DISTRIBUTED LEARNING WITH KERNELS IN WIRELESS SENSOR NETWORKS FOR PHYSICAL PHENOMENA MODELING AND TRACKING

Cédric Richard (1) , Paul Honeine (2) , Hichem Snoussi (2) , André Ferrari (1) , Céline Theys (1) (1) Laboratoire Fizeau (UMR CNRS 6525, OCA), Université de Nice Sophia-Antipolis, 06108 Nice, France (1) Institut Charles Delaunay (FRE CNRS 2848), Université de technologie de Troyes,10010 Troyes, France Wireless ad-hoc sensor networks have emerged as an interesting and important research area in the last few years. They rely on sensor devices deployed in an environment to support sensing and monitoring, including temperature, humidity, motion, acoustic, etc. Low cost and miniaturization of sensors involve limited computational resources, power and communication capacities. Consequently, wireless ad-hoc sensor networks require collaborative execution of a distributed task on a large set of sensors, with reduced communication and computation burden.

In this paper, we consider the problem of modeling physical phenomena such as temperature field distributions, and track their evolution. Many approaches have been proposed in the signal processing literature to address this issue with collaborative sensor networks. In the framework of distributed inference with parametric models, focus was clearly put on determining how the channel capacity limits the quality of estimates. See, e.g., [START_REF] Swami | Wireless Sensor Networks: Signal Processing and Communications[END_REF] and references inside. Model-based techniques were also exploited to compress the data based on their temporal and spatial redundancy [START_REF] Guestrin | Distributed regression: an efficient framework for modeling sensor network data[END_REF]. Since they do not depend on some arbitrary modeling assumptions, applications of wireless sensor networks provide a strong motivation for the use of nonparametric methods for decentralized inference. See [START_REF] Predd | Distributed learning in wireless sensor networks[END_REF] for a survey. Model-independent methods based on kernel machines have recently been investigated. In particular, a distributed learning strategy has been successfully applied to regression in wireless sensor networks [START_REF]Distributed kernel regression: An algorithm for training collaboratively[END_REF]. In this paper, we take advantage of this framework to derive a new approach.

Kernel-based methods have gained wide popularity over the last decade. Initially derived for regression and classification with support vector machines, they include classical techniques such as least-squares methods and extend them to nonlinear functional approximation. We wish to determine a function ψ o (•) defined on the area of interest X that best models a distribution such as a temperature field. The latter is learned from the information coupling sensor locations and measurements. The information from the N sensors located at x n ∈ X which provide measurements d n ∈ lR, with i = n, . . . , N , is combined in the set of pairs {(x 1 , d 1 ), . . . , (x N , d N )}. Consider a reproducing kernel κ : X × X → lR. Let us denote by H its reproducing kernel Hilbert space (RKHS) with inner product • , • H . This means that every function ψ of H can be evaluated at any x ∈ X by ψ(x) = ψ, κ x H , where κ x denotes κ(•, x). This allows us to write κ(x i , x j ) = κ x i , κ x j H , which defines the reproducing property. One of the most widely used kernel is the Gaussian kernel κ(x i , x j ) = e -xi-xj 2 /2σ 2 with σ the kernel bandwidth. We seek the optimal ψ o that minimizes the following global cost function

J(ψ) = N n=1 E|ψ(x n ) -d n | 2 , that is, J(ψ) = N n=1 E| ψ, κ x n H -d n | 2 using
the reproducing property. The cost function J(ψ) can be rewritten as follows, for any node k ∈ {1, . . . , N }, 

J(ψ) = J k (ψ) + N n=1 n =k J n (ψ) with J k (ψ) = n∈N k c n,k E| ψ, κ x n H -d n | 2 the
c n,k = 0 if n ∈ N k , C1 1 = 1 1 and 1 1 ⊤ C = 1 1 ⊤ . Let us write ψ o n = arg min ψ∈H J n (ψ).
Finally, it is equivalent to minimize J(ψ) or the following cost function

J ℓ (ψ) = n∈N k c n,k E| ψ, κ x n H -d n | 2 + N n=1 n =k ψ -ψ o n 2 Hn
Minimizing J ℓ k (ψ) requires the nodes to have access to global information ψ o n . To facilitate distributed implementations, consider the relaxed local cost function

J r k (ψ) = n∈N k c n,k E| ψ, κ x n H -d n | 2 + n∈N k /{k} b n,k ψ -ψ o n 2 H
where ψ o n is now the best estimate available at node n. The iterative steepest-descent approach for minimizing J r k (ψ) can be expressed in the following form

ψ k,i = ψ k,i-1 - µ 2 ∇J r k (ψ k,i-1 ) with ∇J r k (ψ k,i-1 ) = n∈N k 2 c n,k E (ψ k,i-1 (x n ) -d n ) κ x n + n∈N k /{k} 2 b n,k (ψ k,i-1 -ψ o n )
Incremental algorithms are useful for minimizing sums of convex functions. They consist of iterating sequentially over each sub-gradient, in some predefined order. This leads to the following possible distributed learning strategies.

Adapt-then-Combine kernel LMS

For each time instant i and each node k, repeat

φ k,i = ψ k,i-1 -µ k n∈N k c n,k (ψ k,i-1 (x n ) -d n,i ) κ xn ψ k,i = n∈N k b n,k φ k,i

Combine-then-Adapt kernel LMS

For each time instant i and each node k, repeat 

φ k,i-1 = n∈N k b n,k ψ k,i-1 ψ k,i = φ k,i-1 -µ k n∈N k c n,k (φ k,i-1 (x n ) -d n,i ) κ xn
∂Θ(x, t) ∂t -c∇ 2 x Θ(x, t) = Q(x, t).
Here Θ(x, t) denotes the temperature as a function of space and time, c is a medium-specific parameter, ∇ 2 x is the Laplace spatial operator, and Q(x, t) is the heat added. We studied the question of monitoring the evolution of the temperature field distribution in a square region with open boundaries and conductivity c = 0.1, using N = 100 sensors deployed randomly on a grid. Given some measurements d n,i = Θ(x n , t i ) + z n,i , with z n,i a i.i.d. Gaussian noise, the problem was to estimate the temperature Θ(x n , t i ) via ψ i (x n ) based on the Gaussian kernel.

Two heat sources of intensity 200 W were placed within the region, the first one was activated from t = 1 to t = 100, and the second one from t = 100 to t = 200. The experimental setup will be described in the camera-ready paper. Fig. 1 illustrates the estimated temperature field distribution at different times by the Adapt-then-Combine strategy, for several values of |N k |. The convergence of the proposed algorithm is illustrated in Fig. 2 where we show the evolution over time of the normalized mean-square prediction error. The abrupt change in heat sources at t = 100 is clearly visible, and highlights the convergence behavior of the proposed algorithm. Comparison with an iterative distributed gradient algorithm clearly shows a faster convergence speed. 

  local cost function, and N k the set of neighbors of sensor k. Here, c n,k is the (n, k)-th component of C, which satisfies the following constraints:

Fig. 1 .

 1 Fig. 1. Snapshots of the evolution of the estimated temperature at t = 100 (left), t = 150 (center) and t = 200 (right). Sensors are shownwith small blue dots. Big red dots represent the sensors of interest according to a criterion that will be described in the camera-ready paper.

4 Fig. 2 .

 42 Fig. 2. Learning curve obtained from t = 1 to t = 200. Time t = 100 corresponds to a system modification.