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ABSTRACT

In this paper, we introduce a distributed strategy for lo-
calization in a wireless sensor network composed of lim-
ited range sensors. The proposed distributed algorithm
provides sensor position estimation from local similar-
ity measurements. Incremental Kernel Principal Com-
ponent Analysis techniques are used to build the non-
linear manifold linking anchor nodes. Non-anchor nodes
positions are estimated by the pre-image of their non-
linear projection onto this manifold. This non-linear
strategy provides a great accuracy when data of inter-
est are highly corrupted by noise and when sensors are
not able to estimate their Euclidean inter-distances.

1. INTRODUCTION

Recent technological advances in electronics and wire-
less communications have led to the development of tiny,
low-power and low-cost sensors for physical observations
purpose. Deployed randomly and densely in the en-
vironment of interest, and designed with efficient dis-
tributed algorithm, sensor networks seem to offer sev-
eral opportunities, specially in monitoring and tracking
applications [1]. The first step of estimating the sensor-
location after deployment is thus a crucial issue. GPS
system may solve in practice localization problem for
each node of the embedded network. However, GPS
receivers at each device may be too expensive and too
power-intensive for the desired application, whose low
energy consumption is the main constraint to respect.
As a consequence, we consider only few sensors, called
anchor nodes, which have a perfect a priori knowledge
of their coordinates thanks to GPS receivers.

The most famous techniques used for localization ap-
plications are based upon either semidefinite program-
ming (SDP) or multidimensional scaling (MDS) algo-
rithms (see [2] and references therein). In the SDP
framework, proximity measurements between sensors
are expressed as geometric constraints, leading to a con-
vex optimization problem. Unfortunately, this approach
is unable to accommodate precise range data and un-
adapted to large scale sensor networks. The MDS algo-
rithm [3], which is strongly related to the linear Prin-
cipal component Analysis (PCA), has shown its effec-
tiveness to estimate unknown sensors location by ap-
plying an orthogonal basis transformation. However, if
the data are not inter-sensor distances or are linked to
coordinates by an unknown non-linear function, linear
techniques such as MDS and PCA fail to accurately es-
timate the node positions.

In this paper, we propose a distributed strategy for
solving the localization problem, by borrowing state-
of-art methods from machine learning. Each step of
the proposed distributed scheme is built in the con-
text of wireless sensor networks application, i.e keeping
in mind energy reserve and computational limitations.
We assume that each device determines non-Euclidean
similarity measurements with other sensors, from some
measurements such as the received signal strength indi-
cation (RSSI) or estimated covariance sensor data [4].
Thus, we propose to use these similarities [δij ]

N
i,j=1 be-

tween neighbor nodes for location estimation purpose.
The main idea is to design a nonlinear manifold via
a high-dimensional Reproducing Kernel Hilbert Space
H (RKHS) thanks to similarities between anchor-node
measurements. Next, non-anchor sensors coordinates
are estimated by the pre-image of their projection onto
the manifold.

This paper is organized as follows: Section 2 is
devoted to the main contribution of this work which
consists of a kernel-based non-linear method for self-
localization. In section 3, simulation results confirming
the algorithm efficiency are shown.

Problem statement

Consider a network of N sensor nodes, of m anchors of
known positions and N −m unaware-position sensors,
living in a p-dimensional space (p = 2 for localization in
plane, with N −m� m > p). Let xi ∈ IRp be the i-th
sensor coordinates, {xi}

m
i=1 is the set of anchors nodes

coordinates whose positions are known, {xi}
N
i=m+1 fit

the unknown remaining sensor coordinates. If we as-
sume that maximum spotting sensor range is equal to a
distance r, sensor i will consider sensor j as a neighbor
when the distance ‖xi − xj‖ is lower than r. The i-th
sensor neighborhood is denoted by V(i).

2. DISTRIBUTED LOCALIZATION
ALGORITHM

The proposed algorithm is implemented in three steps.
The first step is devoted to build the Hilbert space
H associated to the reproducing positive definite ker-
nel κ(xi,xj) which best approximates estimated anchor
pairwise similarities δij . The second step is dedicated to
map the data into a high-dimensional feature space, ob-
tained from anchor informations by a Kernel-PCA tech-
nique. The third part is aimed to reconstruct the N−m
unknown sensors positions by a pre-image optimization



Inputs: {[δij ]j∈V(i)}
m
i=1, {xi}

m
i=1

Initialization: σ∗ ← 0
for i = 1 to m
• Compute σ∗

i maximum of Ωi(x1, . . . ,xm,K
∗)

at anchor number i
• σ∗ ← σ∗ + 1

m
σ∗

i

• Communicate σ∗ to anchor number i+ 1
end for
Communicate σ∗ to the N sensors

Table 1: Pseudo-code of distributed alignment maximiza-
tion implemented on the m anchor-nodes, where each anchor
knows only nearby anchor positions

scheme. The choice of Kernel-PCA [5] method is sup-
ported by its non-linearity property, its flexibility with
a large variety of kernel functions and its distributed
capabilities.

2.1 Kernel selection from anchor similarities

In order to build a valid RKHS, a kernel function
respecting the anchor similarities should be selected
thanks to the alignment method. The alignment crite-
rion is a measure of similarity between two reproducing
kernels or between a kernel and a target function [6].
Let K∗ be a target matrix, and Kσ the Gram matrix
associated to the reproducing kernel κσ, with a tuning
parameter σ, for a given training set, i.e. with entries
κσ(xi,xj) for i, j ∈ {1, . . . ,m}. The alignment between
these two matrices is defined by

A(Kσ,K
∗) =

〈Kσ ,K
∗〉F

√

〈Kσ ,Kσ〉F 〈K
∗,K∗〉F

(1)

where 〈. , .〉F is the Frobenius inner product between two
matrices. For our purpose, the target matrix K∗ is given
by our similarity matrix, with

K∗(i, j) = δij , (2)

for all i, j ∈ {1, . . .m}, in which case 〈K∗,K∗〉F is con-
stant. We have restricted potential kernels to Gaussian
kernels defined as: κσ(xi,xj) = exp(−‖xi − xj‖

2/2σ2)
where σ is a positive scalar to be determined and xi, xj

are anchor coordinates. Therefore, the aim is to maxi-
mize the alignment criterion (1) with respect to σ.

Thanks to Lagrange method, the optimization prob-
lem is equivalent to:

σ∗ = argmax
σ

m
∑

i=1

[

m
∑

j=1

(δijκσ(xi,xj))−λ

m
∑

i,j=1

κσ(xi,xj)
2
]

,

where the term between brackets will be denoted by
Ωi(x1, . . . ,xm,K

∗).
In practice, if the anchor j is a neighbor of anchor

i, δij is computed, otherwise it is set to zero. This for-
mulation respects the hypothesis of spatial correlation
[4] and helps to preserve energy by limiting communi-
cations to neighbors. Thus, we obtain

Ωi(x1, . . . ,xm,K
∗)=

∑

j∈V(i)

δijκσ(xi,xj)−λ
∑

j∈V(i)

κσ(xi,xj)
2

Pre-processing: learn σ∗ as in Table 1
Inputs: K = [κσ∗(xi,xj)]

m
i,j=1

Initialization: Randomly set A(0)
for k = 1 to m
• Compute A(k) from (4) at anchor k
• Communicate A(k) to anchor k + 1

end for
Communicate A∗ to the non-anchor nodes

Table 2: Pseudo-code of incremental Kernel-PCA algorithm
implemented on the m anchor-nodes.

where λ is the Lagrange coefficient and V(i) is the set
of anchor-neighbors of anchor i. A distributed gradient
algorithm descent is performed from anchor to anchor
according to the scheme illustrated in Table 1.

After computing σ∗ as the best alignment, the sec-
ond step consists in building the nonlinear manifold re-
lated to a subspace in the RKHS H.

2.2 Kernel-PCA upon anchor nodes

As a nonlinear extension of PCA, Kernel-PCA deter-
mines the principal axes in a RKHS, which can be con-
structed explicitly from the input space by a nonlinear
map φ(.), or implicitly by considering the correspond-
ing reproducing kernel κ(·, ·). In other words, for an m
input data problem, [xk]mk=1, a PCA is performed in H
yielding a set of m−1 orthogonal axes1 {v1, . . . ,vm−1},
and thus defining a subspace P ofH. Since the latter lies
in the span of the φ-images of the input data, Kernel-
PCA [5] is computed by diagonalizing the dot-product
matrix K in H, by solving

mλkak = Kak 1 ≤ k ≤ m− 1 (3)

for the column vectors ak, with k = 1, . . . ,m − 1, of
feature coefficients, and K = [〈φ(xi), φ(xj)〉]

m
i,j=1 is the

dot-product matrix in H, known as the Gram matrix
or learning matrix. This is done without the need to
carry out the map φ explicitly. Only the kernel values
κ(xi,xj) are needed.

For the choice of the reproducing kernel, there is
no restrictions with Kernel-PCA. We propose to use
the one obtained from section 2.1, with the maximum
alignment criterion. Therefore, we consider the Gram
matrix [κσ∗(xi,xj)]

m
i,j=1. The mapping φ : IRp →

H corresponds to a RKHS H where dot products
〈φ(xi), φ(xj)〉H are as close as possible to similarity
measurements δij .

We assume that each anchor-sensor has at least one
anchor as a neighbor node which means that all an-
chor nodes respect a connected graph. As considered
in section 2.1 and illustrated in Table 1, each anchor al-
ready knows the positions of its neighbor anchors, which
for sensor i is given by {xj}j∈V(i). Thus, it can com-
pute κσ∗(xi,xj) for j ∈ V(i) or nullify it otherwise.

1For the sake of clarity, we assume that all mapped training
pattern are centered in the feature space. Therefore, we count
m − 1 eigenvectors associated to positive eigenvalues non-null.
Otherwise one should substitute K in (3) with K −

1

m
1mK −

1

m
K1m + 1

m2
1mK1m where (1m)ij = 1



PSfrag replacements

xa

xb

xc

xi

x̂i

φ(.)

φ(xi)

φ(xa)

φ(xb)

φ(xc) P

Pφ(xi)

Figure 1: Illustration of the idea behind Kernel-PCA and pre-image techniques for localization in sensor networks. The
left-hand-side frame corresponds to the input space (plane) and the right-hand-side to the feature space. The latter is reduced
to the subspace P defined by the anchor nodes (red squares). The position of any non-anchor node (black circle) is estimated
from (7) by a pre-image technique, after projecting its image onto P.

After evaluating the anchor-node pairwise similarities,
an incremental Kernel-PCA algorithm is run over the
m anchors of the network by considering the kernel val-
ues [κσ∗(xi,xj)]

m
i,j=1. The Kernel Hebbian algorithm

[7], presented as a direct application of the Generalized
Hebbian algorithm in an RKHS, is dedicated to solving
a kernel eigen-problem in a distributed way. The matrix
of feature coefficients A = [a1 a2 · · · am−1] ∈ IRm×m−1

is updated by each anchor node as follows:

A(k+1) = A(k)+η
(

y(k)b(k)t−LT
(

y(k)y(k)t
)

A(k)
)

,

(4)
where η is a predefined learning rate, y(k) =
∑m

j=1 aj(k)κσ∗(xk,xj), b(k) = [0 · · · 1 · · · 0] a canoni-

cal unit vector whose k− th element is 1, and LT (·) the
lower triangular operator.

At the initialization stage, A(0) is assigned a ran-
dom value2 by the anchor number 1. Then it is commu-
nicated between anchors and updated with respect to
the recursive expression (4). After this learning stage,
A∗ is communicated to the remaining N −m sensors of
the network. The pseudo-code is described in Table 2.
Next, for each sensor i, we represent its image φ(xi) in
the space defined by the anchors, and obtained from the
feature vectors defined by A∗. The problem of estimat-
ing x̂i from that representation is the classical pre-image
reconstruction problem.

2.3 Pre-image for location estimation

As we consider a reproducing kernel associated to a
nonlinear map φ(·), the induced RKHS is of higher di-
mensionality, and infinite for some kernels such as the
Gaussian kernel. Thus, the image φ(xi) of any sensor
i has redundant information. We consider representing
it with the finite-number features in A∗ obtained with
anchors, as we hope that the remaining dimensions con-
tain only noise information. Representing the data in an
eigen-space is known in machine learning literature as
the empirical kernel map [8]. Next we study the prob-
lem of getting back to the input space, with a pre-image
technique, in order to estimate the N −m coordinates
of non-anchor sensors. But before, we recall that P is

2A(0) must neither be the zero vector nor orthogonal to the
eigenvectors.

spanned by the m−1 eigenvectors, or less if some eigen-
values are null, and define P as the projection operator
onto it. Thus, Pφ(x) is the projection of φ(x) onto P ,
as illustrated in Fig.1.

The projection satisfies the minimal reconstruction
error ‖Pφ(x) − φ(x)‖2. While we have no access to x,
we want to determine x̂ ∈ IRp whose image φ(x̂) best
approximates Pφ(x), in the least square sense. Since
Pφ(x) is already known given only the anchor/non-
anchor similarities, the optimized problem could then
be put in the following form [9]:

x̂ = arg min
z
‖Pφ(x)− φ(z)‖2 (5)

This optimization problem should be solved at each of
the N−m non-anchor sensors, in order to estimate their
unknown coordinates. Each non-anchor sensor j has to
evaluate m kernel values κσ∗(xi,xj) for i ∈ {1, . . . ,m}
(i.e. with the m anchors). However, this computational
cost is reduced in practice, as a small number of an-
chors are in the neighborhood of each sensor, i.e if an-
chor i is inside the visibility range of sensor j, we have
κσ∗(xi,xj) = δij , otherwise κσ∗(xi,xj) = 0.

We remind that non-anchor sensors have already re-
ceived the last update of expansion matrix A∗. Each
sensor can extract its nonlinear principal components.
Assuming that βk

j is the projection onto the k-th com-
ponent for the non-anchor sensor j, it reads:

βk
j =

m
∑

i=1

ai
kκσ∗(xi,xj) (6)

Therefore, we can write Pφ(xj) =
∑m−1

k=1 βk
j vk where

xj is the sensor j unknown coordinates, βk
j is the pro-

Pre-processing: learn A∗ as in Table 2

Inputs: A∗, σ∗, {[δij ]l∈V(j)}
N
j=m+1, {xi}

m
i=1

Initialization: randomly set xm+1, . . . ,xN

for j = m+ 1 to N
• At node number j, compute x̂j from (7)

end for

Table 3: Pseudo-code of pre-image algorithm for localization
estimation.
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Figure 2: Evolution of mean distance error per sensor with
a gaussian generative covariance function τ = 20 (Exp.I).

jection on the kth component and vk is the k-th eigen-
vector. Solution from (5) can be simplified in terms of
dot products in H:

x̂j = argmin
z
κσ∗(z, z)− 2Pφ(xj)

t.φ(z)

where we neglected a term independent of z. If the
considered kernel is radial such as the Gaussian kernel,
thus κ(z, z) is constant for all z, we get the following
optimization problem (see [9] for more details)

x̂j = arg max
z

Pφ(xj)
tφ(z)

= arg max
z

m−1
∑

k=1

βk
j

m
∑

i=1

ai
kκσ∗(z,xi), (7)

Thus, a gradient descent algorithm is performed by non-
anchor sensor j in order to minimize the criterion (7).
Initially, all non-anchors nodes have a random posi-
tion in the network and the optimization is executed
locally with no synchronization constraints. The pre-
image technique for localization in sensor networks is
illustrated in Table 3.

3. EXPERIMENTS

The algorithm proposed in this paper is independent
of the type of similarities considered for localization
purpose. In our simulation scenario, we make the as-
sumption that data inputs are jointly distributed with
a covariance being function of the distance. Thus, es-
timated covariance relations are used as local similarity
measurements between neighbor nodes [4]. For this, let
a network consists of sensors measuring the same phys-
ical phenomena, such as temperature, pressure or lu-
minance measurements. Here, wi represents the vector
data recorded by sensor i on a given time interval. By
considering a static field, we assume that data readings
{wi}

N
i=1 are jointly generated from a normal distribu-

tion of mean µ = [µ1 · · ·µN ] and covariance matrix C
shaped as

C = [ψ(‖xi − xj‖)]
N
i,j=1 (8)

20 25 30 35 40 45 50 75 100
0

10

20

30

40

50

60

M
ea

n 
di

st
an

ce
 e

rr
or

 p
er

 s
en

so
r

Range

Figure 3: Evolution of mean distance error per sensor with
a third degree polynomial generative covariance function d =
60 (Exp.II).

where ψ : [0,∞[→ [0, 1] is a non-negative decreas-
ing function. The experimental setting consists of 20
anchor-sensors and 80 non-anchor sensors randomly
spread over a square surface 100× 100. The data read-
ings for each sensor consists of 200 measurements. We
consider the Gaussian kernel, while its bandwidth σ∗ is
given by maximizing the alignment.

In the first experience (noted Exp.I), data are gen-
erated according to the unknown covariance ψ1(z) =

exp(− z
2

2τ2 ) where τ = 20. Localization results are shown
in Fig. 5(a) with sensor range r = 45. Fifty simulations
were run for each range value. Results are presented
in Fig. 2 for different sensor range value, the Lagrange
coefficient for alignment λ is fixed to 0.3.

The second experiment (noted Exp.II) is dedicated
to test the robustness of our algorithm by using a gen-
erative covariance ψ different from the Gaussian kernel.
The spherical model [10], which is commonly applied in
environmental and geological sciences, is used with

ψ2(z) =

{

1− 3
2d

z + 1
2d3 z

3 for 0 ≤ z ≤ d
0 for d < z
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Figure 4: Graph comparing curves of functions ψ1 with
parameter τ = 20 and ψ2 with d = 60.
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Figure 5: The 20 anchors are represented by blue squares. Estimated location of 80 nodes are indicated by a red cross,
distance error in location to true position are symbolized by segment. (a) and (b) are respectively related to Exp.I and
Exp.II for the same initial configuration of sensors and range fixed to 45.

where d is a cut-off distance. In Exp.II, the parameter
d is fixed to 60 in order to obtain a decreasing speed
of covariance with distance close to that of Exp.I with
τ = 20 (see Fig. 4). An example of localization results
is shown in Fig. 5(b) with r = 45. Note that some simi-
larity measurements are missed when the sensor range r
is fixed to 45 and τ = 20 or d = 60 (see Fig. 5), since re-
mote sensor pairwise are ignored in each algorithm step.
Results of fifty simulations with λ = 0.3, are shown in
Fig. 3 for different sensor range values.

In both experiments, we note that localization per-
formances are significantly degraded with low range
(around a range of 20). However, localization error
quickly decreases when number of neighbor anchors rises
above 3. This is mainly due to a constraint in local lo-
calization, since the subproblems are well defined when
3 anchors available in IR2. We note that localization er-
ror is always sensitively better in Exp.I than in Exp.II.
This is justified by the similarity between the considered
Gaussian kernel and the generative covariance function
ψ1. Nevertheless, results of Exp.II show that our al-
gorithm is still robust when faced to more realistic sit-
uations where no similarity exists between the chosen
Gaussian kernel and the underlying generative covari-
ance.

4. CONCLUSION AND PERSPECTIVES

In this article, we have shown that Kernel-PCA, coupled
with reconstruction techniques, computes unknown co-
ordinates of the network sensors thanks to a non-linear
transformation φ of the input space. This localiza-
tion problem is solved distributively with limited sensor
range and noisy non-Euclidean measurements. Good
performances in positioning are observed thanks to the
non-linear process. There are several directions for fur-
ther research including a way to add additional informa-
tion in pre-image criterion, such as similarity measure-
ments between neighbor non-anchor nodes.
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