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Abstract—Over the past few years, wireless sensor networks re-
ceived tremendous attention for monitoring physical phenomena,
such as the temperature field in a given region. Applying conven-
tional kernel regression methods for functional learning such as
support vector machines is inappropriate for sensor networks,
since the order of the resulting model and its computational
complexity scales badly with the number of available sensors,
which tends to be large. In order to circumvent this drawback,
we propose in this paper a reduced-order model approach. To
this end, we take advantage of recent developments in sparse
representation literature, and show the natural link between
reducing the model order and the topology of the deployed
sensors. To learn this model, we derive a gradient descent
scheme and show its efficiency for wireless sensor networks.We
illustrate the proposed approach through simulations involving
the estimation of a spatial temperature distribution.

I. I NTRODUCTION

Wireless sensor networks involve large numbers of deployed
tiny radio-equipped sensors, and provide an inexpensive way
to monitor physical phenomena, such as a temperature field.
With relatively inexpensive wireless devices, each devicehas
a limited amount of memory, reduced processing capabilities,
limited power resources, and low communication capacities.
In order to carry out good coverage of the region under
scrutiny, sensors must be deployed densely, resulting in highly
redundant spatial information. Many researchers in the sensor
network community exploit this redundancy in order to reduce
the complexity of the resulting model, see for instance [1]
and references therein. Guestrinet al. consider in [2] the
spatial and temporal redundancy, where the latter is handled by
fitting a three-degree polynomial to the sensed data. While this
is a model-based technique, model-independent approaches
received considerable attention recently. Rabbatet al. applied
in [3] an incremental subgradient optimization technique for
parameter estimation, yielding an efficient scheme for sensor
network in terms of the energy-accuracy tradeoff. As pointed
out by Preddet al. in [4], such a technique is however
inappropriate for functional estimation.

Recently, increasing research attention has been directed
towards kernel methods for pattern recognition, in both unsu-
pervised and supervised learning for classification and regres-
sion problems. Based on the concept of reproducing kernels
initially introduced by Aronszajn in the 50’s, these methods
have gained popularity with the prelude of support vector
machines and the statistical learning theory [5]. The literature

on wireless sensor networks does not escape from the pro-
liferation of kernel machines and its attractiveness, as studied
for problems such as localization [6], detection [7], estimation
[8], and regression [9]. Preddet al. propose in [9] to assess
distributively the regression problem by solving it locally on
each sensor device, which gets information from its neighbors.
While this technique is computationally efficient, it has some
drawbacks. On the one hand, sensor devices must be set in
broadcast mode in order to communicate with their neighbors,
and thus require more power for lateral communication as
compared to a sensor-to-sensor communication. On the other
hand, each sensor needs to solve the optimization problem,
resulting in aon-sensor matrix inversion that leads to con-
siderable computational burden. This technique suffers from
these disadvantages as long as sensors are densely deployed.

Classical kernel machines are inappropriate for regression in
the context of sensor network, mainly for one major drawback,
illustrated by the Representer Theorem [10], [11]: The order
of the resulting model is equal to the number of available
observations. Therefore, the model order scales badly with
the number of deployed sensors. In order to overcome this
difficulty, we consider in this paper a reduced-order approach.
Controlling the complexity of the model is widely used not
only in kernel machines [12], but also in sparse representation
literature [13], [14]. It turns out that this is equivalent to
selecting a small set of sensor devices that are well spread
in the network. In the proposed scheme, each device updates
the model from its measurement, and increments its orderif
necessary, then transmits the model parameters to the next
device, and so on. Both this sensor-to-sensor communication
scheme which reduces the overall energy consumption, and
the gradient-based learning technique that we derive in this
paper, allow us to overcome the disadvantages of the method
proposed by Preddet al.

This paper is organized as follows. In the next section,
functional learning with classical kernel machines is concisely
introduced, and we illustrate via the Representer Theorem their
inappropriateness for learning in wireless sensor network. A
solution to this drawback is proposed by controlling the model
order, as derived in Section III. Section IV is devoted to the
proposed algorithm based on a gradient descent scheme, and
implementation issues regarding wireless sensor networksare
studied. The efficiency of the proposed approach is illustrated
in Section V, with an application to estimating a spatial
temperature distribution.
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II. FUNCTIONAL LEARNING IN SENSOR NETWORKS

In a conventional regression problem, one seeks a function
that links the best the input space to the observation domain.
By designating the former byX and the latter byD, we learn
this functionψ∗(·) from available data,(xi, di) ∈ X × D
for i = 1, . . . , n. The optimization problem is given by
minimizing the mean-square-error between the model output
ψ(xi) and the desired outputdi, with

ψ∗(·) = arg min
ψ

1

n

n
∑

i=1

|di − ψ(xi)|
2.

It is well-known that one needs to constrain this optimization
problem into a functional space of smooth functions. This
can be done by combining the reproducing kernel Hilbert
space (RKHS) with Tikhonov regularization, yielding the
optimization problem

ψ∗(·) = arg min
ψ∈H

1

n

n
∑

i=1

|di − ψ(xi)|
2 + η ‖ψ‖2

H, (1)

where the parameterη controls the tradeoff between smooth-
ness and fitting the data. In this expression,H is the RKHS of a
given reproducing kernelκ(·, ·). This means that each function
of H is evaluated at anyx ∈ X with ψ(x) = 〈ψ(·), κ(·,x)〉H,
where〈·, ·〉H is the inner product inH.

Initially introduced in [10] and generalized more recently
in [11] for the wide class of kernel machines, the Representer
Theorem states that the solution of the regularized optimiza-
tion problem (1) is of the form

ψ∗(·) =

n
∑

k=1

αkκ(xk, ·). (2)

In order to determine the model, completely identified by
its coefficientsαk, we inject this expression back into (1),
yielding the so-called dual optimization problem

α
∗ = arg min

α
‖d − Kα‖2 + ηα

⊤
Kα, (3)

whered andα aren-by-1 column vectors whosei-th entries
are di and αi, respectively, andK is the n-by-n matrix
whose(i, j)-th entry isκ(xi,xj). This is a linear optimization
problem, and its solution is given by

α
∗ =

(

K
⊤

K + ηK
)−1

K
⊤

d. (4)

Consider the regression problem in sensor networks where,
for instance, we seek to estimate a temperature field. The
input space corresponds to the location in the region under
scrutiny,X ⊂ IR2 in a plane, and the output is the temperature
measureD ⊂ IR. Sensors measure temperature at their
respective locations, and therefore construct the training set.
In a distributive scheme, each sensor updates the coefficient
vector with available information and transmits it to the next
sensor.

However, solving the optimization problem described above
can become cumbersome as illustrated by the matrix inver-
sion in (4), whose computational complexity isO(n3), and
therefore scales badly with the number of sensors in the
network. While we derive this result for the particular caseof

the mean-square-error as a cost functional, such drawback is
common to all classical kernel machines as illustrated by the
Representer Theorem, with a model completely determined
by the n coefficients,αk, as well as then coordinatesxk
representing sensor locations. In order to propose a distributive
technique to solve this problem, Preddet al. propose in [9] to
solve it locally by every sensor, with location and measurement
of each neighboring sensor taking part in the calculations.This
requires to convey this information and to invert a matrix
similar to the one in (4) whose dimensions correspond to
the number of available neighbors. Such technique is how-
ever unadapted in practice as sensors are densely deployed,
with heavier communication burden and higher neighborhood
concentration.

III. A REDUCED-ORDER MODEL FOR SENSOR NETWORKS

In order to overcome the difficulties invoked in the previous
section, we propose a reduced-order model constructed from
the optimal model (2) by considering only a small number of
kernel functions in the expansion. Letm be that number, the
reduced-order model is defined by

ψ(·) =

m
∑

k=1

αkκ(xωk
, ·), (5)

where them coordinatesxωk
are selected from the locations

of all the sensors, and thusωk ∈ {1, . . . , n}. Without going
into details, we note that by injecting (5) back into the cost
functional (1) of the regularized optimization problem, we
obtain a solution similar to (4), where one needs to inverse
an m-by-m matrix with entries of the formκ(xωi

,xωj
). In

Section IV, we derive a receive-update-transmit scheme for
each sensor in order to learn the model by minimizing the error
on its sensed information. But before, we study the problem
of selecting these kernel functions, or equivalently selecting
them sensors with locations given byxω1

, . . . ,xωm
.

The problem of sparse representations spans many scientific
and research area, and more specifically in signal processing
[13], [14] and pattern recognition with kernel machines [15],
[16]. Sparse techniques withℓ1-based penalization are too
computational expensive for wireless sensor networks. A more
appropriate approach would be the one proposed in [17], [16],
which translates in sensor networks as follows: the model is
constructed in a simple walk through the network, where each
sensor discards its kernel function from the model, and thus
leaves its order unchanged, if the kernel function can be well
approximated by the model; otherwise the order is incremented
by adding the kernel function to the model. In other words, at
sensori, if the quantity

min
β1,...,βm

‖κ(xi, ·) −

m
∑

k=1

βkκ(xωk
, ·)‖2

H

is smaller than a given threshold, then the kernel function
κ(xi, ·) is not included into the model; otherwise, it is added
to the model. This criterion however requires the inversionof
anm-by-m matrix, and therefore demands high precision and
computational resources from the on-sensor microprocessor
for each sensor.
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We propose in this article to reduce further the computa-
tional burden of evaluating the criterion for determining the
relevance of a kernel function with respect to the model. For
this, we take advantage of recent developments investigated
by two of the authors, on the coherence criterion defined as
follows: The kernel functionκ(xi, ·) is included to them-
order model if

max
k=1,...,m

|κ(xi,xωk
)| ≤ ν, (6)

where ν is a given threshold. This means that
the kernel functions of the resulting model have a
bounded cross-correlation, since from (6) we have
maxk,l=1,...,m |〈κ(xωk

, ·), κ(xωl
, ·)〉| ≤ ν. Without going into

details, properties of this criterion and connections to other
sparsification criteria are studied in our recent papers [18],
[19] for prediction in time series data. From this criterion, we
derive a natural one for learning in wireless sensor networks.

In the particular case of the widely used radial kernels which
can be expressed in terms ofκ(‖xi − xj‖), the criterion (6)
may be simplified further. This is becauseκ(xi,xωk

) can be
written in terms of‖xi − xωk

‖. To illustrate this property
without loss of generality, we consider the Gaussian kernel
defined byκ(xi,xj) = e−‖xi−xj‖

2/2β2

0 whereβ0 is a tunable
parameter. By substituting this definition into the criterion
expression above, we obtain the expression

min
k=1,...,m

‖xi − xωk
‖2 > 2β2

0 ln(1/ν).

In other words, sensori increments the model order by
including its kernel function to the model, if it does not belong
to the neighborhood of sensors previously in the model. The
notion of neighborhood here is defined by the right-hand-side
of the above expression. By settingν2

0 = 2β2
0 ln(1/ν), we get

the so-called neighborhood criterion

min
k=1,...,m

‖xi − xωk
‖ > ν0. (7)

Thus, it turns out that the criterion (6) based on functional
approximation in the RKHS is natural for the topology of
sensor networks, as it is equivalent to the neighborhood
criterion defined in (7). Next we derive an algorithm to learn
such reduced-order model, by considering the criterion (7).

IV. D ISTRIBUTED REDUCED-ORDER MODEL ALGORITHM

A large class of algorithms can be proposed for solving
the optimization problem, mainly with techniques studied in
[18], [19] and adapted here to the neighborhood criterion.
In what follows, we derive a low-computational demanding
algorithm, based on a simple gradient descent approach, and
study implementation issues in wireless sensor networks.

A. The algorithm

For this purpose, each sensori updates the coefficient vector
αi to be as close as possible to the previous oneαi−1 by
imposing a null error on approximating the measurement. This

is equivalent to solving the following constraint optimization
problem :

min
αi

‖αi−1 − αi‖
2 (8)

subject to κ
⊤
i αi = di, (9)

with κi an m-by-1 column vector whosek-th entry is
κ(xωk

,xi), where the constraint is obtained by applying (5) to
information relative to sensori. Solving this problem at each
sensor depends on the neighborhood criterion, and thus two
cases are possible, depending if (7) is satisfied or not.

Case 1. mink=1,...,m ‖xi − xωk
‖ < ν0 :

This is the case when sensori is in the neighborhood of any
of the m previously selected sensorsω1, . . . , ωm. Therefore
its kernel function may be well approximated by a linear
combination of the model kernel functions. To solve the con-
straint optimization problem (8)-(9), we consider minimizing
the corresponding Lagrangian given by

‖αi−1 − α‖2 + λ(di − κ
⊤
i α),

whereλ is the Lagrangian multiplier. By setting to zero the
derivatives of the above cost function with respect toα and
λ, we get the following conditions onαi to verify:

2 (αi − αi−1)
⊤ = λκ

⊤
i and κ

⊤
i αi = di.

Since κ⊤
i κi is nonzero, these equations lead toλ =

2 (κ⊤
i κi)

−1(di−κ⊤
i αi−1), wheredi−κ⊤

i αi−1 is thea priori
error at sensori. By substituting into the above expression, we
obtain the update equation

αi = αi−1 +
ρ

‖κi‖2
κi

(

di − κ
⊤
i αi−1

)

. (10)

where we have introduced the step-size control parameterρ,
as preconised in conventional adaptive filtering techniques.

Case 2. mink=1,...,m ‖xi − xωk
‖ > ν0 :

In this case, the sensori is not covered by them sensors
defining the kernel functions of the model. Therefore, we
increment the model order by including the corresponding
kernel function to it. To accommodate the new element in
m+ 1 vectorαi, we modify problem (8)-(9) as

min
α

‖α[1,...,m] − αi−1‖
2 + α2

m+1 subject to di = κ
⊤
i α,

whereα[1,...,m] denotes the firstm elements of the vector, and
κi has been increased by one entry. Considerations similar to
those made in Case 1 lead to the updating rule

αi =

[

αi−1

0

]

+
ρ

‖κi‖2
κi

(

di − κ
⊤
i

[

αi−1

0

])

, (11)

with κi the (m+ 1)-by-1 column vector whosek-th entry is
κ(xωk

,xi), andωm+1 = i.



4

Sensor 1

Sensor 2

Sensor 3

Sensor 4 Sensor 5

Neighborhood

Neighborhood

of Sensor 1

of Sensor 4

[x1]

[x1]

[x1]
[α1,1]

[α1,2]

[α1,3] [x1 x4]

[x1 x4]
[α1,4 α2,4]

[α1,5 α2,5]

Fig. 1. A schematic representation illustrating the proposed approach.

B. Analysis of the algorithm

We illustrate the proposed approach in Fig. 1, where we
present five sensors with links representing the walk of the
information throughout the network. Next we denote byαk,i
the k-th entry of the coefficient vectorαi updated by sensor
i. Initializing at Sensor 1 yieldsω1 = 1 and m = 1. Its
locationx1 and the estimated coefficientα1,1 are transmitted
to the next sensor in the network. Sensor 2 belongs to the
neighborhood of Sensor 1, since‖x2 − xω1

‖ is less than the
given neighborhood threshold. Thus it updates the coefficient
into α1,2 with the rule (10) by leaving the model order
unchanged. It transmitsα1,2 andx1 to the next sensor, Sensor
3, with updating similar to Sensor 2 since it also belongs to the
neighborhood of Sensor 1. Not in that neighborhood, Sensor
4 increments the model order by adding its kernel function
to the model and a new weighting coefficient. Updating with
(11), the resulting coefficients as well as the locations[x1 x4]
are transmitted to the next sensor, and so on.

In designing algorithms for wireless sensor network applica-
tions, several implementation issues must be taken into consid-
eration, mainly algorithmic complexity and energy consump-
tion, the latter being proportional to the size of transmitted
messages. The proposed approach answers this question, on
both aspects. On the one hand, the gradient technique has low
computational complexity and minor memory requirements,
with no matrix inversion as opposed to Predd’s technique
[4], and thus can be efficiently implemented on tiny low-cost
processors. On the other hand, the messages communicated
between sensors are constituted only of them coordinates
andm coefficients taking part in the reduced-order model, as
opposed to the full-order model where all the coordinates and
coefficient values must be conveyed between sensors.

It is worth noting that for small values of the neighborhood
threshold, the influence region of each sensor is reduced,
resulting into a model with a larger order, therefore closer
to the optimal full-order model given in (2). However, the
price to pay is an increasing energy consumption, mainly
due to the communication for conveying the parameters of
the model. This is the classical accuracy-energy dilemma in
wireless sensor networks, with the neighborhood threshold
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Fig. 2. Map of the sensors, randomly (and uniformly) distributed over the
region under scrutiny.

determines the tradeoff between the optimal approximation
and the reduction in the model order.

V. SIMULATIONS

In order to illustrate the proposed approach, we consider
estimating the spatial temperature distribution, with sensors
densely and randomly spread over the region under scrutiny.
Due to lack of experimental data from densely deployed sen-
sor networks, we consider simulation results1 obtained from
classical partial differential equations. We consider three heat
sources randomly set inside a square region, and estimate the
temperature distribution from a single measurement available
on each of then = 100 sensors randomly spread.

As the configuration settings determines the neighborhood
threshold to be used, we set in what followsν0 = 0.3,
which yields a 15-order model, corresponding to a85% of
reduction in the model order compared to the full-order one.
In what follows, the Gaussian kernel is used. To determine the
influence of both its bandwidth and the step-size parameter,

1A detailed description on the experimental configuration and the dataset
is available in http://www.ulb.ac.be/di/mlg/sensorNet/modeling.html.
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Fig. 3. Evolution of the error as a function of the bandwidth of the Gaussian
kernel, for different values of the step-size parameter.
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Fig. 4. Convergence of the algorithm as we walk through the 100 sensors
of the network.

we define the root-mean-square (rms) error by the square root
of 1

n

∑n
i=1(di − κ⊤

i αi−1)
2, wheredi−κ⊤

i αi−1 = ǫi is thea
priori error of the sensori. These results are sketched in Fig. 3
for different values of the step-size parameter. As shown, the
optimal bandwidth is given byβ0 = 0.2, independently of
the chosen step-size parameter and with almost the same rms
error, except forρ = 0.1. Such exception is mainly due to
low convergence resulting from small values ofρ. In order
to circumvent such problem, one may increase the number of
sensors in the network, or more likely consider several cycles
through the network, as proposed in [3]. However, this case is
beyond the scope of this work, as we stick to the convergence
case given by any of the other studied values ofρ.

To illustrate this convergence behavior, we plot in Fig. 4 the
evolution of the (absolute) values of thea priori error as we
visit each of the sensors, for casesρ = 0.1 andρ = 0.7. For
the latter case, the convergence occurs within the first couple
of sensors, as shown in the figure. The resulting temperature
distribution is illustrated in Fig. 5, where we distinguish
sensors contributing to the incrementation of model order.As
expected, these sensors span the region under scrutiny.

Low

High

Fig. 5. Resulting temperature map obtained from the Gaussian kernel with
(ρ = 0.7, β0 = 0.2). The three heat sources are represented by big yellow-
discs•, sensors by blue-dots·, and incrementing-order ones by red-discs•·.

VI. CONCLUSION

In this work, we showed that regression in wireless sensor
networks can take advantage of recent developments in sparse
representations with kernel machines. In order to derive a
reduced-order model, we developed a criterion natural to the
topology of the deployed sensors. A gradient-based algorithm
is proposed for this purpose, and implementation issues are
discussed. Simulation results show good convergence of the
proposed approach.

Current and future works concentrate on expanding this
approach for monitoring the evolution of the temperature with
time. One way to achieve this is to use a reproducing kernel
that takes into account both the spatial and the temporal
information, for instance by combining kernels defined on each
of those domains.
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