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SOLVING THE PRE-IMAGE PROBLEM IN KERNEL MACHINES:
A DIRECT METHOD

Paul Honeine, Cédric Richard

Institut Charles Delaunay (FRE CNRS 2848), LM2S, Univérdie technologie de Troyes, 10010 Troyes, France

ABSTRACT The extracted features, or functions to be more precise,

re linear in the RKHS, resulting into non-linear featuréhw

n th|§ paper, we conS|dgr_the pre-image problem in ke.rneti]e input data. This is the main idea behind using kernels. In
machines, such as denoising with kernel-PCA. For a given

reproducing kernel Hilbert space (RKHS), by solving the pre most supervised problems, one seeks a decision from & statis

: . . , given by the evaluation of the feature functions. How-
image problem one seeks a pattern whose image in the RK L : .

; : : - . . ever, this is not often the case for unsupervised problems in
is approximately a given feature. Traditional techniques i

clude an iterative technique (Miket al) and a multidimen- pattern recognition. For instance, while we can apply denol

sional scaling (MDS) approach (Kwat al). In this paper, ing or compression techniques in the RKHS W|th_ the virtues
) . of the kernel trick, we need to go back into the input space
we propose a new technique to learn the pre-image. In th : . . L .
. . . ; . tor the final result. This is the case in denoising a signal (or
RKHS, we construct a basis having an isometry with the in- . .
; - .image), the reconstructed signal belongs to the input space
put space, with respect to a training data. Then repregentin - : . .
S o . . b of the original signals. However, getting back to the input
any feature in this basis gives us information regardingriés . ) .
. . . : ; space from the RKHS is not so obvious, in general, as most
image in the input space. We show that doing a pre-image . :
. : . - “élements of the latter may not have a pre-image in the for-
can be done directly using the kernel values, without havin . : . .
) ) . er. This is the pre-image problem in kernel machines, as
to compute distances in any of the spaces as with the MD ) . X .
. : . we seek an approximate solution. Solving this problem has
approach. Simulation results illustrates the relevancénef

roposed method. as we compare it to these techniaues received a growing amount of attention, with the most break-
brop ' P ques. through given in [6] and [7]. In the former work, Miket

Index Terms— kernel machines, pre-image problem,al. present the problem and its ill-posedness, and derive an

kernel matrix regression, denoising iterative scheme to find an approximate solution. As always
with iterative techniques, there is no guarantee that dadd
1. INTRODUCTION to a global optimum, and may be unstable. In the latter work,

Kwok et al. determine a relationship between the distances in
Kernel machines have gained wild popularity in the lasth® RKHS and the distances in the input data, based on a set of
decade, providing a breakthrough in statistical learnireg t ~raining data. Applying a multidimensional scaling tedfus
ory, together with low computational cost nonlinear algo-(MDS) leads to the pre-image. This approach opens the door
rithms, thanks to th&ernel trick Initiated by Vapnik’s Sup- to a range of other techniques, such as manifold learning and
port Vector Machines (SVM) [1], this led to the proliferatio Out-of-sample methods [8, 9].
of nonlinear algorithms, including kernel Fisher discrrant In this paper, we introduce a novel approach to find the
analysis [2] and least-squares SVM [3] for supervised learnpre-image. We learn a basis, not necessarily orthogorthkin
ing, and kernel principal component analysis (kernel-PCARKHS having an isometry with the input space, with respect
[4] and one-class SVM [5] for unsupervised learning. Theto a set of training data. In other words, their inner product
kernel trick provides a mean to transform conventionaldine are (approximately) equal in both spaces. Thus, by reptesen
algorithms into nonlinear ones, under the only requiremening any feature function of the RKHS in this basis, we get
that the algorithm can be expressed only in terms of innean estimate of the inner products between its counterpart in
products between data. For this purpose, data from the irithe input space and the training dataset. We show thatgettin
put space are (nonlinearly) mapped into a feature space. Ottge pre-image estimate follows easily from this informatio
may not need to exhibit this map, since this action can bé turns out that this approach is natural to kernel machines
done implicitly by substituting the inner product by a posit and can be done using linear algebra. The proposed method
definite kernel. This is the essence of the kernel trick. Fronis universal, in the sense of being independent, in its féamu
a functional framework, this kernel is called treproducing tion, of both the type of the used kernel and of the feature un-
kernel and the induced feature space is the so-calipdo-  der investigation. Moreover, once the basis constructedem
ducing kernel Hilbert spacéRKHS). than one feature can be directly pre-imaged, using onlgatine



algebra. Comparing the proposed method to previous worlthat any functiorp(-) of a RKHSH minimizing a regularizes

we have the following: It does not suffer from numerical in- cost functional of the form

stabilities or local minima as opposed to the iterative sode "

in [6]. Compared to the MDS-based technique, we show that AT 2

we don't need to compute and work on the distances in both ; Jletwav) + sllleli),

spaces, inner products are sufficient. Itis worth notingtthe

reproducing kernel gives us the inner products in the RKHSWith predicted output)(z;) for inputz;, and eventually the

This is the main idea behind the kernel trick. desired outpuy;, andg(-) a strictly monotonically increasing
The rest of this paper is organized as follows. In sectiofunctiononiR.,, can be written as a kernel expansion in terms

2, we begin by a brief review of the framework behind kernelof available data

machines, and derive the pre-image problem. The proposed

method is presented in section 3, and its use for denoising e () = Z%n(mi, ). (3)
with kernel-PCA illustrated. We conclude in section 4 with i=1
simulations.

This theorem shows that even in an infinite dimensional
RKHS, as with the Gaussian kernel, we only need to work in
2. KERNEL MACHINES AND THE PRE-IMAGE the subspace spanned by thkernel functions of the training
PROBLEM data,k(-, 1), ..., Kk(-, Ty,).

2.1. Kernel machines 2.2. The pre-image problem

Let X' be a compact ofR”, endowed with the natural Eu- gy virtue of the representer theorem, evaluating the optima

clidean inner produgt , -) defined byanch _fo_r anyz;, ©;j € functiony*(-) at anyz € X is given by S, i k(s ).

X. Letr : X x X — IR be a positive definite kernel olf,  Thjs gives the prediction of, and comparing its value to

where the positive definitness is defined by the property 5 threshold yields a decision rule. This is done in super-

vised learning, such as regression and classification gmal

Z oiok(xi, i) = 0 However for pattern recognition with unsupervised leagnin
b one might also be interestedgri(-), or more precisely in its

counterpart in the input space. Sing&(-) might not have a

for all aj,; € R and@,@; € X. The Moore- ..o uno00 his'is an ill-posed problem, where one seeks an
Aronszajn theorem [10] states that for every positive defi? g€, b b '

nite kernel, there exists a unique reproducing kernel Hilbe 2E)F;r§:srna;(:ssigllgt|0f(,'>|.en in & whose map(-, z7) is as
space (RKHS), and viceversa. Latbe the RKHS assock This iz the ret-gi)ma .e roblem. One may solve the opti-
ated withx, and let(-, -)3; be the inner product in this space. P gep ’ y P

This means that we have the representer of evaluation at arﬁ'}'za“"” problem [9]

@; € X, With @ = argmin | ¢*(-) — £(-, )|
Wlas) = W0, k() ) Wwhich minimizes the distance, or
forall » € H. Replacing)(+) by &(-, ;) yields . < ©* () k(- ) >
T* = argmax v , : ,
/@(mi,ccj) — <I€(',mi),/€(',wj)>’}—{, (2) zeX HSO ( )”H ||KJ( ’w)”H H

o . which maximizes the collinearity, whete- ||, denotes the
for all @;,; € X. This is the reproducing property from norm in the RKHS. In [6], Mikaet al. propose an iterative
which the name of repronucing kernel_ is derived. Denotingcheme to solve the pre-image problem, which can only be
by ¢(-) the map that assigns to each inpute ' the ker-  gpplied to the Gaussian kernel, or any other radial basis ker
nel functions (-, z), the reproducing property (2) implies that ne| Next, we show the relevance of solving such problem, in
k(@i ;) = ((xi), o(x;))1- The kernel then evaluates the the case of denoising with kernel-PCA. It is worth notingttha

inner product of any pair of elements 4f mapped intd”,  {he proposed method is independent of such results, and can
without any explicit knowledge of either the mapping func-pe applied to any kernel machine.

tion ¢(-) or the RKHSH. This is the well-known kernel trick.

In combinaf[ion with the kernel tric!<, the representer the- 2 kemel-PCA for denoising
orem [11] provides a powerful theoretical foundation for-ke
nel machines. Classical applications to this theorem @elu The kernel-PCA [4] is an elegant nonlinear extension of the
SVM and kernel-PCA, where one seeks to maximize the mamostly used dimensional reduction and denoising technique
gin or the output variance, respectively. This theorenestat the principal component analysis (PCA). With PCA, we seek



principal axes that capture the highest variance in the, datavhere (1) is used. Therefore, its representation in thishsis
that is, useful information as opposed to noise. These iprincgiven by thel coordinates, written vector-wise

pal axes are the eigenvectors associated with the largest-ei -

values of the covariance matrix of data. There exists a dual Vo = [1(@) v2(@) - (@],

formulation of PCA involving only the inner products of the where thek-th entry depends on the, ;, fori=1,...,n.
training data. This can be applied implicitly in a RKHS, by |n order to construct the basis éfbasis functions, we
substituting the inner products by kernel values.This & th consider the model defined by

kernel-PCA. Each of the resulting principal functions takes . -

the form (3), where the the weighting coefficients are olgdin Vo Va, = @; T + 5, ®)
from the eigen-decomposition of the so-called Gram matrixso, 411 the training set, i.es,j = 1,2,...,n, and where;;

whose entries are(z;, z;), fori,j = 1,...,n. corresponds to the unfitness of the model. We don’t impose

In the same spirit of the conventional PCA, one constructgny constraint in this model, such as the orthogonality be-
a subspace df spanned by the most relevant principal func-yyeen the basis functions. We only require the equivalence
tions. Using kernel-PCA for denoising any givane X,  petween the inner products in that basis, and their counter-

we project its kernel functior(, -) onto that subspace. Let parts in the input space. Minimizing the variance gfyields
¢*(-) be this projection which, by virtue of the PCA approach.the optimization problem

is assumed to be noise-free. Thus, we need to get its counter-

art in the input space, denoted, by solving the pre-image R~ 2
Eroblem. putsp y gthep 9 min 52:} (=W W )T+ AR, ).
i=1 j=1

As preconized in machine learning literature, we introdace
3. THE PROPOSED PRE-IMAGE METHOD this expression a regularization tertaz(-), with \ a tun-
able parameter controlling the tradeoff between the fitnes
For anyyo™(-) of the RKHSH, we learn the pre-image” €  the model (5) and the regularity of the solution. In this pa-
X from a set of available training datée:, ..., x,}. Tode-  per, we consider a more specific case With)y, . .., 1) =
velop the proposed method, we proceed in two stages. Inthext 11, 12 'in order to penalize high norm functions.
first stage, we construct a basisfihhaving an isometry with From U, we collect the unknown and the known infor-

the input space basi®, where isometry is given with respect mation into a matrix and a vector, respectively, and write
to the training data. In the second stagé(-) is represented

in this basis, yielding the values of the inner product&’iof Uy = A Kqg,

|tstpre—|magte V\gm the training data. From these inner pmd\'/vherenw — [w(a1, @) K(zs, @) - K(wn, )] andAisa
ucts, we extract the pre-image. ¢ x n matrix of unknowns whosg, i)-th entry isa, ;. Thus,

the resulting optimization problem is

Constructing the basis . 1 & )
A =argmin — Z (:13;'—327 - H;,ATAFL%.)
The main idea of the proposed method is to construct a ba- A 2 =1 '
sis in the RKHS that is isometric with the input space. For ¢
this purpose, we use the training data, and by virtue of the Y Z Z apiop (s, ;).
representer theorem, we only have to consider the subspace i1

spanned by the training kernel functions. Within this sub- ) _ o
space, we construct a setobasis functions, each takes the BY denoting| - || the Frobenius norm of a matrix, this yields

form ~ 1 T ) .
n A:argn&ngﬂP—KA AK| 7+ A\tr(A" AK),
Yr() = Zak,i k(xi, ), (4) _ _ _
i—1 wherePandK are the Gram matrices with entrigs;, ;) =
. . . z] x; andr(x;,x;), respectively. Taking the derivative of
fork =1,2,...,¢, with at most/ = n basis functionsy be-

the above cost function with respect#’ A, rather thanA,

ing the number of the training data. The coordinate/g() and setting it to zero, we get

of any kernel function(-, ) is given by

A A=K ' (P-AK') K (6)

In what follows, we show that onlyd " A is required to find
the pre-image, rather that. Thus we don’t need to compute

1The kernel-PCA algorithm requires a normalization and exmg the the_ CloefﬁCientS defining the basis in the RKHS, since only
kernel matrix. These details are omitted for the sake of kdityy see [4]. their inner products are needed.

<'¢)k(')7 H('v x)>7‘( = d’k(m) = Z Qi ’i(miv :13),




Back to the input space impact of the regularization term, we set to zero the control

arameten, which yields
Since the model (5) is valid for all the training data, we ap—p Wiyl

ply it to do the pre-image, as illustrated here. L&t-) be n
any optimal function resulting from a kernel machine, with =Xy = Z Vi T 9)
©*(-) = Yi vik(zx;,-) as given in (3). By virtue of the i=1

representer theorem, it belongs to the subspace spanned
the training kernel functions, and therefore can be express
in terms of the computed basis. Theh coordinate ofo*(-)

is

Pl){is means tha} _, v; x(x;, -) has the pre-imag®_, v; x;,
thus having the same weighting coefficients in the RKHS and
the input space. This is only true when no regularization is
applied.

<90 ()a z/Jk())H = .Zl ak,i’yjﬁ(mia iL‘j)- |nterpretati0n 2

1,)=

These expressions can be applied directly to a set of fumtio
in the RKHS to get their pre-images in the input space. For

this purpose, we write (7) as

Computed on each basis function, theoordinates are col-
lected into one vector, denotdd,- with some abuse of nota-
tion. Thus, we write the model (5) as
X'X=(P-AK )T,
\I/L\I/W:azjcc*, fori=1,...,n ( )
) ) ) ) ~ where each column of matrik represents the coefficient vec-
wherex* is the resulting pre-image to be estimated. Matrlx-tor,y and each column oX* the corresponding pre-image.
wise, this is written as From (8), we see that the matrix

KA AKy=X'a" M=XP'(P-AK)

wherey = [y1 72 --- 7,]" andX = [z; 2 --- =,]. By is computed only once, and then applied wkt = M T.

injecting the constructed basis model (6) into this expoess This corresponds to a matrix completion scheme, or more

we get specifically the kernel matrix regression approach, asngive
X'z =(P-AK1)~. (7) in[12,13].

To find the pre-image:* using this expression, different
techniques may be considered. For instance, one can use an 4. SIMULATION RESULTS

iterative scheme by solving the optimization problem , i ,
y g P P In this section, we compare the proposed method with two

min | X z* — (P—AK )2 state-of-the art methoétsthe iterative technique [6] and the
z* MDS-based approach [7]. For this purpose, we consider four

Another non-iterative techniques may also be used to solvt atasetths, apply _the kernelt-hPCcijA f(\)/(/r?_llenmsmg, tvr;"tz one of
(7), such as the eigen-decomposifidn the spirit of the Nys- e?e ree pre-lTag% n;_e 'toks. | ;r? O.t” rrtl_e ° fha[:‘dqp'
trdm method, or the pseudo-inverse. Next, we use the pseud rate on any posilive definite kernel, the ierative me !

inverse, and show two interpretations of the proposed ndeth 6] |s_l|m|ted to the Gau33|an kern_el. For this reason, weyonl
consider the Gaussian kernel defined by

Interpretation 1 llag =12
P k(T xj) =€ 2a7 |

By using the pseudo-inverse from matrix algebra, we have the o )
identity (XX ")~ X = X (X' X)~!, which is only true for Whereo is its bandwidth.

linearly independent training data. Thus, we can write For visualization, we consider a family of four datasets
in 2-D (see [14] for more information), each having a geo-
- =XP'(P-AK ). (8)  metric form corrupted by a noise with a bandwidth parameter

v. Within this area, data are uniformly randomly drawn. We
Therefore, the resulting pre-image belongs to the spaneof thgeneratenyain data to train theieigen €igenfunctions and to
training data in the input space, in coherence with previousonstruct the basis. Then, we apply these results on another
work on solving the pre-image problem [6, 7]. To show theset ofnpre-imagegenerated data, in order to denoise using the

°Doing eigen-decomposition gives the pre-image relativéheo eigen- SMatlab codes for these algorithms are available from the
basis in the input space. A post-processing is requiredtttheepre-image  Statistical Pattern Recognition Toolbox, at the internetidrass
relative to the training data; this is called the procrugtesblem. http://cnp.fel k. cvut. cz/ cnp/ sof t war e/ st prtool /



Table 1. Values of the parameters for the different datasets.

frame banana spiral sine
Ntrain 350 300 70 420
Npre-image 390 200 250 330
v 0.1 0.2 03 05
Neigen 5 3 10 10
o 0.4 0.5 03 04

5. CONCLUSION

In this paper, we proposed a new method to solve the pre-
image problem. The proposed method does not suffer from
numerical instability, nor require computing the distasae

the input and the RKHS. We showed that using only inner
products between data in both spaces, the ones in the RKHS
being defined by the kernel, we can construct a basis in the
RKHS to make pre-image. We compared our method to
state-of-the-art techniques. Perspectives include a inere
depth description of the regularization term, and applyiig)

pre-image techniques. Values for these parameters asigiven
Table 1 for each dataset.

The frame dataset consists of a square of four lines of
length 2. Data are uniformly randomly drawn within these [1]
lines and corrupted by a noise uniformly drawn fréav, v].

The banana dataset is given by the parabola defined by th&l
coordinategx, 2 + &), with = uniformly randomly drawn

from [—1,1], and ¢ normally distributed with a standard [
deviation ofv. The spiral is defined by the coordinates
(A(p) cos(p), A(p) sin(p)), with A(p) = 0.07¢ + &, where 4]
 and¢ are uniformly randomly drawn fror), 6] and|[0, v/],
respectively. The sine dataset is defined by the coordinates
(p,0.8sin(2¢)), wherey is uniformly randomly drawn from  [g]
[0, 27], and where the data are corrupted by a uniformly ran-
dom noise drawn fron, v]?.

For the iterative algorithm, the stopping criterion is set [6]
to a maximum of 100 iterations, which gives a reasonable
cpu time. The required initial guess is set as in (9), with the
weighting coefficients; are uniformly randomly drawn from 7
[—1,1]. For the MDS-based algorithm, a global optimization
scheme is used, as opposed to a neighborhood approach. As
this algorithm is based on an eigen-decomposition tecleniqu
it yields a new basis in the input space. Thus we operate a8l
procrustes technique to align this basis with the initia dvy
minimizing the mean-squares error.

Figure 1 illustrate the denoising approach for the four
datasets. In these figures, we show the training data with blu [9]
dots, and with red dots the denoised estimates obtained from
another set (not shown explicitly, but given by the free ends
of green lines). Green lines show the distance between the
denoised and the initial noisy data. Consider for instahee t |1
frame dataset. Besides instability in many denoised data fo
the iterative technique, data within the upper border of the; 1
frame for instancey-axis close tol) are not denoised to the
same area, as given by the proposed technique. It is obvious
that the MDS is less adapted to any of the four given dataseti.2]
The iterative technique seems be sharper in denoising. How-
ever, as illustrated here, it suffers from numerical inditids (131
and local minima, as shown by long green lines, mostly in
the frame and the sine applications. With all these datasets
the proposed method gives good results, which tend to fold f{\h]
the tip of the dataset. This is illustrated for instance wiith
banana data, however, it folds less than the MDS results.

method on real data, for instance to denoise faces.

6. REFERENCES

V. Vapnik, Statistical Learning Theory New York, NY, USA: Wiley,
September 1998.

S. Mika, “Kernel fisher discriminants,” PhD thesis, Uergity of Tech-
nology, Berlin, October 2002.

J. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, anthddewalle,
Least Squares Support Vector MachineSingapore: World Scientific
Pub. Co., 2002.

B. Scholkopf, A. Smola, and K. Muller, “Nonlinear compemt analysis
as a kernel eigenvalue problenNeural Computationvol. 10, no. 5,
pp. 1299-1319, 1998.

D. Tax, “One-class classification; concept-learningthie absence of
counter-examples,” PhD thesis, Advanced School for Comgund
Imaging — Delft University of Technology, June 2001.

S. Mika, B. Scholkopf, A. Smola, K. Muller, M. Scholz, a&l Réatsch,
“Kernel pca and de-noising in feature spaces,Pimceedings of the
1998 conference on advances in neural information proogssystems
Il. Cambridge, MA, USA: MIT Press, 1999, pp. 536-542.

J. T. Kwok and I. W. Tsang, “The pre-image problem in kénmeth-
ods,” inMachine Learning, Proceedings of the Twentieth Intermatio
Conference (ICML 2003) Washington, DC, USA: AAAI Press, Au-
gust 2003, pp. 408—-415.

Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L.uRoand
M. Ouimet, “Out-of-sample extensions for lle, isomap, meigen-
maps, and spectral clustering,”Advances in Neural Information Pro-
cessing Systems 18. Thrun, L. Saul, and B. Schélkopf, Eds. Cam-
bridge, MA: MIT Press, 2004.

P. Arias, G. Randall, and G. Sapiro, “Connecting the out-
of-sample and pre-image problems in kernel methods,” in
IEEE Computer Society Conference on Computer Vision and

Pattern Recognition 18-23 jun 2007. [Online]. Available:
http://ampere.iie.edu.uy/publicaciones/2007/ARS07
N. Aronszajn, “Theory of reproducing kernels,”

Trans. Amer. Math. Socvol. 68, pp. 337-404, 1950.

B. Scholkopf, R. Herbrich, and R. Williamson, “A genkzead repre-
senter theorem,” Royal Holloway College, Univ. of LondorK,Iech.
Rep. NC2-TR-2000-81, 2000.

Y. Yamanishi and J.-P. Vert, “Kernel matrix regressiohech. Rep.
http://arxiv.org/abs/qg-bio/0702054v1, 2007.

P. Honeine, C. Richard, M. Essoloh, and H. Snoussi, dliaation in
sensor networks - a matrix regression approach“‘irlEEE Sensor Ar-
ray and Multichannel Signal Processing Workshop (SAMgrmstadt,
Germany, July 2008.

H. Hoffmann, “Kernel PCA for novelty detectionPattern Recogni-
tion, vol. 40, pp. 863-874, 2007.



Fig. 1. Results obtained using the iterative (left), the MDS-bageitidle), and the proposed (right) algorithm, for the fraffiest row),
the spiral (second row), the banana (third row), and the Gmath row) datasets. Training data are represented by ttis, estimated
pre-images by red dots, and green lines illustrate therdisthetween these denoised pre-images and the initial datay(not shown).



