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Abstract— The inherent physical characteristics of many real-
life phenomena, including biological and physiological aspects,
require adapted nonlinear tools. Moreover, the additive nature
in some situations involve solutions expressed as positivecombi-
nations of available data. In this paper, we propose a nonlinear
feature extraction method, with a non-negativity constraint. To
this end, the kernel principal component analysis is considered
to define the most relevant features in the RKHS. A pre-image
technique is required to get back to the input space. With
a non-negative constraint, we show that one can solve the
pre-image problem efficiently, using an iterative scheme. The
constrained solution contributes to the stability of the algorithm.
Experimental results on ERP illustrate the efficiency of the
proposed method.

I. INTRODUCTION

There has been an ever-increasing interest of engineers and
scientists in nonlinear feature extraction since, unfortunately,
most natural systems exhibit nonlinear behavior. Further-
more, with some prior information on the system under
investigation, a constrained solution is often required inmany
situations, in order to illustrate some physical characteristics
such as the non-negativity.

Consider for instance an electroencephalographic (EEG)
recording, which corresponds to a summation of individual
contributions in the brain. A measure of the brain activity
should always be positive, since the brain is always in
activity. In practice, the recordings are zero-meaned, result-
ing into positive and negative components. Nevertheless, to
understand the underlying structure of theses recordings,
and thus the brain activity, one shouldkeep in mindthe
non-negative additivity of contributions. Non-negativity is
a desirable property in many research areas. Independent
component analysis impose a non-negative factorization of
the data [1], i.e. for blind source separation with positive
sources. In [2], a non-negative principal component analysis
(PCA) is proposed. A more general approach is studied in
[3] for signal and image restoration with a non-negativity
constraint.

Kernel-based methods provide a breakthrough in both
statistical learning theory and low computational cost for
nonlinear algorithms. The main idea behind these algo-
rithms is thekernel trick [4]. It gives a mean to transform
conventional linear algorithms into nonlinear ones, under

the only condition of expressing the algorithm in terms of
pairwise inner products between data. By substituting the
inner product operator with a (positive semi-definite) kernel
function, this is equivalent to mapping the data from the input
space into a feature space via some nonlinear map, and then
apply the linear algorithm. The resulting feature space is
the so-called reproducing kernel Hilbert space (RKHS). For
instance, in [5] the authors reported the superiority of kernel-
PCA over conventional PCA, combined with a discrimination
scheme, in order to classify event-related potentials (ERP).

While the mapping from input space to feature space
is of primary importance in kernel methods, the reverse
mapping from feature space back to input space is often very
useful. Unfortunately, getting back to the input space from
the RKHS is not obvious in general, as most features of the
latter may not have an exact pre-image in the former. This is
the pre-image problem, as one seeks an approximate solution.
Furthermore, this is also non-trivial as the dimensionality of
the feature space can even be infinite. In [6], Mikaet al.
presented this highly nonlinear optimization problem, and
proposed a fixed-point iterative method. In [7], a technique
based on multidimensional-scaling is considered, when more
recently a more adapted method is studied in [8]. While these
techniques are applied in a de-noising scheme, we propose
in this paper a feature extraction approach, incorporatinga
non-negativity constraint. The resulting algorithm is based
on an iterative gradient descent scheme.

The paper is organized as follows: In Section II, we review
the kernel-PCA technique. The problem of nonlinear feature
extraction is presented in Section III, in the light of the pre-
image problem. The non-negativity constraint is studied in
Section IV, while in Section V experimental results are given.

II. K ERNEL-PCA

Principal Component Analysis (PCA) is a widely used
technique for representing data, by extracting a small number
of features from the data itself. This approach is regarded as
a global approach, as opposed to methods such as parametric
models and wavelet decomposition, where extracted features
highly depend on the model or wavelet type under investiga-
tion. In PCA, features are obtained by diagonalizing the cor-
relation matrix of the data, conserving only the most relevant



eigenvectors. Without loss of generality, we assume that data
is zero-mean, given column-wise inx1,x2, . . . ,xn ∈ IRd.
PCA technique seeks them featuresv1,v2, . . . ,vm ∈ IRd,
as the eigenvectors in the eigen-problemλv = C v, with
C = 1

n

∑n

j=1
xjx

⊤
j the correlation matrix. The relevance of

each eigenvectorv is given by its corresponding eigenvalue
λ, which measures the amount of captured variance of the
data. From the linearity property of the operations, the
eigenvectors lie in the span of the data, taking the form
v =

∑n

i=1
αi xi.

Unlike conventional PCA which is restricted to learn only
linear structures within data, kernel-PCA is a popular gen-
eralization to discover nonlinearities. To recognize nonlinear
features, a common strategy consists in mapping the data
into some feature space, withΦ: IR 7→ H, and then compute
PCA on mapped data,Φ(x1),Φ(x2), . . . ,Φ(xn) ∈ H. While
eigenvectors are linear in the transformed data, they are
nonlinear in the original data. Without the need to evaluate
explicitly the map, it turns out that one can efficiently com-
pute such nonlinear PCA, for a broad class of nonlinearities,
using the concept of thekernel trick. It corresponds to writing
the algorithm using only pairwise inner products between
data, thus substituting these proximity measurements with
nonlinear ones, defined by a kernel function. This widespread
principle is illustrated here on kernel-PCA [9] .

First, we write PCA algorithm in terms of inner products
in the feature space,〈Φ(xi),Φ(xj)〉H, for i, j = 1, 2, . . . , n.
Each extracted featureϕ ∈ H satisfies the expression

λϕ = CΦ ϕ, (1)

where CΦ represents the correlation between mapped
data, expressed in a finite-dimensional space asCΦ =
1

n

∑n

j=1
Φ(xj)Φ(xj)

⊤. By analogy with the linear case, all
solutionsϕ lie in the span of theΦ-images of the data. This
means that there exists coefficientsα1, α2, . . . , αn such that

ϕ =
n
∑

i=1

αi Φ(xi). (2)

Substituting CΦ and the expansion (2) into the eigen-
problem (1), and defining an×n matrix K whose(i, j)-th
entry is〈Φ(xi),Φ(xj)〉H, we get the eigen-problem in terms
of inner product matrix

nλα = Kα, (3)

where α = [α1 α2 · · · αn]
⊤. In order to get the nor-

malization as in PCA1, i.e. 〈ϕ, ϕ〉H = 1, one operates a
normalization on the resulting solutionα, with ‖α‖2 = 1/λ.

Substituting the inner product operator with a kernel
function,κ : IRd× IRd 7→ IR, provides a nonlinear extension
to PCA, the so-called kernel-PCA. Kernels with a positive
semi-definite property correspond to an implicit mapping,
and thus can be written asκ(xi,xj) = 〈Φ(xi),Φ(xj)〉H,

1Furthermore, data should be centered in the feature space, atask
efficiently operated by replacing the matrixK in (3) with the modified
matrix (1 − 1n)K(1 − 1n), with 1n the n-by-n matrix of entries1/n
and1 the identity matrix.

in a feature spaceH, the so-called RKHS. Examples of ad-
missible kernels include the polynomial kernelκ(xi,xj) =
(1 + 〈xi,xj〉)

p, and the Gaussian kernelκ(xi,xj) =
exp( 1

σ2 ‖xi − xj‖
2), the latter implicitly maps data into an

infinite-dimensional space.

III. F EATURE EXTRACTION AS A PRE-IMAGE PROBLEM

As illustrated above, it is easy to compute the coefficients
in (2), thanks to the kernel trick. When a supervised learning
is required, the resulting features are only used in a pre-
processing scheme, for dimensionality reduction purpose,
before applying a discrimination machine such as Support
Vector Machines. In such cases, the features need not to be
explicated since, for any givenx, the projection ofΦ(x) onto
anyϕ ∈ H can be given by〈ϕ,Φ(x)〉H =

∑n

i=1
αi κ(xi,x).

When an unsupervised learning is desired, such as in pattern
recognition, it is not sufficient to know the weighting coeffi-
cients. One is often interested in the feature itself, as defined
(2), or more precisely in its counterpart in the input space,i.e.
a x∗ such that its map is equivalent toϕ =

∑n

i=1
αiΦ(xi).

However, very few elements of a RKHS satisfy this property.
In general, one seeks an approximate solution, i.e.x∗ in IRd

whose mapΦ(x∗) is as close as possible toϕ.
This is the pre-image problem in machine learning, where

one seeks to map back elements from the RKHS to the input
space. This optimization problem was originally studied by
Mika et al. in [6]. It consists of minimizing the distance in
the RKHS between both elements, with

x∗ = arg min
x∈IRd

‖ϕ− Φ(x)‖2H, (4)

where‖ · ‖H denotes the norm in the RKHS. Worth noting
that this is a non-convex and highly nonlinear optimization
problem. In [6], the authors propose a fixed-point iterative
method to solve this problem. Unfortunately, this technique
tends to be unstable and suffers from local minima. In [7], a
technique based on the multidimensional-scaling is proposed,
while in [10] the authors illustrate the connection of this
problem with other dimensionality reduction methods. More
recently, two of the authors proposed a more adapted method
to solve the optimization problem [8]. Interestingly, all these
methods suggest that the resulting pre-image lies in the span
of the original data, namely

x∗ =

n
∑

i=1

γi xi. (5)

While this is a linear system, it is computed on the basis
of closeness to the nonlinear feature, where distance is
computed in the feature space.

All these techniques have been proposed for de-noising
purpose, i.e. any new data is mapped, projected into the
most relevant subspace, and then mapped back to the input
space. To our knowledge, mapping the features back to the
input space was not considered in the literature, yet feature
extraction is as (if not more) important as de-noising data.



Moreover, in many physical phenomena, one may require a
constrained solution. Next, we show that one may provide an
easy, yet efficient, scheme to solve this optimization problem
with a non-negativity constraint, i.e.γ1, γ2, . . . , γn ≥ 0 in
the expansion (5). Worth noting that including a constraint
contributes to the stability of the solution [11].

IV. T HE PRE-IMAGE WITH NON-NEGATIVITY

CONSTRAINT

We begin by injecting the expansion in (5) into the
optimization problem (4), reducing the problem into finding
the coefficients vectorγ = [γ1 γ2 . . . γn]

⊤. Let J(γ) be the
resulting cost function. Next, we consider solving the pre-
image problem, independently of the used kernel, by writing
the pre-image problem in the general form [3]

γ∗ = argmin
γ

J(γ)

subject toγ ≥ 0

with ≥ 0 denotes element-wise non-negativity. The corre-
sponding Lagrangian can be described asJ(γ)−µ⊤γ, where
µ is the vector of the non-negative Lagrange multipliers. The
Kuhn-Tucker conditions at the optimum must satisfy

∇γ

[

J(γ∗)− µ∗⊤ γ∗
]

= 0

µ∗
i γ

∗
i = 0 ∀i

whereγ∗
i (resp.µ∗

i ) is thei-th component deγ∗ (resp.µ∗).
Thus the resulting problem to be solved is

γ∗
i [−∇γJ(γ)]i = 0

with [∇γJ(γ)]i is the i-th component of∇γJ(γ) and the
minus sign is used to explicitly describe the gradient descent
of J(γ).

To solve this problem iteratively, we consider the fixed-
point approach, leading to the element-wise gradient descent
algorithm [11], [12]

γi(k + 1) = γi(k) + ηi(k)fi(γ(k))γi(k)[−∇γJ(γ)]i

where ηi(k) is a step size factor used to control conver-
gence, andfi(γ(k)) is a function having positive values.
To guarantee the non-negativity ofγi(k + 1), updated from
the previously estimated one,γi(k), the following condition
should be satisfied: if[∇γJ(γ)]i > 0,

ηi(k) ≤
1

fi(γ(k))[∇γJ(γ)]i
;

Otherwise, when[∇γJ(γ)]i ≤ 0, no restriction related to
the positivity is imposed on this step size factor. Finally,we
deduct that the general expression of the algorithm, in matrix
form, is

γ(k + 1) = γ(k) + η(k)d(k),

whered(k) defines the direction of descent, with

d(k) = −diag[fi(γ(k))γi(k)]∇γJ(γ).
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Fig. 2. The individual and the cumulative captured varianceof the 40
available features. The first 4 features capture67% of overall variance

The optimal step sizeη(k) can be computed eventually from
a linear search algorithm in the interval]0, ηmax(k)] with

ηmax(k) = min
i

1

fi(γ(k))[∇γJ(γ)]i
.

V. EXPERIMENTS

The proposed method for solving the pre-image problem
with non-negative constraint, provides a general technique
for feature extraction, and can be applied in any feature
extraction problem. In this section, we illustrate it on a set
of event-related potentials (ERP) from EEG recordings. The
experimental signals are taken from a large study on selected
sets of people, with a genetic predisposition to alcoholism
[13]. The acquisition system is composed of 64 electrodes,
positioned on the scalps, taking the measurements sampled at
256 Hz, for 1 second. There were several subjects, each one
has completed 120 trials where different stimuli were shown
to them: the subject was exposed either to one stimulus
(S1), or two stimuli (S1 and S2). We have selected only one
subject with ERP resulting from one stimulus, and chosen
one electrode, FP12. The number of trials is 40, resulting into
40 signals of 256 samples each, illustrated in Fig. 1 (left).

To perform the non-negative pre-image, the kernel applied
on the signals was the Gaussian kernel, with bandwidth set
to σ = 300. The kernel-PCA algorithm was applied using
this kernel, with the overall captured variance illustrated in
Fig. 2 with individualλk/

∑40

i=1
λi (left axis) and cumulative

∑k

j=1
λj/

∑40

i=1
λi (right axis) eigenvalues for each of the

k eigenvectors. In the following, we consider the four most
relevant features, capturing 67 % of the data variance, and
consider the proposed method to get back from the (infinite
dimensional) RKHS to the input space of256-sample signals.
The additive weight update algorithm is applied to pre-image

2The considered EEG signals can be downloaded from
http://archive.ics.uci.edu/ml/databases/eeg/eeg.data.html.
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Fig. 1. The 40 trials from electrode FP1 (left) and the four most relevant features as well as a less relevant one (right).

the four features. For this purpose, the following parameters
were considered: the step size factor was set toη = 0.9, and
the number of iterations to200. The resulting pre-imaged
features are given in Fig. 1 (right), and compared to the
21st extracted feature, the latter exhibitingless structure
within data. We can easily verify that all the coefficients
are nonnegative.

VI. CONCLUSIONS

Real-life phenomena, such as some biological character-
istics, impose constraints on the extracted features. In this
paper, we have shown that nonlinear features can be extracted
by jointly applying a kernel-PCA algorithm and a pre-image
technique. The pre-image problem is solved under the non-
negative constraint, using an additive fixed-point iterative
algorithm. The utility of the method was demonstrated on
real EEG data.
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