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ABSTRACT acquires information from neighboring sensors to solve lo-

. . . .cally a least-squares problem. Unfortunately, this braatic
In this paper, we propose a distributed learning strategy L ods to high energy consumption

wireless sensor networks. Taking advantage of recent de- R v, K I hi ¢ i functional |
velopments on kernel-based machine learning, we consider hecen Y %rne mlac.tm%s 60r T\Ion |n<ta:r| unc |t<;na ear?r;
a new sparsification criterion for online learning. As opguabs Ing have gained popularity [5, 6]. Nevertheless, these me

to previously derived criteria, it is based on the estimated odstr?re ngtsu;tablt(ejfcl)rdlstrllbu:_ed Ie?m"_]t% |tnhsensorbudts; d
ror and is therefore is well suited for tracking the evolatio als %or ero mode s scales metarIled te number o tt(rT
of systems over time. We also derive a gradient descent g 0y€d SENSOrs and measurements. In orderto circumventini

gorithm, and we demonstrate its relevance to estimate the d rawback, We propose in this paper to deS|g_n rgduceq o_rder
namic evolution of temperature in a given region. odels by using an easy to compute sparsification criterion.
As opposed to a criterion previously derived in [7, 8, 9], it

Index Terms— Intelligent sensors, adaptive estimation, depends on the estimated error. This approach is, therefore

distributed algorithms, nonlinear systems more relevant in updating the model since it is based on-avail
able measurements. Based on this criterion and a projection
1. INTRODUCTION scheme, we derive the learning algorithm by incrementieg th

model order if necessary, leaving it unchanged, or even de-

Wireless ad-hoc sensor networks have emerged as an ifr€asing it. We illustrate the proposed approach for legrni

teresting and important research area in the last few yeard temperature field and tracking its evolution over time. Be-

They rely on sensor devices deployed in an environment ti'€ Proceeding, we briefly review functional learning with

support sensing and monitoring, including temperature, hukernels and its online setting.

midity, motion, acoustic, etc. Low cost and miniaturizatio

of sensors involve limited computational resources, power

and communication capacities. Consequently, wireless ad- 2. ONLINE LEARNING WITH KERNELS

hoc sensor networks require collaborative execution ofa di

tributed task on a large set of sensors, with reduced commgonsider a reproducing kernel: X x X — IR. Let us de-

nication and computation burden. note by its reproducing kernel Hilbert space (RKHS) with
In this paper, we consider the problem of modeling physinner product: , -);;. This means that eveny(-) of H can be

ical phenomena, such as a temperature field, and track i@yaluated at ang € X by ¢ (x) = (¢(-),5(-,®))». This

evolution. Many approaches have been proposed in the sigllows us to writes(xz;, x;) = (k(-, i), £(-, T;))», Which

nal processing literature to address this issue with cotlab defines the so-called reproducing property. One of the most

rative sensor networks. See [1] for a survey. As explainedidely used reproducing kernel is the Gaussian kernelgive

in [1], the incremental subgradient optimization scheme deby s(z;, x;) = e~ I=:==l"/27" with o the kernel bandwidth.

rived in [2] for (a single) parameter estimation is not appro ~ Within the context of distributed learning in a wireless

priate for large-order models. In [3], the authors use botlsensor network, we model a physical phenomenon, e.g., a

spatial correlation and time evolution of sensors to prefos temperature field, as a function of the location Let us

reduced-order model. However, this approach highly dependienote it by, (-) € H whereX represents the 2-D space.

on the modeling assumption. Recently, model-independeie seek to estimate the functign,(-) at sensorn based on

methods have been investigated. A distributed learnirag-str newly available position-measurement déia,, d,,), and the

egy in sensor networks is studied in [4], where each sensqrevious estimate,,_;(-). For this purpose, we consider the



following problem The sparsification rule consisted of including, for eactssen
n, the kernel functiom:(z.,, -) into the model if
Yo =argmin  [[¢n_1 — Pllz, (1)

. |’<3(33'm $wk)|
subjectto ¢, (x,) = d,. (2)

max < (6)
=1,...,m \//@(mn, Tn) k(T Ty ) ’

This optimization problem can be interpreted as a classicqjit, ., 4 threshold ir0, 1] determining the level of sparsity
adaptive filtering problem, applied here to functionalr@sti ot the model. In [7, 8], we studied this sparsification rule fo

tion in a RKHS. Expression (1) corresponds to the classicaline |earning. We also derived some properties of the re-
principle of minimum disturbance, and the constraint (2§ se g ;ting model as well as connections to other sparsification
to zero thea posteriorierror. Though a large class of adaptive techniques. In [9], we investigated the application of tis
filtering techniques can be used here, we restrict OUrSBN®S (orjon for wireless sensor networks. The independencesof th
gradient descent approach as studied in [10] and we considglsification rule with respect to measurements and to esti
the updating step mation errors limited the performance of the resulting func
tion estimation process for that application. In this paper
propose to overcome this limitation by using the concept of
coherence between thg.’s.

The functionw,, defined in (3) is selected as the new

k

wn = wn—l + n (dn - 1/}7L—1($7L))K($na )

In what follows, we set the tunable positive stepsizgte= 1
as used in [11]. In addition, we consider unit-norm kernel

functions, i.e.x(x,z) = 1 foranyxz € X. The above ex- model if (W, V)]
ression yields the updating rule max e <y 7
pressiony pdating T [T P A @
Yn = Vp_1 + €nk(Tn, ), (3)  with v a threshold. Otherwise, we use the projectionigf

onto the spac@tf,,_; spanned by the: — 1 previously added
wheree,, = d,, — ¥ —1(x,,) is thea priori estimation error.  kernel functions. It is obvious that solving this problem is
Applying this updating rule sequentially tosensors leads to untractable in practice since we need to know all previous es

then-order model timated functionsyy, s, . . ., 1, 1. However, because these
n functions belong td+,,,_1, we can circumvent this difficulty
W = Z aik(z;, ) 4) as explained below.
=1

Proposition 1. Let;- be the projection of,, onto the space
where all the coefficients; are identical to those af,,_;,  SPanned by the: — 1 kernel functions. If we have

excepty,, = €,.
Pl = cn (o, i)

The above updating rule leads to models with orders equal e — < v, (8)
to the number of available data. Such models are not suitable [nll7ll9m 7
for large-scale data problems or online learning. This & th then the inequality7) is satisfied.
case of models generated by most kernel machines. To over-
come this drawback, we propose in the next section a ne8ketch of proof.To prove this, note that
online sparsification technique to control the model order.

1 <1/)n; ¢>'H
Y, =arg max —————.
3. THE PROPOSED SPARSIFICATION CRITERION #etn= [nllrcll¢llr
Since the estimated functiogs, s, . . ., ¥, _1 belong to the

We consider am-order model, withn several orders of mag- spacett,,_;, the criterion (8) directly leads to (7). m

nitude lower tham, defined by
Upon the arrival of a new data:,,, d, ), one of the follow-

m ing two alternatives holds. If (8) is satisfied, the kerneldu
Un() = Z kK&, ), ) tion r(x,, -) is then added to the model according to (3). Oth-
k=1 erwise, the model order is not incremented and we consider
where {w1,...,wn} is a subset of{1,...,n}). We the closest function t@,, in H,,_1, that is,);-. Addition-

thus restrict the expansion te: kernel functions care- ally to this rule, we propose a strategy to decrease the model
fully selected among the: kemel functions in model order. With sensors being revisited in order to follow the-ev

(4). In [7, 8], we proposed a sparsification tech-lution of the system over time, new data may correspond to a
nique for designing models with kernel functions sensot that was incorporated in the model in a previous pass.

having small coherence, the latter being defined as igensorsare assumed motionless: Otherwise, one may inctotizance
maxz; [(k(®w,, ), K(Tw;, ) 1| /15w, ) |#][5(2w;, -)|l2.  range for the positions. However, this is beyond the scoeimpaper.




Let x(x,, -) be a kernel function that is already in the model.be removed or not. By expanding each term in the left-hand

Its relevance depends now on the new measuredyentn  side of expression (8), we get the rule

that case, criterion (8) is evaluated to determine whethier t

kernel function should be kept or removed from the model.
According to (3), it clearly appears that this rule depends

on the estimated error. It is thus relatedftpas opposed to This expression as well as equation (9) require to compute

rule (6). It can be shown that the order of the model resultinghe inverse of the Gram matri,,,_;. This operation can be

from rule (8) remains finite as goes to infinity, even when performed by using a rank-one update, which requires?)

the decreasing scheme is not used. Due to limited space, thperations, as derived next for both incremental and decre-

proof of this property is beyond the scope of this paper. mental stages.

T T 2, Ty —1
o K, joa+2,0' 6+ k, K, _ Ky
a" K, 1o+ 2,0 Kk, + €2

4. ONLINE LEARNING ALGORITHM 4.3. Incremental and decremental steps

Increasing the model order by includiréz,,, -) into the ker-

In this section, we derive our online learning algorithmttwi nel expansion requires augmenting the Gram matrix as fol-
recursive techniques for both incremental and decrementgws

stages. Before proceeding, we formulate the projectiobh{pro
with k(x,,, x,) = 1. The inverse oK ,,, can be computed by

lem in a RKHS.
using the rank-one update given by
Ao ~A'B }
X

Lety- = Z;’;l Gik(x,,, ) be the projection of),, defined -1
by equation (3) onto the space spanned by(the- 1) kernel { } = [ 0o o } + { T
(D-CA'B)"'[-CA™' I],(11)

Kmfl

T
I<:’TL

Kn

K= { K(Tn, Tn)

(10)

4.1. Projectionin a RKHS

A B

C D
functionsk(z.,, , ), ..., k(x,, _,,-). The function);- is ob-

tained by minimizing||+,, — ;- ||3, with respect to they;’s,

namely,

m—1

Z (Bi — ) K@, ) I3

i=1

Henfi(w’ru ) -

By expressing this norm in terms of inner products and us-

ing the reproducing property, we formulate the optimizatio
problem as

mﬁln(,@ - a)TKm—l(IB - a) + Gi - 2€n(/3 - a)—r":'na

wherea, 3 andk,, are(m — 1)-length column vectors with
entriesw;, B;, andk(x,,, x,), respectively, and<,,,_1 is a
(m — 1)-by-(m — 1) matrix whose(i, j)-th entry is given by
k(x.,, T, ). By taking the derivative of the above objective
function with respect t@3, and setting it to zero, we get

B= a‘i’enK;Ll—lKnv (9)

where we have assumed that the Gram mdifix_, is non-

singular. We can now present the different building blocks o

the algorithm.

4.2. The sparsification criterion

with I the identity matrix. We obtain the updating rule

_ K.'\ 0, 1
K 1 _ m—1 m—1 :| %
m |: Om—lT 0 1-— K,nTK;Ll_II{,n
—1
|: —Knifll‘:fn :| I:_K'nTKfr_nlfl 1] ,

where0,,,_; is a(m — 1)-length column vector of zeros.

In the decremental stage x., ) is removed from the
model. This reduces the model order framto m — 1. The
Gram matrixK,,_; is obtained fromk,,, by considering ex-
pression (10), where the latter matrix is arranged in ozt t
its last column and row have entries relativertp. Using the
notation

"]
" @ |’

we obtain from (11) the following matrix update equation

Q'rn—l

m

|

qq’
qo

—1
Kmfl = Q'rn—l -

5. SIMULATION RESULTS

To illustrate the relevance of the proposed technique, we co
sider a classical application of estimating a temperatetd fi
governed by the partial differential equatfon

The sparsification criterion needs to be evaluated by each se

sor noden. The corresponding kernel functiot{x,, -) is
added to the model if it satisfies the rule (8). If it already be

longs to the model, this rule is used to verify whether it can

OT (x, 1)

2 —
T cViT (z,t) = Q(x, t).

2Data simulated using MATLAB’s PDE toolbox.



Fig. 1. Snapshots of the evolution of the estimated temperature=ai00 (left), ¢ = 150 (center) and = 200 (right). Selected sensors at
these instances are shown with big red dots, whereas théniemaensors are represented by small blue dots.

HereT(x,t) denotes the temperature as a function of space 6. CONCLUSION

and time ¢ is a medium-specific paramet&#, is the Laplace

spatial operator, an@(x, t) is the heat added. We studied the In this paper, we proposed an online learning algorithm for
problem of monitoring the evolution of the temperature in awireless sensor networks. It consisted of a kernel machine
2-by-2 square region with open boundaries and conductivit@ssociated with a new sparsification criterion. We highégh

¢ = 0.1, using N = 100 sensors deployed randomly on a the relevance of this criterion and derived a learning atigor
grid. Two heat sources of intensizZp0 W were placed within ~ with model-order control. Applications to temperaturecka

the region, the first one was activated frore 1 to¢ = 100,  ing with dynamic heat sources were considered, and simula-
and the second one frotr= 100 to ¢ = 200. tion results showed the relevance of the proposed approach.

Preliminary experiments were conducted to tune the pa-
rameters, yielding = 0.5 andv = 0.995. In order to refine
the results, 10 passes through the network were conducted] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributeghining in
at each instant. Fig. 1 illustrates the estimated temperature  Wwireless sensor networkdEEE Signal Processing Magazineol. 23,
field at different times. It is can be observed that the setect N0 4, PP. 56-69, 2006. o S
sensors for each snapshot follows the dynamic behavioeof th [2] M- Rabbat and R. Nowak, "Distributed optimization in sen net-

. . works,” in Proc. third international symposium on Information Pro-
heat SOU"C.eS-_The convergence of the prOPPSGd algquthm IS cessing in Sensor Networks (IPSN)New York, USA: ACM, 2004,
illustrated in Fig. 2 where we show the evolution over time of pp. 20-27.

the normalized mean-square prediction error, defined on alf3] C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Maddeistilbuted

the sensors by regression: an efficient framework for modeling sensor nstvdata,”
in Proc. third international symposium on information proseg in
sensor networks (IPSN) New York, NY, USA: ACM, 2004, pp. 1-10.

N 2
i 2 : (dn - wnfl(mn)) [4] J.B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributeerkel regres-
N —
n=
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