tensions élevées (pT>70%) où pA est supérieur à 1 pour Rana Esculenta (courbe et points roses).

Courbes FV10 d'après Fig 3A dans (Piazzesi and others 2002) et Fig 5 dans (Elangovan and others 2012)

But : tester l'influence de la température interne de la fibre musculaire extraite de l'anterior tibialis de Rana Esculenta

	2°C	7°C	15° C	21° C
Animal	Rana E ⁽¹⁾	(Elangoval) Rana E ⁽¹⁾	Rana E ⁽¹⁾	Rana E ⁽¹⁾
Muscle	AT ⁽³⁾	AT ⁽²⁾	AT ⁽²⁾	AT ⁽²⁾
ТО	155 kPa	195 kPa	230 kPa	241 kPa
L _{fm}	5 mm	6 mm	6 mm	6 mm
N _{hs}	4800	5700	5700	5700
LOs	2.1 μm	2.11 µm	2.11 µm	2.11µm
P _{startF}	0.63	0.63	0.65	0.63
P _{startS}	0.3	0.3	0.3	0.3
P _{startVS}	0.07	0.07	0.05	0.07
δX _{Max}	11.5 nm	11.5 nm	11.5 nm	11.5 nm
δΧτ	8 nm	8 nm	8 nm	8 nm
δX _{pre}	6 nm	6 nm	6 nm	6 nm
$ au_{ m preSB}$	3.7 ms	2.3 ms	1.1 ms	1 ms
$ au_{ m SB}$	7 ms	5 ms	2.1 ms	1.4 ms
T _{startF}	0.8 ms	0.7 ms	0.6 ms	0.6 ms
T _{startS}	26 ms	20 ms	8 ms	3 ms
τ _{preVS}	75 ms	40 ms	30 ms	25 ms
T _{startVS}	70 ms	60 ms	40 ms	30 ms
τ _{preSDE}	5 ms	3 ms	1 ms	1 ms
T _{SDE}	15 ms	8 ms	4 ms	2.5 ms
<u> </u>	1.005		900/100/100/100/100/100/100/100/100/100/	(au) (au) (au) (au) (au) (au) (au) (au)
r ²	99.81%	99.8%	99.87%	99.93%

Table FV10 : Valeurs des paramètres

⁽¹⁾ Rana Esculenta ⁽²⁾ Anterior Tibialis

Fig FV10 : Relation Force-Vitesse en trait continu d'après les équations du modèles. Les points mauves proviennent de la Fig 3A dans (Piazzesi and others 2002) et les points rouges, verts et bleus de la Fig 5 dans (Elangovan and others 2012). En insert, la relation du nombre relatif de têtes en WS (Λ/Λ_0) en fonction de la tension relative (T/T0).

Mêmes observations que pour la courbe FV4.

Courbes FV11 d'après Fig 3A et 3B dans (Ranatunga 1984)

But : tester l'influence conjuguée de la typologie et de température sur 2 fibres musculaires extraites de Extensor digitorum longus (muscle rapide) et du Soleus (muscle lent) chez le rat

	EDL ⁽¹⁾ (Fig 3A dans Ranatunga)			SOL ⁽²⁾ (Fig 3B dans Ranatunga)		
	15 °C	25 °C	35 °C	15 °C	25 °C	35 °C
Animal	Rat	Rat	Rat	Rat	Rat ⁾	Rat
TO	165 kPa	198 kPa	209 kPa	158 kPa	188 kPa	198 kPa
$\mathbf{L}_{\mathbf{fm}}$	15.6 mm	15.6 mm	15.6 mm	17.6 mm	17.6 mm	17.6 mm
$\mathbf{N}_{\mathbf{hs}}$	12500	12500	12500	4800	4800	4800
L0 _s	2.1 µm	2.1 µm	2.1 μm	2. 1µm	2.1µm	2.1µm
P _{startF}	0.59	0.59	0.59	0.59	0.59	0.59
P _{startS}	0.27	0.27	0.27	0.27	0.27	0.27
P _{startVS}	0.14	0.14	0.14	0.14	0.14	0.14
δX_{Max}	11.5 nm	11.5 nm	11.5 nm	11.5 nm	11.5 nm	11.5 nm
δX_T	8 nm	8 nm	8 nm	8 nm	8 nm	8 nm
δX _{pre}	6 nm	6 nm	6 nm	6 nm	6 nm	6 nm
τ _{preSB}	1.1 ms	0.65 ms	0.5 ms	10 ms	1.6 ms	0.8ms
$ au_{ ext{SB}}$	11 ms	1.9 ms	0.8 ms	50 ms	7 ms	2.5 ms
T _{startF}	1 ms	0.7 ms	0.6 ms	4 ms	1.5 ms	0.9 ms
T _{startS}	40 ms	27 ms	12ms	65 ms	45 ms	13 ms
τ _{preVS}	50 ms	40 ms	30 ms	80 ms	50 ms	40 ms
T _{startVS}	70 ms	60 ms	40 ms	150 ms	70 ms	60 ms
TpreSDE	5 ms	4 ms	1 ms	10 ms	5 ms	3 ms
$ au_{ m SDE}$	10 ms	7 ms	5 ms	30 ms	20 ms	15 ms
p	1.002	1.008		1.003	0.999	0.997
r²	99.83%	99.92%	99.88%	99.76%	99.91%	99.86%

Table FV11 : Valeurs des paramètres

(1) Extensor digitorum longus

(2) Soleus

Fig FV11 : Relations Force-Vitesse en trait continu d'après les équations du modèle. Les points de FV11a et V11b proviennent, respectivement, des Fig 3A et 3B dans (Ranatunga 1984).

Les données se rapportant au sarcomère et aux critères géométriques de la tête de myosine sont identiques pour les 2 fibres.

Seules différent les constantes de temps comme déjà vu pour courbe FV4 et FV10. Les valeurs se rapportant aux fibres rapides (EDL) sont toutes comparativement inférieures à celles relatives aux fibres lentes (SOL).

Courbes FV12 d'après Fig 2B dans (Edman 1988)

But : tester les équations (FV.7) et (FV.8) avec influence de la viscosité en modifiant virtuellement la valeur de τ_{preSB}

	$ au_{ m preSB}$	3.7ms	3.2 ms	2.6 ms	2 ms
-	pT _{Vi_Max}	0 %	5 %	10 %	15 %
	u _o	0.17 nm/ms	0.17 nm/ms	0.17 nm/ms	0.17 nm/ms
	U _{Visc 1}	0.1 nm/ms	0.1 nm/ms	0.1 nm/ms	0.1 nm/ms
	U _{Visc 2}	0.9 nm/ms	0.9 nm/ms	0.9 nm/ms	0.9 nm/ms
Régression entre T	r an chair ann ann ann ann ann ann ann ann ann an	1.01	1.009	1.009	1.009
et Tensions des points expériementaux	r ²	99.97%	99.96%	99.96%	99.96%

Table FV12 : Valeurs des paramètres en présence de viscosité

Toutes les autres données sont identiques à celles de la courbe référent (Table FV1).

Fig FV12 : Relations Force-Vitesse (T et V) en trait continu d'après équation (FV.5) en absence de viscosité. Les points couleur bleu-vert proviennent de la Fig 2A dans (Edman 1988)

En modifiant le seul paramètre temporel (τ_{preSB}), on constate une augmentation conséquente de la vitesse de raccourcissement, notamment pour les tensions faibles. Cette observation est à relier avec la diminution de τ_{preSB} lorsque la température augmente (voir Tables et Fig FV4, FV10 et FV11).

Pour retrouver une adéquation avec les points mesurés, un terme correctif formulé avec l'équation (FV.8) est retranché à l'égalité (FV.7). Les valeurs des facteurs introduits dans cee terme (pT_{vi_Max} , u_0 , u_{visc1} , u_{visc2}) apparaissent à la la Table FV12. Trois des 4 facteurs sont identiques, seule la contribution maximale à la tension due à la viscosité (pT_{vi_Max}) est modifiée de 0 à 15% par pas de 5%.

Références

- **Chayen N, Freundlich A, Squire JM. 1987.** Comparative histochemistry of a flatfish fin muscle and of other vertebrate muscles used for ultrastructural studies. J Muscle Res Cell Motil 8(4):358-71.
- Edman KA. 1988. Double-hyperbolic force-velocity relation in frog muscle fibres. J Physiol 404:301-21.
- Edman KA, Hwang JC. 1977. The force-velocity relationship in vertebrate muscle fibres at varied tonicity of the extracellular medium. J Physiol 269(2):255-72.
- Edman KA, Mulieri LA, Scubon-Mulieri B. 1976. Non-hyperbolic force-velocity relationship in single muscle fibres. Acta Physiol Scand 98(2):143-56.
- Elangovan R, Capitanio M, Melli L, Pavone FS, Lombardi V, Piazzesi G. 2012. An integrated in vitro and in situ study of kinetics of myosin II from frog skeletal muscle. J Physiol 590(Pt 5):1227-42.
- Ford LE, Huxley AF, Simmons RM. 1985. Tension transients during steady shortening of frog muscle fibres. J Physiol 361:131-50.
- Gordon AM, Huxley AF, Julian FJ. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170-92.
- Louvet S. 2018. Modèle mécanique de la contraction musculaire. 1. Relation force-vitesse. hal-01965922 (v1) : HAL.
- **Piazzesi G, Lucii L, Lombardi V. 2002.** The size and the speed of the working stroke of muscle myosin and its dependence on the force. J Physiol 545(Pt 1):145-51.
- **Ranatunga KW. 1984.** The force-velocity relation of rat fast- and slow-twitch muscles examined at different temperatures. J Physiol 351:517-29.