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COMPONENT ANALYSIS WITH NON-NEGATIVE PREIMAGE
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Abstract— The inherent physical characteristics of many real- the only condition of expressing the algorithm in terms of
life phenomena, including biological and physiological gsects, pairwise inner products between data. By substituting the
require adapted nonlinear tools. Moreover, the additive naure inner product operator with a (positive semi-definite) lern
in some situations involve solutions expressed as positigcembi- f . his | val ina the data f haiin
nations of available data. In this paper, we propose a nonliear unctlo_n, this Is equivalent to mapplngt e X ata from theunp
feature extraction method, with a non-negativity constrant. To ~ SPace into a feature space via some nonlinear map, and then
this end, the kernel principal component analysis is consiered  apply the linear algorithm. The resulting feature space is
to define the most relevant features in the RKHS. A pre-image the so-called reproducing kernel Hilbert space (RKHS). For
technique is required to get back to the input space. With jnstance, in [5] the authors reported the superiority ofieér

a non-negative constraint, we show that one can solve the . - . L
pre-image problem efficiently, using an iterative scheme. fie PCA over conventional PCA, combined with a discrimination

constrained solution contributes to the stability of the agorithm. ~ SCcheme, in order to classify event-related potentials (ERP
Experimental results on ERP illustrate the efficiency of the While the mapping from input space to feature space

proposed method. is of primary importance in kernel methods, the reverse
mapping from feature space back to input space is often very
useful. Unfortunately, getting back to the input space from
the RKHS is not obvious in general, as most features of the
latter may not have an exact pre-image in the former. This is
There has been an ever-increasing interest of engineers ahd pre-image problem, as one seeks an approximate solution
scientists in nonlinear feature extraction since, unfuately, Furthermore, this is also non-trivial as the dimensiogaiit
most natural systems exhibit nonlinear behavior. Furthethe feature space can even be infinite. In [6], Miaal.
more, with some prior information on the system undepresented this highly nonlinear optimization problem, and
investigation, a constrained solution is often requirechamy proposed a fixed-point iterative method. In [7], a technique
situations, in order to illustrate some physical charésties based on multidimensional-scaling is considered, wheremor
such as the non-negativity. recently a more adapted method is studied in [8]. While these
Consider for instance an electroencephalographic (EE@chniques are applied in a de-noising scheme, we propose
recording, which corresponds to a summation of individuah this paper a feature extraction approach, incorporating
contributions in the brain. A measure of the brain activitynon-negativity constraint. The resulting algorithm is dxhs
should always be positive, since the brain is always ion an iterative gradient descent scheme.
activity. In practice, the recordings are zero-meanedjlres  The paper is organized as follows: In Section II, we review
ing into positive and negative components. Nevertheless, the kernel-PCA technique. The problem of nonlinear feature
understand the underlying structure of theses recordingsxtraction is presented in Section lll, in the light of thepr
and thus the brain activity, one shouleéep in mindthe image problem. The non-negativity constraint is studied in
non-negative additivity of contributions. Non-negatvis Section IV, while in Section V experimental results are give
a desirable property in many research areas. Independent
component analysis impose a non-negative factorization of
the data [1], i.e. for blind source separation with positive
sources. In [2], a non-negative principal component aiiglys
(PCA) is proposed. A more general approach is studied in Principal Component Analysis (PCA) is a widely used
[3] for signal and image restoration with a non-negativityechnique for representing data, by extracting a small rermb
constraint. of features from the data itself. This approach is regarded a
Kernel-based methods provide a breakthrough in bothglobal approach, as opposed to methods such as parametric
statistical learning theory and low computational cost fomodels and wavelet decomposition, where extracted feature
nonlinear algorithms. The main idea behind these algdrghly depend on the model or wavelet type under investiga-
rithms is thekernel trick [4]. It gives a mean to transform tion. In PCA, features are obtained by diagonalizing the cor
conventional linear algorithms into nonlinear ones, undeelation matrix of the data, conserving only the most raitva
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eigenvectors. Without loss of generality, we assume thi@ dan a feature spac@(, the so-called RKHS. Examples of ad-
is zero-mean, given column-wise iy, xs, ..., x, € R?.  missible kernels include the polynomial kernédle;, z;) =
PCA technique seeks the featuresvy, v, ..., v, € R%, (1 + (z;,;))?, and the Gaussian kernel(x;, ;) =
as the eigenvectors in the eigen-problem = C v, with  exp(Z%|z; — z;||?), the latter implicitty maps data into an
C = ;7 x;x] the correlation matrix. The relevance ofinfinite-dimensional space.
each eigenvectow is given by its corresponding eigenvalue
A, which measures the amount of captured variance of the
data. From the linearity property of the operations, the!ll: FEATURE EXTRACTION AS A PREIMAGE PROBLEM
eigenvectors lie in the span of the data, taking the form
v=>) " . As illustrated above, it is easy to compute the coefficients
Unlike conventional PCA which is restricted to learn onlyin (2), thanks to the kernel trick. When a supervised leaynin
linear structures within data, kernel-PCA is a popular geris required, the resulting features are only used in a pre-
eralization to discover nonlinearities. To recognize imedr processing scheme, for dimensionality reduction purpose,
features, a common strategy consists in mapping the ddiafore applying a discrimination machine such as Support
into some feature space, wih: IR — 7, and then compute Vector Machines. In such cases, the features need not to be
PCA on mapped dat&(x;), ®(x2), ..., P(x,) € H. While  explicated since, for any given, the projection ofb(x) onto
eigenvectors are linear in the transformed data, they aamyy € H canbe givenbyp, ®(x))y = >\ | i k(@i ).
nonlinear in the original data. Without the need to evaluaté/hen an unsupervised learning is desired, such as in pattern
explicitly the map, it turns out that one can efficiently comsecognition, it is not sufficient to know the weighting coeffi
pute such nonlinear PCA, for a broad class of nonlinearitiesients. One is often interested in the feature itself, anddfi
using the concept of thieernel trick It corresponds to writing (2), or more precisely in its counterpartin the input spaee,
the algorithm using only pairwise inner products betweea z* such that its map is equivalent to=>"" | «; ®(x;).
data, thus substituting these proximity measurements withowever, very few elements of a RKHS satisfy this property.
nonlinear ones, defined by a kernel function. This widespredn general, one seeks an approximate solutiongi*ein IR¢

principle is illustrated here on kernel-PCA [9] . whose mapd(z*) is as close as possible {a
First, we write PCA algorithm in terms of inner products This is the pre-image problem in machine learning, where
in the feature spacé®(x;), ®(x;))x, fori,j =1,2,...,n. one seeks to map back elements from the RKHS to the input
Each extracted featurg € H satisfies the expression space. This optimization problem was originally studied by
& Mika et al. in [6]. It consists of minimizing the distance in
Ap=C" g, (1)

the RKHS between both elements, with

where C® represents the correlation between mapped
data, expressed in a finite-dimensional spaceCds =

LY ®(z;) @(z;) . By analogy with the linear case, all
solutionsy lie in the span of theb-images of the data. This

¥ = arg min |p — @(m)”%, (4)
zcIR?

where| - || denotes the norm in the RKHS. Worth noting
that this is a non-convex and highly nonlinear optimization

means that there exists coefficients as, ..., a,, such that problem. In [6], the authors propose a fixed-point iterative
n method to solve this problem. Unfortunately, this techeiqu

Y= Zai P(x;). (2)  tends to be unstable and suffers from local minima. In [7], a
i=1 technique based on the multidimensional-scaling is pregos

Substituting C® and the expansion (2) into the eigen-while in [10] the authors illustrate the connection of this
problem (1), and defining a x n matrix K whose(i, j)-th problem with other dimensionality reduction methods. More
entry is(®(z;), ®(x,))%, we get the eigen-problem in terms recently, two of the authors proposed a more adapted method

of inner product matrix to solve the optimization problem [8]. Interestingly, dlese
methods suggest that the resulting pre-image lies in the spa
nia=Ka, (3)  of the original data, namely
wherea = [a; as -+ a,]". In order to get the nor- i n
malization as in PCA i.e. (p,¢)3 = 1, one operates a Tt =) i (5)
=1

normalization on the resulting solutian, with ||a||? = 1/A.

Substituting the inner product operator with a kerneWhile this is a linear system, it is computed on the basis
function, x: R? x R — IR, provides a nonlinear extension of closeness to the nonlinear feature, where distance is
to PCA, the so-called kernel-PCA. Kernels with a positiveeomputed in the feature space.
semi-definite property correspond to an implicit mapping, All these techniques have been proposed for de-noising
and thus can be written as(xz;,z;) = (®(x;), ®(x;))n, purpose, i.e. any new data is mapped, projected into the

most relevant subspace, and then mapped back to the input

IFurthermore, data should be centered in the feature spadaska space. To our knowledge, mapping the features back to the
efficiently operated by replacing the matr in (3) with the modified . "d d in the i f
matrix (1 — 1,,)K (1 — 1,), with 1,, the n-by-n matrix of entriesl/»  NPUt SPacé was not considered In the literature, yet featur
and1 the identity matrix. extraction is as (if not more) important as de-noising data.



Moreover, in many physical phenomena, one may require
constrained solution. Next, we show that one may provide a
easy, yet efficient, scheme to solve this optimization pobl
with a non-negativity constraint, i.eq,vs,...,v, > 0in
the expansion (5). Worth noting that including a constrain
contributes to the stability of the solution [11].
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IV. THE PREIMAGE WITH NON-NEGATIVITY

CONSTRAINT Lo

We begin by injecting the expansion in (5) into the
optimization problem (4), reducing the problem into finding
the coefficients vectoy = [y1 72 ... 7). Let J(~) be the
resulting cost function. Next, we consider solving the pre-
image prob|em, independenﬂy of the used kernel, by Writingig.- 2. The individual _and the cumulative captured variam_tethe 40
the pre-image problem in the general form [3] available features. The first 4 features captif€ of overall variance

0.2
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~* = argmin J ()

Y
The optimal step sizg(k) can be computed eventually from
a linear search algorithm in the interjal 7,4, (k)] with
with > 0 denotes element-wise non-negativity. The corre- 1
sponding Lagrangian can be described &g)—u "+, where Nmaz (k) = min T~k X
w is the vector of the non-negative Lagrange multipliers. The
Kuhn-Tucker conditions at the optimum must satisfy

subject toy > 0

\MC w 7] =0 V. EXPERIMENTS

pivi =0 Vi The proposed method for solving the pre-image problem

where~; (resp.u?) is thei-th component dey* (resp.u*). with non-negative constraint, provides a general tectaiqu

Thus the resulting problem to be solved is for feature extraction, and can be applied in any feature
. extraction problem. In this section, we illustrate it on & se
Vi [=VyJ(1)]i =0 of event-related potentials (ERP) from EEG recordings. The

with [V.J(~)]; is thei-th component ofv.,.J(v) and the experimental signals are taken from a large study on selecte

minus sign is used to explicitly describe the gradient desceSets of people, with a genetic predisposition to alcoholism
of J(v). [13]. The acquisition system is composed of 64 electrodes,

To solve this problem iteratively, we consider the fixegPositioned on the scalps, taking the measurements sanpled a
point approach, leading to the element-wise gradient aesce226 Hz, for 1 second. There were several subjects, each one

algorithm [11], [12] has completed 120 trials where different stimuli were shown
to them: the subject was exposed either to one stimulus
Yi(k 4+ 1) =i (k) + ni(k) fi (v (k)i (k) [V T ()]s (S1), or two stimuli (S1 and S2). We have selected only one

subject with ERP resulting from one stimulus, and chosen
one electrode, FB1The number of trials is 40, resulting into
40 signals of 256 samples each, illustrated in Fig. 1 (left).

To perform the non-negative pre-image, the kernel applied
on the signals was the Gaussian kernel, with bandwidth set
to o = 300. The kernel-PCA algorithm was applied using
ni(k) < 1 . this kernel, with the overall captured variance illustcaie

= fiy(R)[VA T ()i Fig. 2 with individual\,/ 3272, ), (left axis) and cumulative

k 40 . . .
Otherwise, whenV.,J(y)]; < 0, no restriction related to 2-j=1 i/ 2= A: (right axis) eigenvalues for each of the
the positivity is imposed on this step size factor. Finaleg, ~# €igenvectors. In the following, we consider the four most

deduct that the general expression of the algorithm, inimatr'élévant features, capturing 67 % of the data variance, and
form. is consider the proposed method to get back from the (infinite

vk + 1) = y(k) + n(k) d(k), dimensiqnal) RKHS to the input ;pace_lﬂﬁ-sqmple signz_ils.
The additive weight update algorithm is applied to pre-imag

where n;(k) is a step size factor used to control conver
gence, andf;(~(k)) is a function having positive values.
To guarantee the non-negativity of(k + 1), updated from
the previously estimated one;(k), the following condition
should be satisfied: ifV.,J(v)]; > 0,

whered(k) defines the direction of descent, with
) °The considered EEG signals can be downloaded from
d(k) = —diag f; (v(k))v: (k)] V4 J (). http://archive.ics.uci.edu/ml/databases/eeg/eeg uatl.
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The 40 trials from electrode FP1 (left) and the fourstmelevant features as well as a less relevant one (right).

the four features. For this purpose, the following paramsete [6] S. Mika, B. Schélkopf, A. Smola, K.-R. Muller, M. Schgl and
were considered: the step size factor was set$00.9, and
the number of iterations t@00. The resulting pre-imaged

features are given in Fig. 1 (right), and compared to the
[7] J. T. Kwok and I. W. Tsang, “The pre-image problem in kérne

21st extracted feature, the latter exhibitifess structure

within data. We can easily verify that all the coefficients

are nonnegative.

Real-life phenomena, such as some biological charactét’]
istics, impose constraints on the extracted features. il th
paper, we have shown that nonlinear features can be exdracte
by jointly applying a kernel-PCA algorithm and a pre-imagél
technique. The pre-image problem is solved under the non-
negative constraint, using an additive fixed-point itemati [12]
algorithm. The utility of the method was demonstrated on

VI. CONCLUSIONS

real EEG data.
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