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with a reduced-order kernel model

Paul Honeine, Mehdi Essoloh, Cédric Richard and HichemuSsio
Institut Charles Delaunay (FRE CNRS 2848) — LM2S
Université de technologie de Troyes
10010 Troyes, France

Abstract—Over the past few years, wireless sensor networks re- on wireless sensor networks does not escape from the pro-
ceived tremendous attention for monitoring physical phenmena, |iferation of kernel machines and its attractiveness, adist
such as the temperature field in a given region. Applying corsn- for problems such as localization [6], detection [7], estiion

tional kernel regression methods for functional learning sich as - .
support vector machines is inappropriate for sensor netwoks, [8], and regression [9]. Predet al. propose in [9] to assess

since the order of the resulting model and its computational distributively the regression problem by solving it logatn
complexity scales badly with the number of available senss; each sensor device, which gets information from its neighibo
which tends to be large. In order to circumvent this drawback  While this technique is computationally efficient, it hasreo
we propose in this paper a redfuced-ordgr mlodel approach. To granwhacks. On the one hand, sensor devices must be set in
ig'sreesrg:]’t;;gntﬁlﬁzr:sj\g?tggz (;hésvcet?]te ﬁ;teufgmﬁ]ngsbg\;;irsebroadcast modg in order to communicate with their neighbors
reducing the model order and the topology of the deployed @nd thus require more power for lateral communication as
sensors. To learn this model, we derive a gradient descentcompared to a sensor-to-sensor communication. On the other
scheme and show its efficiency for wireless sensor networkdle  hand, each sensor needs to solve the optimization problem,
It|r|1UeSter§tt§n ;htﬁ)r?roofpgs:dat?;ﬂg’nid‘ trlrougg_ ‘:"_”t:“lf"‘t'o”s invaving  resylting in aon-sensor matrix inversion that leads to con-
P perature distribution. siderable computational burden. This technique suffesmfr

these disadvantages as long as sensors are densely deployed

Classical kernel machines are inappropriate for regrassio
the context of sensor network, mainly for one major drawback

Wireless sensor networks involve large numbers of deployi#idstrated by the Representer Theorem [10], [11]: The prde
tiny radio-equipped sensors, and provide an inexpensiye waf the resulting model is equal to the number of available
to monitor physical phenomena, such as a temperature fiedtdservations. Therefore, the model order scales badly with
With relatively inexpensive wireless devices, each detias the number of deployed sensors. In order to overcome this
a limited amount of memory, reduced processing capalsilitigdifficulty, we consider in this paper a reduced-order apghoa
limited power resources, and low communication capacitieSontrolling the complexity of the model is widely used not
In order to carry out good coverage of the region undenly in kernel machines [12], but also in sparse represientat
scrutiny, sensors must be deployed densely, resultingginlyi literature [13], [14]. It turns out that this is equivalerd t
redundant spatial information. Many researchers in themenselecting a small set of sensor devices that are well spread
network community exploit this redundancy in order to rezgludn the network. In the proposed scheme, each device updates
the complexity of the resulting model, see for instance [the model from its measurement, and increments its aifder
and references therein. Guestrh al. consider in [2] the necessary, then transmits the model parameters to the next
spatial and temporal redundancy, where the latter is hdimjle device, and so on. Both this sensor-to-sensor communicatio
fitting a three-degree polynomial to the sensed data. Whie t scheme which reduces the overall energy consumption, and
is a model-based technique, model-independent approactes gradient-based learning technique that we derive i thi
received considerable attention recently. Ralebatl. applied paper, allow us to overcome the disadvantages of the method
in [3] an incremental subgradient optimization technigae f proposed by Predet al.
parameter estimation, yielding an efficient scheme for@ens This paper is organized as follows. In the next section,
network in terms of the energy-accuracy tradeoff. As paintdunctional learning with classical kernel machines is dsely
out by Preddet al. in [4], such a technique is howeverintroduced, and we illustrate via the Representer Theohein t
inappropriate for functional estimation. inappropriateness for learning in wireless sensor netwark

Recently, increasing research attention has been direcsetution to this drawback is proposed by controlling the elod
towards kernel methods for pattern recognition, in bothuansorder, as derived in Section lll. Section IV is devoted to the
pervised and supervised learning for classification anteseg proposed algorithm based on a gradient descent scheme, and
sion problems. Based on the concept of reproducing kernetgplementation issues regarding wireless sensor netwaneks
initially introduced by Aronszajn in the 50's, these methodstudied. The efficiency of the proposed approach is illtetra
have gained popularity with the prelude of support vectam Section V, with an application to estimating a spatial
machines and the statistical learning theory [5]. Theditere temperature distribution.

I. INTRODUCTION



II. FUNCTIONAL LEARNING IN SENSOR NETWORKS the mean-square-error as a cost functional, such drawlsack i

In a conventional regression problem, one seeks a functigfMmon to all classical kernel machines as illustrated ley th
that links the best the input space to the observation damdffPresenter Theorem, with a model completely determined
By designating the former byt and the latter byD, we learn DY the n coefficients,a;;, as well as then coordinateszy
this function+*(-) from available data(z;,d;) € X x D representing sensor locations. In order to propose alaligitre

for i = 1,...,n. The optimization problem is given bytechni.que to solve this problem, .Preetcblz propose in [9] to
minimizing the mean-square-error between the model outpiftlve itlocally by every sensor, with location and measiueem
¥(z;) and the desired output;, with of each neighboring sensor taking part in the calculatidhss

requires to convey this information and to invert a matrix
similar to the one in (4) whose dimensions correspond to
the number of available neighbors. Such technique is how-
ever unadapted in practice as sensors are densely deployed,

It is well-known that one needs to constrain this optim@ati it heavier communication burden and higher neighborhood
problem into a functional space of smooth functions. This;ncentration.

can be done by combining the reproducing kernel Hilbert
space (RKHS) with Tikhonov regularization, yielding theIII
optimization problem '

1 n
¥*() = argmin ; i — ().

A REDUCED-ORDER MODEL FOR SENSOR NETWORKS

In order to overcome the difficulties invoked in the previous
section, we propose a reduced-order model constructed from
the optimal model (2) by considering only a small number of

kernel functions in the expansion. Let be that number, the
where the parameter controls the tradeoff between smooth;oq,ced-order model is defined by

ness and fitting the data. In this expressigns the RKHS of a .

given reproducing kernel(-, -). This means that each function N

of H is evaluated at any € X with ¢ (xz) = (¢(-), k(-, ), v ; (@)

where (-, -}y is the inner product irt. _ B .
Initially introduced in [10] and generalized more recentiy’here them coordinatesz,,, are selected from the locations

in [11] for the wide class of kernel machines, the Represenf¥ all the sensors, and thus, € {1,...,n}. Without going

Theorem states that the solution of the regularized opsimiZ"t© deétails, we note that by injecting (5) back into the cost
tion problem (1) is of the form functional (1) of the regularized optimization problem, we

obtain a solution similar to (4), where one needs to inverse
an m-by-m matrix with entries of the forms(z.,,x.,;). In
Section 1V, we derive a receive-update-transmit scheme for
each sensor in order to learn the model by minimizing thererro
In order to determine the model, completely identified by, jts sensed information. But before, we study the problem
its coefficientsay, we inject this expression back into (1),0f selecting these kernel functions, or equivalently siec
yielding the so-called dual optimization problem the m sensors with locations given by, , ...,z .

o = argmin||d — Ka|? +na’ Ka, ©) The problem of sparse representgt_ions spans many scient_ific

o and research area, and more specifically in signal proaessin

whered anda aren-by-1 column vectors whoséth entries [13], [14] and pattern recognition with kernel machines][15
are d; and «;, respectively, andK is the n-by-n matrix [16]. Sparse techniques with -based penalization are too
whose(i, j)-th entry isk(z;, z;). This is a linear optimization computational expensive for wireless sensor networks. Aemo

n

1
() :argineiﬁﬁzwi — () +nlvl7, Q)

=

®)

() = ak(Tk, ). 2)
k=1

problem, and its solution is given by appropriate approach would be the one proposed in [17], [16]
. T 1T which translates in sensor networks as follows: the model is
o' = (K K+nK) K d (4)  constructed in a simple walk through the network, where each

Consider the regression problem in sensor networks whef&MSOr discards its kernel function from the model, and thus
for instance, we seek to estimate a temperature field. TI§@Ves its order unchanged, if the kernel function can bé wel
input space corresponds to the location in the region undétProximated by the model; otherwise the order is incregtent
scrutiny,X c IR? in a plane, and the output is the temperatur%y adding the kernel function to the model. In other words, at

measureD C IR. Sensors measure temperature at theifNSor, if the quantity

respective locations, and therefore construct the trgisiet. _ m )

In a distributive scheme, each sensor updates the coefficien 5 oin, 5(@i,) = > Brrl@u,, )3

vector with available information and transmits it to thexne k=1

sensor. is smaller than a given threshold, then the kernel function

However, solving the optimization problem described abovex;, -) is not included into the model; otherwise, it is added
can become cumbersome as illustrated by the matrix invés-the model. This criterion however requires the inversibn
sion in (4), whose computational complexity @(n?), and anm-by-m matrix, and therefore demands high precision and
therefore scales badly with the number of sensors in tkemputational resources from the on-sensor microprocesso
network. While we derive this result for the particular caée for each sensor.



We propose in this article to reduce further the comput& equivalent to solving the following constraint optimtiza
tional burden of evaluating the criterion for determinifget problem :
relevance of a kernel function with respect to the model. For
this, we take advantage of recent developments investigate min a1 — ail® (8)
by two of the authors, on the coherence criterion defined as ' a4 )
follows: The kernel functions(x;, ) is included to them- % = G,
order model if

subjectto  k;

(2

with k; an m-by-1 column vector whosek-th entry is
max  |k(w@i, 2w, )| < ¥, 6) 5(%,6,@-), wherg the constrqmt is thalngd by applying (5) to
k=1,...,m information relative to sensar Solving this problem at each
pensor depends on the neighborhood criterion, and thus two

where v is a given threshold. This means thagases are possible, depending if (7) is satisfied or not.

the kernel functions of the resulting model have
bounded cross-correlation, since from (6) we have
maxy,i=1,..m [(K(Tw,, ); £(@w;, )| < v. Without going into s 1 pin,_,
details, properties of this criterion and connections theot ’
sparsification criteria are studied in our recent papers, [18 This is the case when sensas in the neighborhood of any
[19] for prediction in time series data. From this criteiove  Of the m previously selected sensoss, . .., wn,. Therefore
derive a natural one for learning in wireless sensor netsorlts kernel function may be well approximated by a linear
In the particular case of the widely used radial kernels whi¢ombination of the model kernel functions. To solve the con-
can be expressed in terms of||z; — «;]|), the criterion (6) Straint optimization problem (8)-(9), we consider minimg
may be simplified further. This is becausér;, z.,, ) can be the corresponding Lagrangian given by
written in terms of ||x; — x., ||. To illustrate this property
without loss of generality, we consider the Gaussian kernel
defined by (x;, x;) = e~ l®i—® I?/265 wheref, is a tunable
parameter. By substituting this definition into the criberi
expression above, we obtain the expression

om |Ti = Tey || <wo

ooy — al® + A(d; — & @),

where )\ is the Lagrangian multiplier. By setting to zero the
derivatives of the above cost function with respectat@and

A, we get the following conditions oa; to verify:

kir{nn 2 — 2o, ||? > 262 In(1/v).

,,,, 2(a; — i) = )\Ii: and Ii;rai =d;.

In other words, sensoi increments the model order bygj,ce k] Kk; is nonzero, these equations lead 1o

including its kernel function to the model, if it does not@ey (k] ki)~ (di — k] a;_1), whered; — k] ;1 is thea priori
3 e (2 4 1—1)» (2 (0 1—

to the neighborhood of sensors previously in the model. TRg o at sensot. By substituting into the above expression, we
notion of neighborhood here is defined by the right-hané-sidyiin the update equation

of the above expression. By setting = 232 In(1/v), we get

the so-called neighborhood criterion ;= oy g+ IIsz-HQ ki (di — K] i) (10)
min ||z; — x| > vo. (7) _ _
k=1,...,m where we have introduced the step-size control parameter

Thus, it turns out that the criterion (6) based on function&f preconised in conventional adaptive filtering techrsque

approximation in the RKHS is natural for the topology of
sensor networks, as it is equivalent to the neighborho
criterion defined in (7). Next we derive an algorithm to learn
such reduced-order model, by considering the criterion (7) In this case, the sensaéris not covered by then sensors

defining the kernel functions of the model. Therefore, we
increment the model order by including the corresponding
kernel function to it. To accommodate the new element in

A large class of algorithms can be proposed for solvirig + 1 vectora;, we modify problem (8)-(9) as
the optimization problem, mainly with techniques studiad i 0 9 , T
[18], [19] and adapted here to the neighborhood criteriodtil |1, .m] — @i1]|” + a5y subjectto d; = k; a,
In what follows, we derive a low-computational demanding

algorithm, based on a simple gradient descent approach, Sf{fre.....m) denotes the firsi. elements of the vector, and
study implementation issues in wireless sensor networks. i has been increased by one entry. Considerations similar to
those made in Case 1 lead to the updating rule

2. ming=1,...,m [|Ti — Ty || > vo:

IV. DISTRIBUTED REDUCEDORDER MODEL ALGORITHM

A. The algorithm Q; = { a%’l ] + #ni (di - K, [ ai(;l D , (11)
Ki
For this purpose, each sensampdates the coefficient vector

«; to be as close as possible to the previous epe; by with x; the (m + 1)-by-1 column vector whosé-th entry is
imposing a null error on approximating the measuremens Thi(z,,, , z;), andw,,+1 = i.
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Fig. 1. A schematic representation illustrating the prepoapproach. Fig. 2. Map of the sensors, randomly (and uniformly) distiéal over the
region under scrutiny.

B. Analysis of the algorithm . . L
¥ g determines the tradeoff between the optimal approximation
We illustrate the proposed approach in Fig. 1, where vand the reduction in the model order.
present five sensors with links representing the walk of the
information throughout the network. Next we denotedy;
the k-th entry of the coefficient vectar; updated by sensor . .
i. Initializing at Sensor 1 yieldss;y = 1 andm = 1. Its 'T‘ orQer 0 |Ilustr§te the proposed_ap_progch, we consider
locationz; and the estimated coefficient ; are transmitted estimating the spatial temperature dlstrlbu.tlon, with sseg :
. ; ensely and randomly spread over the region under scrutiny.
to the next sensor in the network. Sensor 2 belongs to thé .
neighborhood of Sensor 1, sinée, — z... || is less than the Ue to lack of experimental data from densely deployed sen-
) . ' 2 e .~ sor networks, we consider simulation restiltdbtained from
given neighborhood threshold. Thus it updates the coeffici€ . R . . .
into a;, with the rule (10) by leaving the model orderclassmal partial differential equations. We considee¢hheat
uncha;{Qed It transmits andacy 1o the gext sensor. Sensor>CUrces randomly set inside a square region, and estimate th
langed. 1t ransmits, o Lol ’ temperature distribution from a single measurement availa
3, with updating similar to Sensor 2 since it also belongsé& ton each of ther — 100 sensors randomlv soread
neighborhood of Sensor 1. Not in that neighborhood, Sensor T : Yy sSP o
4 increments the model order by adding its kernel functioH As the configuration settings Qetermlnes the neighborhood
to the model and a new weighting coefficient. Updating With:ie;:] Olide |<§2 gelg-soerg,erwniozztl Igo\r,\rlgstofr?gi% W§t (8:59270.3%
(11), the resulting coefficients as well as the locatifpssa,] Yiel ’ P 9 o
are transmitted to the next sensor. and so on reduction in the model order compared to the full-order one.
In designing algorithms for wireléss sensor n-etwork amalicln what follows, the Gaussian kernel is used. To determipe th
. ) . L influence of both its bandwidth and the step-size parameter,
tions, several implementation issues must be taken intsidon P P

eration, mainly algorithmic complexity and energy consemp 1a detailed description on the experimental configuratiod &re dataset
tion, the latter being proportional to the size of transaditt is available in http://www.ulb.ac.be/di/mlg/sensorieateling.html.
messages. The proposed approach answers this question, on
both aspects. On the one hand, the gradient technique has low
computational complexity and minor memory requirements,
with no matrix inversion as opposed to Predd’s technique
[4], and thus can be efficiently implemented on tiny low-cost
processors. On the other hand, the messages communicated
between sensors are constituted only of thecoordinates
andm coefficients taking part in the reduced-order model, as
opposed to the full-order model where all the coordinates an
coefficient values must be conveyed between sensors.

It is worth noting that for small values of the neighborhood -
threshold, the influence region of each sensor is reduced, ‘%s;i,:+i;‘.“,‘,-‘;,‘.u-\“.sa:«‘-&*-“?“""
resulting into a model with a larger order, therefore closer '
to the optimal full-order model given in (2). However, the
price to pay is an increasing energy consumption, mainly 8 om0z om 03 om o1 os
due to the communication for conveying the parameters of Fo

the model. This is the classical accuracy-energy dilemmargp. 3. Evolution of the error as a function of the bandwidttire Gaussian
wireless sensor networks, with the neighborhood threshddkinel, for different values of the step-size parameter.

V. SIMULATIONS
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VI. CONCLUSION

reduced-order model, we developed a criterion natural éo th
topology of the deployed sensors. A gradient-based alyuarit

a priori error

proposed approach.
Current and future works concentrate on expanding this
approach for monitoring the evolution of the temperaturdwi

sensors information, for instance by combining kernels defined ochea

Fig. 4. Convergence of the algorithm as we walk through th@ d€nsors of those domains.

of the network.
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In this work, we showed that regression in wireless sensor
networks can take advantage of recent developments inespars
representations with kernel machines. In order to derive a

is proposed for this purpose, and implementation issues are
discussed. Simulation results show good convergence of the

time. One way to achieve this is to use a reproducing kernel
that takes into account both the spatial and the temporal



