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OPTIMAL SELECTION OF TIME-FREQUENCY REPRESENTATIONS FOR SIGNAL CLASSIFICATION: A KERNEL-TARGET ALIGNMENT APPROACH

In this paper, we propose a method for selecting time-frequency distributions appropriate for given learning tasks. It is based on a criterion that has recently emerged from the machine learning literature: the kernel-target alignment. This criterion makes possible to find optimal representation for a given classification problem without designing the classifier itself. Some possible applications of our framework are discussed. The first one provides a computationally attractive way of adjusting the free parameters of a distribution to improve classification performance. The second one is related to the selection, from a set of candidates, of the distribution that best facilitates a classification task. The last one addresses the problem of optimally combining several distributions.

INTRODUCTION

Time-frequency and time-scale distributions provide a powerful tool for analyzing nonstationary signals. They can be set up to support a wide range of tasks depending on the user's information need. As an example, there exist classes of distributions that are relatively immune to interference and noise for analysis purpose [START_REF] Auger | Improving the readability of time-frequency and timescale representations by reassignment methods[END_REF][START_REF] Jones | An adaptive optimal-kernel time-frequency representation[END_REF][START_REF] Gosme | Adaptive diffusion of time-frequency and time-scale representations: a review[END_REF]. There are also distributions that maximize a contrast criterion between classes to improve classification accuracy [START_REF] Atlas | Optimizing time-frequency distributions for automatic classification[END_REF][START_REF] Heitz | Optimum time-frequency representations for the classification and detection of signals[END_REF][START_REF] Davy | Improved optimization of time-frequency based signal classifiers[END_REF]. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. The most popular ones are Support Vector Machines (SVM), kernel Ficher Discriminant Analysis (kernel-FDA) and kernel Principal Component Analysis (kernel-PCA) [START_REF] Müller | An introduction to kernel-based learning algorithms[END_REF]. They have gained wide popularity due to their conceptual simplicity and their outstanding performance [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. Despite these advances, there are few papers other than [START_REF] Davy | Optimised support vector machines for nonstationary signal classification[END_REF][START_REF] Honeiné | Reconnaissance des formes par méthodes à noyau dans le plan temps-fréquence[END_REF] associating time-frequency analysis with kernel machines. Clearly, time-frequency analysis still has not taken advantage of these new information extraction methods, although many efforts have been focused to develop task-oriented signal representations.

We begin this paper with a brief review of the related work [START_REF] Honeiné | Reconnaissance des formes par méthodes à noyau dans le plan temps-fréquence[END_REF]. We show how the most effective and innovative kernel machines can be configured, with a proper choice of reproducing kernel, to operate in the time-frequency domain. In the above cited paper, however it was posed as an open question how to objectively pick time-frequency distributions that best facilitate the classification task at hand. An interesting solution has recently been developed within the area of machine learning through the concept of kernel-target alignment [START_REF] Cristianini | On kernel-target alignment[END_REF]. This criterion makes possible to find the optimal reproducing kernel for a given classification problem without designing the classifier itself. In this paper, we discuss three applications of the alignment criterion to select timefrequency distributions that best suit a classification task. The first one provides a computationally attractive way of adjusting the free parameters of a distribution. The second one is related to the selection of the best distribution from a set of candidate distributions. The last one addresses the problem of optimally combining several distributions to achieve improvements in classification performance.

BACKGROUND ON KERNEL MACHINES

In this section, we concisely review the fundamental building blocks of kernel machines, mainly the definition of reproducing kernel Hilbert spaces, the kernel trick and the representer theorem. Let X be a subspace of L 2 (C), the space of finiteenergy complex signals. A kernel is a function κ from X × X to C, with hermitian symmetry. The following two definitions provide the basic concept of reproducing kernels [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]. Definition 1. A kernel κ(x i , x j ) is said to be positive definite on X if the following is true: 

n i=1 n j=1 a i a j κ(x i , x j ) ≥ 0, ( 1 
)
for all n ∈ IN, x 1 , . . . , x n ∈ X ,
xi : x j → κ xi (x j ) = κ(x i , x j ) is in H, for all x i ∈ X ; • ψ(x i ) = ψ(•), κ xi (•) H , for all x i ∈ X and ψ ∈ H.
It can be shown that every positive definite kernel is the reproducing kernel of a unique Hilbert space of functions from X to C, called reproducing kernel Hilbert space. Reciprocally, every reproducing kernel is a positive definite kernel. A proof of this may be found in [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]. From the second point of definition 2 results a fundamental property of reproducing kernel Hilbert space. Replacing ψ(•) by κ xj (•), we obtain

κ(x j , x i ) = κ xj (•), κ xi (•) H (2) 
for all x i , x j ∈ X , which is the origin of the now generic term reproducing kernel to refer to κ. Denoting by ϕ(•) the map that assigns to each x the kernel function κ(x, •), equation (2) implies that κ(x j , x i ) = ϕ(x j ), ϕ(x i ) H . The kernel then evaluates the inner product of any pair of elements of X mapped to H without any explicit knowledge of ϕ(•). This key idea is known as the kernel trick because it can be used to transform linear algorithms expressed only in terms of inner products into nonlinear ones. The representer theorem [START_REF] Schölkopf | A generalized representer theorem[END_REF], like the kernel trick, is a quintessential building block for kernel machines. Consider a training set A n consisting of n input-output pairs (x i , y i ). This theorem states that any function ψ * (•) of H minimizing a regularized cost function of the form

J((x 1 , y 1 , ψ(x 1 )), . . . , (x n , y n , ψ(x n ))) + g( ψ 2 H ), (3) 
with g(•) a monotone increasing function on IR + , can be expressed as a kernel expansion in terms of available data

ψ * (x) = n i=1 a * i κ(x, x i ). (4) 
Applications of this theorem include SVM, kernel-PCA and kernel-FDA [START_REF] Müller | An introduction to kernel-based learning algorithms[END_REF]. In the next section, we show how kernel machines can be configured, with a proper choice of reproducing kernel, to operate in the time-frequency domain.

TIME-FREQUENCY REPRODUCING KERNELS

For reasons of conciseness, we restrict ourselves to the Cohen class of time-frequency distributions. They can be defined as

C Φ x (t, f ) = Φ(ν, τ ) A x (ν, τ ) e -2jπ(f τ +νt) dν dτ, (5) 
where A x (ν, τ ) denotes the narrow-band ambiguity function of x, and Φ(ν, τ ) is a parameter function. Conventional pattern recognition algorithms applied directly to time-frequency representations consist of estimating Ψ * (t, f ) in the statistics

ψ * (x) = Ψ * , C Φ x = Ψ * (t, f ) C Φ x (t, f ) dt df (6)
to optimize a criterion of the general form [START_REF] Gosme | Adaptive diffusion of time-frequency and time-scale representations: a review[END_REF]. Examples of cost functions include the maximum output variance for PCA, the maximum margin for SVM, and the maximum Fisher criterion for FDA. It is apparent that this direct approach is computationally demanding because the size of C Φ x grows quadratically in the length of the input signal x. Faced with such prohibitive computational costs, an attractive alternative is to make use of the kernel trick and the representer theorem, if possible, with the following kernel

κ Φ (x i , x j ) = C Φ xi , C Φ xj . (7) 
Writing condition (1) as i a i C Φ xi 2 ≥ 0, which is indeed satisfied, we verify that κ Φ is a positive definite kernel. We denote by H Φ the unique reproducing kernel Hilbert space associated with κ Φ . This argument shows that ( 7) can be associated with any kernel machine reported in the literature to perform pattern recognition in the time-frequency domain. Thanks to the representer theorem, the solution ψ * (x) admits a time-frequency interpretation, ψ * (x) = Ψ * , C Φ

x , with

Ψ * = n i=1 a * i C Φ xi . ( 8 
)
This equation is obtained by combining ( 4) and ( 6). The question of how to select C Φ

x is still open. The next section brings some elements of answer in a binary classification framework.

KERNEL-TARGET ALIGNMENT

The alignment criterion is a measure of similarity between two reproducing kernels, or between a reproducing kernel and a target function [START_REF] Cristianini | On kernel-target alignment[END_REF]. Given a training set A n , the alignment of kernels κ 1 and κ 2 is defined as follows

A(κ 1 , κ 2 ; A n ) = K 1 , K 2 F K 1 , K 1 F K 2 , K 2 F , (9) 
where • , • F is the Frobenius inner product between two matrices, and K 1 and K 2 are the Gram matrices with respective entries κ 1 (x i , x j ) and κ 2 (x i , x j ), for all i, j ∈ {1, . . . , n}.

The alignment then is simply the correlation coefficient between the bidimensional vectors K 1 and K 2 .

For binary classification purpose, the decision statistic should satisfy ψ(x i ) = y i , where y i is the class label of x i . By setting y i = ±1, the ideal Gram matrix would be given by

K * (i, j) = ψ(x i ), ψ(x j ) = 1 if y i = y j -1 if y i = y j , (10) 
in which case K * , K * F = n. In [START_REF] Cristianini | On kernel-target alignment[END_REF], Cristianini et al. propose maximizing the alignment with the target K * in order to determine the most relevant reproducing kernel for a given classification task. The ease with which this criterion can be estimated using only training data, prior to any computationally intensive training, makes it an interesting tool for kernel selection. Its relevance is supported by the existing connection between the alignment score and the generalization performance of the resulting classifier. This has motivated various computational methods of optimizing kernel alignment, including metric learning [START_REF] Wu | Formulating distance functions via the kernel trick[END_REF], eigendecomposition of the Gram matrix [START_REF] Cristianini | On kernel-target alignment[END_REF][START_REF] Kandola | On the extensions of kernel alignment[END_REF] and linear combination of kernels [START_REF] Pothin | Kernel machines : une nouvelle méthode pour l'optimisation de l'alignement des noyaux et l'amélioration des performances[END_REF][START_REF] Kandola | Optimizing kernel alignment over combinations of kernels[END_REF]. We will focus on the latter of these issues, which consider the kernel expansion

κ α (x i , x j ) = m k=1 α k κ k (x i , x j ) (11) 
and study the problem of choosing the α k 's to maximize the kernel-target alignment. A positivity constraint on these coefficients is imposed to ensure the positive definiteness of κ α . Some more or less efficient algorithms have been proposed in the literature. In [START_REF] Pothin | Kernel machines : une nouvelle méthode pour l'optimisation de l'alignement des noyaux et l'amélioration des performances[END_REF], it has been shown that a concise analytical solution exists in the m = 2 case:

(α * 1 , α * 2 ) =    (α 1 , α 2 ) if α 1 , α 2 > 0 (1, 0) if α 2 ≤ 0 (0, 1) if α 1 ≤ 0, (12) 
with

α 1 = 1 2 K 1 , K * F -2 K 1 , K 2 F α 2 K 1 2 F + λ α 2 = 1 2 ( K 1 2 F + λ) K 2 , K * F -K 1 , K 2 F K 1 , K * F ( K 1 2 F + λ)( K 2 2 F + λ) -K 1 , K 2 2 F ,
where λ ≥ 0 arises from a regularization constraint penalizing α 2 . To combine more than 2 kernels, we opted for a branch and bound approach. It starts from the best available kernel, and selects from the remaining kernels the one which best increases the alignment criterion. This procedure is iterated until no improving candidates can be found.

TIME-FREQUENCY FORMULATION

By placing time-frequency based classification within the larger framework of kernel machines, we can take advantage of concepts and tools that have been developed above. In this section, we focus on selecting time-frequency distributions appropriate for binary classification tasks. That is, we consider the maximization problem

Φ * = arg max Φ K Φ , K * F n K Φ , K Φ F , (13) 
where K Φ is the Gram matrix associated with C Φ x . We also discuss how to improve performance by optimally combining several time-frequency distributions.

Before proceeding, note that the experiments were run on 64-sample data generated according to the hypothesis test

ω 0 : x(t) = w 0 (t) ω 1 : x(t) = w 1 (t) + e 2jπ[φ(t)+φ0] , (14) 
where φ(t) is a quadratic phase modulation and φ 0 the initial phase. The noises w 0 (t) and w 1 (t) are zero-mean, Gaussian and white with variances σ 2 0 and σ 2 1 , respectively. They were fixed to 2.25 for the first two experiments, and φ 0 was considered a random variable uniformly distributed over [0, 2π[. In the third experiment, σ 2 0 and σ 2 1 were set to 9 and 4, respectively, and φ 0 was fixed to 0. For each experiment, a training set A 200 of size 200 was generated with equal priors. A test set T 1000 of 1000 examples was also created to estimate the generalization performance of kernel-optimal SVM classifiers trained on A 200 .

Parameter setting

The first illustration deals with parameter setting of timefrequency distributions. Without any loss of generality, we address the problem of adjusting the window size of a spectrogram S x with a view to maximize classification accuracy. The reproducing kernel is then defined as

κ sp (x i , x j ) = S xi , S xj . ( 15 
)
Figure 1 shows, as a function of the window size, the kernel-target alignment of κ sp over the training set A 200 . It also includes the error rate of a SVM classifier trained and tested on A 200 and T 1000 , respectively. We note that the maximum alignment is obtained with a window size of 27, and coincides with the lowest error rate. This shows that with a high alignment on the training set, we can expect a good generalization performance of a kernel-based classifier. Here these distributions are applied to the signal to be detected.

Selection of a distribution

The second illustration is concerned with the selection of a distribution from a set of candidates. The latter consists of the following distributions: Wigner (κ wv ), smoothed pseudo-Wigner (κ spwv ), Margenau-Hill (κ mh ), Choï-Williams (κ cw ), Born-Jordan (κ bj ), reduced interference with Hanning window (κ ridh ), and spectrogram (κ sp ). Figure 2 shows the performance averaged over 50 independent realizations of the training and test sets. It provides the alignment of the abovementioned kernels over A 200 , versus the error rate of a SVM classifier trained and tested on A 200 and T 1000 , respectively. The apparent relationship between these two criteria emphasizes once more the relevance of the kernel-target alignment.

Combination of distributions

The last illustration focuses on the combination of timefrequency distributions to achieve improvements in classification performance. This problem was addressed with the kernel-based process ( 11)- [START_REF] Aronszajn | Theory of reproducing kernels[END_REF], which was applied to the above-described set of candidate distributions. Kernels κ spwv and κ wv were successively selected. The kernel-target alignment increased from 0.1039 to 0.1076, while the error rate of the SVM classifier reduced from 4.7% to 3.2%. Figure 3 presents the composite time-frequency distribution, applied here to the signal to be detected. Another experimentation was carried out by adding the short-time Fourier transform to the above-mentioned set of quadratic distributions. Note that κ stft (x i , x j ) = x i , x j for a normalized window. Kernels κ stft and κ spwv were successively chosen, for a final alignment of 0.1698 and an error rate of 2.7%. This result is consistent with statistical decision theories since the log-likelihood ratio for the detection problem under consideration involves both linear and quadratic components of the observation.

CONCLUSION

In this paper, we showed that specific reproducing kernels allow any kernel machine to operate on time-frequency representations. We also proposed a method, based on the kerneltarget alignment, for selecting or combining time-frequency distributions to achieve improvements in classification performance. All these links offer new perspectives in the field of non-stationary signal analysis since they provide an access to the most recent methodological and theoretical developments of pattern recognition and statistical learning theory.
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 1 Fig. 1. Adjustment of the window size of a spectrogram using the kerneltarget alignment. Comparison with the error rate of a SVM classifier.
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 2 Fig. 2. Alignment and error rate for different kernels.
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 3 Fig. 3. Smoothed pseudo-Wigner (left), Wigner (middle), and composite associated with the kernel κspwv + 0.208 κwv (right). Here these distributions are applied to the signal to be detected.
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