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ABSTRACT

In this paper, we study the problem of decomposing spec-
tra in hyperspectral data into the sum of pure spectra, or end-
members. We propose to jointly extract the endmembers and
estimate the corresponding fractions, or abundances. For this
purpose, we show that these abundances can be easily com-
puted using volume of simplices, from the same information
used in the classical N-Findr algorithm. This results into
a simple scheme for unmixing hyperspectral data, with low
computational complexity. Experimental results show the ef-
ficiency of the proposed method.

1. INTRODUCTION

Based on observation satellites, remote-sensing with hyper-
spectral image analysis has gained wide popularity, with ap-
plications to mineral exploration, environmental monitoring,
and military surveillance. With a large number of measured
wavelength bands, each pixel has a complete spectrum. It is
usually assumed that each spectrum can be linearly decom-
posed into spectra, the so-called endmembers, each provided
by some pure material. For a given image, the hyperspectral
unmixing problem involves, on the one hand the extraction
of thesepurespectra and, on the other the estimation of their
abundances within each pixel. The number of endmembers
is often assumed known; otherwise methods such as the one
presented in [1] can be used to estimate it.

The first step is the endmember extraction problem. From
convex geometry, this problem is equivalent to finding a data-
enclosing simplex, as proposed in [2, 3]. One of the most
popular (automated) algorithms for endmember extraction is
Winter’s N-Findr [3]. The main driving force behind this
algorithm is a simple iterative and scalable scheme. With
a random initial set defining the simplex, it seeks to stretch
the simplex in order to maximize its volume by visiting each
pixel. The N-Findr is a fast endmember extraction technique
with low computational cost, making it the most widely used
method despite the restriction on belonging endmembers in
the image. The second step involves estimating the abun-
dance of each endmember for all pixels. Many techniques

have been proposed to estimate the fraction of pure spectra in
a given spectrum. The main difficulties reside in constraints
on the estimated coefficients in order to represent the physi-
cal abundancies, with the sum-to-one and the non-negativity
constraints(see [4, 5] and references therein).

In this paper, we give a simple algorithm for extracting
the endmembers and their respective adundances, jointly in
a single step. The proposed approach takes advantage of the
well-known N-Findr scheme for endmember extraction. In
the same spirit, we show that we can provide an efficient iter-
ative algorithm for estimating the abundancies. Both the end-
member extraction and the abundancies estimation are done
in a single step, using the concept of barycentric coordinates
which are computed from volumes of simplices. This is done
without any additional computational cost as opposed to clas-
sical least square estimation techniques [5].

The linear (un-)mixing model

In a hyperspectral image, the hypothesis of a linear mixed
model is often used. The spectrum of a pixel is given as a
linear combination of somepurespectra, called endmembers.
Let xℓ be the spectrum of theℓ-th pixel, then themathemati-
cal modelis

xℓ =

n
∑

i=1

αi xωi
+ ǫ, (1)

where endmembers are defined by spectraxωi
, assumed rep-

resented by some pixels{ω1, ω2, . . . , ωn}, andǫ corresponds
to the unfitness of the model, often treated as a Gaussian
noise. In order for the coefficientsα1, α2, . . . , αn to represent
the physical abundance fraction associated to each endmem-
ber, two constraints must be imposed on theses coefficients:

• The sum-to-one constraint, called hereafter the equality
constraint, with

n
∑

i=1

αi = 1.

• The non-negativity constraint, with

α1, α2, . . . , αn ≥ 0.



Estimating the coefficients based on the model (1) subject to
both constraints requires advanced optimization techniques,
as studied for instance in [5]. In this paper, we give a direct
scheme to solve the equality-constrained optimization prob-
lem, incorporating naturally the endmember extraction pro-
cedure. Furthermore, we provide a geometric interpretation
to the violation of the non-negativity constraint.

2. THE METHOD

Unmixing hyperspectral data based on the linear model (1)
involves two tasks: extracting the endmembersxωi

and com-
puting their coefficientsαi, for i = 1, 2, . . . , n, and for the
spectrum of each pixel. We begin next with the extraction
method, as given in the N-findr scheme [3], and then derive
in next paragraph the method to estimation the corresponding
coefficients.

But before, we give a definition of the volume of a sim-
plex. LetX = {xω1

,xω2
, . . . ,xωn

} be the set of estimated
endmembers, withωi ∈ {1, 2, . . .}. Theorientedvolume of
the simplex defined by the verticesX is given by

VX =
1

(n− 1)!
det

[

1 1 · · · 1
xω1

xω2
· · · xωn

]

, (2)

wheredet is the determinant operator. While taking the abso-
lute value of this expression gives the (conventional, positive-
valued) volume of a simplex, the virtues of the oriented
(signed) volume will be demonstrated in estimating the co-
efficients.

Endmember extraction

We take advantage of the fact that the endmembers define the
vertices of a simplex englobing all spectra of the image. Thus,
this simplex has the largest volume among all simplices con-
structed from other spectra. Therefore, one seeks the sim-
plex of largest volume, in an iterative manner by visiting each
pixel. At initialization, random pixels are selected as end-
members1. The following process is iterated for each pixel,
wherexℓ is its spectrum: One at a time, each endmember
is replaced by the pixel under investigation, and the oriented
volume of the resulting simplex is computed. Let

VX\{xωi
}∪{xℓ}

denotes the simplex (oriented) volume of verticesX\{xωi
}∪

{xℓ}, with \ the set difference defined by the setX with xωi

removed andxℓ added. Besides the initial set with simplex
volumeVX , we haven candidate sets, each defining a sim-
plex volumeVX\{xωi

}∪{xℓ}. By comparing these volumes,
two cases can be distinguished:

1One may also operate an appropriate selection of the starting set, as pro-
posed for instance in [6]. However, such improvements are beyond the scope
of this communication.

• if maxi |VX\{xωi
}∪{xℓ}| < |VX |, then the initial set of

endmembers remains unchanged;

• otherwise, an entry of the initial set is substituted with
xℓ to give the new endmembers set. The outgoing spec-
trumωi is identified such as

i = argmax |VX\{xωi
}∪{xℓ}|.

Coefficients estimation

We are now in a position to compute the coefficients. This
is done at the same iteration, using the computed ori-
ented volumes. Given the simplex defined by the vertices
xω1

,xω2
, . . . ,xωn

, anyxℓ can be written as a linear com-
bination of these vertices, i.e.

xℓ =

n
∑

i=1

αi xωi
, (3)

subject to
n
∑

i=1

αi = 1 (4)

To solving this constrained optimization problem, we com-
bine the above expressions into the following augmented2 lin-
ear system

[

1 1 · · · 1
xω1

xω2
· · · xωn

]

[

α
]

=

[

1
xℓ

]

,

whereα = [α1 α2 · · · αn]
⊤ is the vector of coefficients. Us-

ing the well-known Cramer’s rule, the solution of this linear
system can be expressed in terms of the determinants of the
above matrix and of matrices obtained from it with one col-
umn substituted by the right-hand-side vector. Therefore,we
can write

α1 =

det

[

1 1 · · · 1
xℓ xω2

· · · xωn

]

det

[

1 1 · · · 1
xω1

xω2
· · · xωn

] ,

α2 =

det

[

1 1 · · · 1
xω1

xℓ · · · xωn

]

det

[

1 1 · · · 1
xω1

xω2
· · · xωn

] ,

...

αn =

det

[

1 1 · · · 1
xω1

xω2
· · · xℓ

]

det

[

1 1 · · · 1
xω1

xω2
· · · xωn

] .

2Using an augmented system has been previously introduced inthe liter-
ature, with the fixed-point-free transform [7]. To our knowledge, this is the
first time that barycentric coordinates are applied to provide a simple opti-
mization scheme.
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Fig. 1. Illustration of the simplex (here triangle) in a 2-dimensional Euclidean space. Left: the current dataxℓ is inside the simplex defined
by {xω1

,xω1
,xω1

}, and thus all coefficients are non-negative. Right: the datais outside the simplex and thus has at least one negative
coefficient.

Thus, each coefficientαi equals a ratio of the oriented vol-
umes of two simplices, the one with verticesX given by end-
members and the one resulting from the latter by substituting
vertexxωi

with xℓ. In other words, we have

αi =
VX\{xωi

}∪{xℓ}

VX

, (5)

for all i = 1, 2, . . . , n. Since these volumes are initially com-
puted in order to stretch the initial simplex for enclosing most
spectra, no additional computational cost is required to eval-
uate the coefficients at each iteration.

On the non-negativity constraint

From the literature of geometry of convex sets, the coeffi-
cients computed using (5) are called (homogeneous) barycen-
tric coordinates or areal coordinates, defined by the vertices
X of the simplex. It is well known thatxℓ is inside the
simplex if and only if allαi’s are non-negative; otherwise,
when it is outside, there exists at least one negative coeffi-
cient. The corresponding simplices are illustrated in Fig.1
for two-dimensional data in two case, whetherxℓ lies inside
or outside the endmembers simplex.

Therefore, when the solution of the constrained optimiza-
tion problem (3)-(4) gives at least one negativeαi, this means
that thexℓ is outside the simplex, and thus cannot be written
in terms of linear combination of its vertices with both equal-
ity and non-negativity constraints. It is worth noting thatsuch
limitation is valid for any simplex-based approach. There-
fore, this provides a measure of adequacy of the geometric
approach, i.e. the simplex englobing the data with the sim-
plex vertices available within the data.

3. EXPERIMENTATIONS

In order to illustrate the proposed method, we simulated a
synthetic hyperspectral image from a linear combination of

three pure materials. These materials are available from the
USGS library [8], and correspond to golden grass, red brick,
and cedar, with spectra illustrated in Fig. 2 (left). A 128-by-
128 hyperspectral image is generated from pixels given by
the model (1), whereǫ corresponds to a white Gaussian noise
of variance0.01. Using the same noisy model with the end-
members, they are incorporated in the image with the canon-
ical coefficients{(1, 0, 0); (0, 1, 0); (0, 0, 1)}, as illustrated in
Fig. 2 (right).

Most simplex-based methods require a preprocessing di-
mensionality reduction technique. For this purpose, we ap-
ply a classical PCA as suggested in [3]; alternatively, more
dedicated methods such as minimum noise fraction technique
can be considered. We apply the proposed method with the
number of endmembers set to 3. The resulting largest-volume
simplex encloses71% of the spectra, following from incor-
porating noise, not only in the coefficients by also in the end-
members. To measure the performance of the algorithm, we
compute the spectral angle error [9] for each pixel, between
its initial spectrum and the one computed from the obtained
coefficients, of the form

α(xi,xj) = cos−1

(

〈xi,xj〉

‖xi‖‖xj‖

)

.

The histogram of these errors given in Fig. 3 shows a small
angular error for the hyperspectral image.

4. CONCLUSION

In this paper, we studied the problem of unmixing hyperspec-
tral data. Based on the well-known Winter’s N-Findr scheme,
we showed that we can jointly operate extraction of endmem-
bers and computing the abundances, using volumes of sim-
plices.
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Fig. 2. Endmember spectra: (left) initial spectra and (right) their noisy versions used in generating the hyperspectral image, including two
random mixed spectra.
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Fig. 3. Histogram of the error using the spectral angle between
initial (noise-free) and obtained (noisy) specta.
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