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ABSTRACT Introduced by Aronszajn in the mid 50s, the usefulness

In this baper. we pronose a new aporoach to sensor IocaI—Of reproducing kernels has been demonstrated in the last 15
IS paper, we prop W app ears in the field of pattern recognition with the statidtica

|zat|9n problems, _bafsed on re_cen_t d_evelopme_nts n maCh.'n%;arning theory and the so called kernel machines, such as
leaning. The main idea behind it is to consider a matrix

. thod bet h . i dth support vector machines (SVM) and kernel principal com-
regression method between the ranging matrix and the ma'ponentanalysis (kernel-PCA) [3]. Reproducing kernels pro
trix of inner products between positions of sensors, in orde

.~ vide new insights into sensor networks research field. This
from information between sensors of Known positions (beanhas been known for a while, as many researchers in sen-
! 'on betw W posit sor networks focus on detection, tracking and classifioatio
cons), we apply it to sensors of unknown positions. Re- " . K | hi | h has b
trieving the estimated positions of the latter can be done using kernet macnines. n recent years, t ere has been an
increasing interest in this framework for localizing sesso

??h?r?lw;]ge?e“gae?r: zfnt;;?' \ft%fspfi;? d.'tshtr.'rk:gremd;!g?"with kernel-PCA [4, 5], SVM [6], least squares regression
thm, W posit . With 1 ! 47], and manifold regularization [8].

available from its nearby beacons. The proposed method i i ) )
validated by experimentations. In this paper, we derive a two-stage strategy. First we

seek a mapping function between the ranging and the in-
ner products between positions of a given sensor with bea-
1. INTRODUCTION cons. Learnt with data available from beacons, it is then
_ applied to any sensor, leading to an estimate of the inner
In ad-hoc wireless sensor networks, a large number of ap-yoqycts between its (unknown) position and the (known)
plications require location awareness of the sensorsjdcl  5sitions of the beacons. In the second stage, we determine
ing tracking, environmental monitoring and many military he position of the sensor from these estimated inner prod-
applica_ltions. Without the knowledge of its position, the in _ucts. It turns out that the first stage is a matrix comple-
formation captured by a sensor becomes obsolete. The maig, problem, where the inner-product matrix is completed

building block of these netyvorks is a low-cost sensor, with ¢.011 the (entirely available) ranging matrix, and thus can
low power resources, leaving no room to (absolute) self- e gojved with the recently introduced matrix regression

positioning device. To overcome this drawback, one in- eihod [9]. By learning the regression from available data
cludes in the network a small number of sensors with known i, ,6th matrices simultaneously, thus from inter-beacen in

positions (and sometimes high power and communicationt,rmation, we show that this reduces to a linear optimizatio

capabilities). Th_ese sensors, often known by anchors_ Ofhroblem. The second stage can be solved by considering
beacons and designated hereafter by the latter, commanicaty, o Nystrom method, a technique for approximating kernel
to other sensors information allowing the latter to estemat ,atrices in the machine leaning community. We investi-
their positions. For this purpose, each sensor determinegyate 4 distributed version of the method, by solving locally
ranging (distance) measurements with other sensors, frompe optimization problem. We emphasize that the proposed

some measurements such as t_he received signal strength iMethod is independent of the ranging type, thus can be ap-
dication (RSSI), the connectivity, the hop count, the time plied to RSSI, hop count, or any other ranging information.

difference of arrival, ... Most work on localization in sens hi . ed foll bedin b
networks considers either multidimensional scaling (MDS)  11IS Paper is organized as follows. ‘We begin by pre-

techniqgues or semidefinite programming (see [1, 2], and ref_senting the m_atrix regressiqn method qf sensor Iocalizgt?o
erences therein), in order to determine a function thaslink Then, in section 3, we derive a technique for determining

the ranging of the sensors to their positions, based on theth,g pogm(l)n O,f;he se;sorg We propose,lm sec'gonb4, a dis-
known positions of some beacons. tributed algorithm, taking into account only nearby beacon

for the considered sensor. Finally, computer simulatioas a
{Fi r st Nane. SecondNane}@tt.fr carried out to validate the proposed approach.




2. THE MATRIX REGRESSION METHOD matrix K and the outpu;ici:cjT of P. We learn this problem
from the available input-output couples, i.&, and P,.
Consider a network ofn sensors of unknown positions For this, we consider a model of the form
andn beacons of known positions, living indadimension
(2D or 3D) space. LefX andY be the coordinate ma- U (@i, ;) = iz, , 3)
trices of beacons and sensors, respectively, of siby- o _ ) )
d andm-by-d, and[X" YT]T the overall coordinate ma- @nd determine it from inter-beacon information. ~ As
trix. The inner product between their coordinatesis givenb above, we consider a particular form df, by rep-
pP_ [if] (X ¥7], which can be decomposed into four block resenting each:_z: in some coordmatesT obtalljed with
Crsp, R g 3,580 b)) ] g
- T . . . . (%) - [3 k3 —
P, =YY", asllustrated in (1) with unknown submatrices S, én(xi)n(x;). In analogy to kernel-PCA where these
set t(,) gray-cplor. On the othgr hand_, we have the_ overallare principal coordinates obtained from principal axes con
ranging matrix, denoted bix’ with entriesk(x;, ;), SIM- gycted from available data(x, ), we consider the

llarly decomposed intd(;, Ko, Koy, andKy, as given g form as (2) for alb,’s, constructed fronk .. There-

in (1). fore one should determine for eagh the optimal coeffi-
cient vectora = [a; az -+ a,) ", with
Kr sz Pz P: Y
n n
on(@i) on(@s) = (Y cwnlan @) (D (e, 2))
— 1) k=1 =1
Kyw Ky Pf/v' R/ = H;ra a—rﬁ;j
wherex; is thei-th column vector o< ,. From the sum of
_\/—/ — —
% A these terms and (3), we ge;ij = U(z;, x;) = k] AKj, _
where A is a coefficient matrix. Since this should be satis-
In a conventional regression problem, one seeks a func-fied for all beacons, i.ei,j = 1,...,n, we can write the

tion ¢(-) that links an input variablec into a response  optimization problem in matrix form, with

(output) variablez, under the constraintg(x;) = z; for

all available training datd(z1, z1), . . ., (€, 2,)}. While min P, — K, AK,|?, (4)
there exists an infinite number of functions verifying such

constraints, one considers functions with some regutagizi where|| - || is Frobenius norm. Once we obtain the opti-
properties (such as smoothness). This can be done by remal coefficient matrixA, we can apply the resulting map to
stricting the hypothesis space to the RKHS of a given repro-sensors with unknown positions, wiizhgyjT = U(x;,y,)
ducing kernel, say(-,-). Moreover, from the Representer From expressions above, we obtain the matrix expression

Theorem [10], the optimal function has the form
P,=K/AK,, (5)

¢() = Z k(@ -)- (2) The optimization problem (4)-(5) can be solved by writing
k=1 (4) as a generalized eigen-decomposition problem and in-

For instance, this is true for kernel-PCA, where each princi jecting the resulting matrix in (5). As we notice that both
pal axise(-) is determined by its coefficientsy, obtained ~ expressions contain the matrix = K A, we propose to
by an eigen-decomposition of theby-n matrix of entities solve the following equivalent optimization problem :
k(x;, z;), thusK . Sinceg(x) corresponds to the princi- . )
pal coordinate of, the latter can be represented into a low- min [P, —TK.|, and Ppy=TKyy. (6)
dimensional space by considering only a couple of princi-
pal coordinates. Since this is the essence of both MDS andThis is a linear problem yieldin@ = P, K, ', and thus
kernel-PCA techniques, localization in sensor networks us

ing kernel-PCA is proposed in [4], or more recently [5] (see P, =P, K,'K,,. (7)
[11] for a connection to MDS).
In what follows, we consider the general case of deter- 3. SENSOR POSITION ESTIMATION

mining a set of optimal functions, fully described by their

coefficients, which identifies the mapping between the two After estimating the matrix?,,, of inner products of posi-
matrices described in (1). This is known as a matrix re- tions between beacons and sensors, one has to find the co-
gression problem [9], between the input data:;, z;) of ordinates of the latter. For this purpose, we take advantage



of the Nystrom method, initially developed in the machine _ for each sensor _ _

learning community to approximate a matrix by another ma- Find the nearby beacons [dunp, i nd] =sor t (K(i, 1:n))
. Consider the closes nc beacons i nd=i nd(end: - 1: end- nc+1)

trix of lower r_ank [12]. In our case, onthe one hf_;lnd we have et ranging between these beaconi =K(i nd, i nd)

by constructionP, = X X', thus ad-rank matrix. From Get inner products between them Pi =Xn(i nd, : ) *Xn(ind, :)’

its eigen-decomposition, we have Consider ranging with them ki=K(i,ind)
Compute inner products with (10) pi =Pi *i nv(Ki ) *ki
Determine position with (11 =pi/ (Xn(ind,:)’

Table 1. Pseudocode of the distributed algorithm.
where A, is a diagonal matrix of thg nonzero eigenval-
ues of P,, andU, the matrix whose columns are the corre-

: ) : e an eigen-decomposition problem. Then, a mapping trans-
sponding eigenvectors. By identification, we get v P P bping

formation must be carried out as presented above, by con-
sidering this time only neighboring beacons. While this be-
comes fairly cumbersome for each sensor, we propose an
alternative approach to find the coordinates, based on the
pseudoinverse operator. For this purpose, we rewrite the
problem as the following optimization problem

X=U;(Ag)'? (8)

On the other hand, we can wrifé,, = XYT whereYis

the coordinate matrix to be identified. By injecting (8) into

this definition, we get the coordinates of tlesensors from
min ||p;, — Xiy " ||%.

It is well known that the solution of this linear system is

Since the resulting coordinates are determined in the Spac‘;given by the left pseudoinverse of the matit, with
defined by the eigenvectors, one must conduct a final step o

mapping them, with a linear (or affine to be more precise) Y= (XiTXi)_lXiTpi. (11)
transformation, into the initial space of beacons. Sucp ste

is commun to MDS techniques. We emphasize on the fact that we don’t need to apply a map-

ping to localize the sensors with respect to beacons. The
simplicity of the algorithm is illustrated in Table 1.
4. DISTRIBUTED ALGORITHM

. . . . 5. SIMULATIONS
In section 2, we considered completing the inner-product

matrix by inverting the ranging matrix of the beacons. This Tq jllustrate our method, we consider a configuration simila
stipulates that the beacons communicate to each other, iRg the one proposed in [13], with ranging between two sen-
a peer-to-peer fashion or a multi-hop strategy. However, sors is only a function of the distance between them, with
in practice, beacons may not be in the range of each other,; (g, ;) = exp (—|@; — x;]|2/20?), whereo is a param-
Moreover, the matrices may become too cumbersome o in-eter corresponding to the range of the sensors. Next, sensor
vert and manipulate for a large scale sensor network. Togre randomly spread on a 1-by-1 square region.

overcome this problem, we propose a distributed algorithm,
where each sensor gets information from nearby beacons in
order to find its own position. In other words, any senisor
defines a set of neighborihdpeacons with a submatrix of
K, and its counterpart i, denoted respectiveliK; and

P;, and X, the corresponding coordinates. While the global
optimization problem (6) leads to expression (7), by consid
ering the distributed approach, we get

RMS error
. N w IS

o
s

wherep, is the inner-product column vector of positions
between sensarand its nearby beacons, ardthe column 03
vector of ranging between them. 'ﬁ’e,,g

The corresponding coordinates of this sensor can be re- ¢
vealed by writinglocally the expression (9), obtained from Sy os

09 20 $\)

Different strategies can be proposed to define the neigbbdrbfa 0 1 - Root-mean-square error on positions with the cen-
sensor. This can be done by examining the ranging valuestewtigh

values correspond to neighbors. We fix their number in sitioua. tralized algorithm, as a function efando.
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Fig. 2. Topology constructed by the centralized algorithm.

The beacons are represented yysensors positions by,
and their estimations by.

In a first series of experiments, we apply the centralized

6. CONCLUSION

In this paper, we took advantage of recent works in ker-
nel machines for solving the localization problem in sensor
networks. We showed that the matrix regression method
allows us to estimate unknown positions of sensors. We
derived a distributed algorithm, based on information from
local neighborhood of each sensor. There are several direc-
tions for further research, including mobile ad hoc network
(MANet), with an iterative update of the coordinates.

(1]

(2]

algorithm to a network of 200 sensors, and study the in- [3]
fluence of both the number of beacons and the range pa-

rameter. For this, we take = 3,4,...,20 ando =
0.1,0.2,...,0.9. In Fig. 1, we plot the resulting root-

(4]

mean-square error, averaged over 100 trials. As expected,
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