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ABSTRACT

Support vector machines have been investigated with success
for hyperspectral data classification. In this paper, we pro-
pose a new kernel to measure spectral similarity, called the
angular kernel. We provide some of its properties, such as
its invariance to illumination energy, as well as connection to
previous work. Furthermore, we show that the performance
of a classifier associated to the angular kernel is comparable
to the Gaussian kernel, in the sense ofuniversality. We derive
a class of kernels based on the angular kernel, and study the
performance on an urban classification task.

Index Terms— Hyperspectral data, spectral angle, SVM,
reproducing kernel, machine learning

1. INTRODUCTION

Hyperspectral images are now widely available, owing to the
development of remote sensing sensors with an improvement
in both spectral and spatial resolutions. For instance, airborne
sensors provide hyperspectral images with more than a hun-
dred spectral bands and a spatial resolution up to one me-
ter per pixel. Such resolution allows classification of urban
structures by virtue of, on the one hand the spatial visual-
perception, and on the other the spectral physical-features.
Finer resolution provides an increase in the dimensionality
of the processed data, allowing for a better discrimination
between different classes of data, e.g. between trees, roads,
bricks, etc. Furthermore, only a limited set of observations
with labels is available. However, constructing a classifica-
tion rule based on a small training set in a high dimensional
space is an ill-posed problem.

Kernel-based methods provide the opportunity to over-
come these problems, with the Support Vector Machines
(SVM) which take advantage of the combination of the reg-
ularized structure of the decision rule and the elegant use of
a reproducing kernel to measure the similarity between data,

The authors wish to thank the University of Pavia and the HySenS
project, for providing the data which made this work possible, and Prof.
Paolo Gamba for sharing such data.

independent of their dimension. Recently, SVM were inves-
tigated for hyperspectral data classification, and have proven
to provide high performance of detection and discrimination.
Initially, conventional kernels were used such as the Gaussian
kernel [1, 2], or adjusted to select optimal spectral bands [3],
or even combined using spatial and spectral information [4].
Taking into account the spectral signature concept with an
invariance to overall energy (e.g. illuminations), the spectral
angle [5] as a measure of distance has been adapted to operate
on a Gaussian kernel in [6, 7, 8].

In this paper, we propose theangular kernel, a new mea-
sure of similarity between two spectra which is insensitiveto
their energies. We provide some of its properties and connec-
tions to previous work. Performance associated to this kernel
are studied in the light of theuniversalityproperty, comparing
it to the consistency well-known kernels such as the classical
Gaussian kernel. We derive a class of kernels based on the
angular kernel, and illustrate their performance on a real hy-
perspectral image for classification of urban data. But before,
we review the concept of kernel-based machines for hyper-
spectral data classification.

1.1. Kernel-based machines for hyperspectral data

Pioneered by Vapnik’s SVM [9], kernel-based machines have
proven to be successful in many pattern recognition problems.
The key issue behind the high generalization ability of SVM
is maintained by a complexity control of the solution, tun-
able by a regularization parameter (often denotedC) which
controls the tradeoff between the model simplicity and the fit-
ness to the training data. Furthermore, a central characteristic
of these machines is that they can be expressed in terms of
inner products of input data. Replacing these inner products
with a reproducing kernelprovides an efficient way to implic-
itly map the data into a high, even infinite, dimensional space
and apply the original algorithm in this space. Hence, perfor-
mance depends crucially on the chosen reproducing kernel.

By Mercer’s theorem, reproducing kernels are positive
semi-definite functions, hence can be expressed as an inner
product in a high-dimensional feature space. An easy way
to construct valid (reproducing) kernels is to apply rules for



Table 1. Some simple rules for engineering a valid kernel
from available ones, withβk, c ∈ IR+ andσ ∈ IR.

Rule Expression
R1. Linear combinationκ(xi,xj) =

∑

k βkκk(xi,xj)
R2. Positive Offset κ(xi,xj) = κ1(xi,xj) + c
R3. Product κ(xi,xj) =

∏

k κk(xi,xj)
R4. Exponential κ(xi,xj) = exp

(

1
σ2 κk(xi,xj)

)

R5. Normalization κ(xi,xj) =
κk(xi,xj)√

κk(xi,xi) κk(xj ,xj)

engineering more complicated kernels from simple ones.
Some basis rules are enumerated in Table 1. The first three
rules can be combined into the rule: a positive-coefficient
polynomial of a reproducing kernel is a valid one. These
rules allow to generate most well-known kernels from the
linear kernel〈xi,xj〉. For instance applying rule R3, or
combining rules R2 and R3, withκk(xi,xj) = 〈xi,xj〉
gives respectively the homogeneous and inhomogeneous
polynomial kernels, while rule R5 provides the normalized
linear kernel〈xi,xj〉/‖xi‖ ‖xj‖. The exponential kernel
exp( 1

σ2 〈xi,xj〉) results from rule R4, while the Gaussian
kernelexp(− 1

2σ2 ‖xi − xj‖2) is obtained from normalizing
the exponential kernel with rule R5.

In order to take into account the nature of spectral char-
acteristics in the hyperspectral data, the spectral angle [10]
as a measure of distance is extensively used in the literature,
thanks to its invariance to the spectral energy, e.g. illumina-
tion. It is defined between two spectraxi andxj as

θ(xi,xj) = arccos

( 〈xi,xj〉
‖xi‖ ‖xj‖

)

, (1)

where‖ · ‖ is the Euclidean distance and〈·, ·〉 its inner prod-
uct. In order to provide a kernel based on this measure, most
work consider it1 as a distance, and adapt any distance-based
kernel for this purpose [6]. The most investigated kernel is
the Gaussian kernel [8], of the form

κ(xi,xj) = exp
(

− 1
2σ2 θ(xi,xj)

)

, (2)

or substituting the angle with its square value in [7].

2. THE ANGULAR KERNEL

Since each spectrum is positive by nature, as well as the ratio
in (1), all spectra lie in the positive orthant2. We define in
this orthant, denoted hereafter byX , the angular kernel as a
similarity measure between two spectra, with

α(xi,xj) = arccos

(

− 〈xi,xj〉
‖xi‖ ‖xj‖

)

, (3)

1In fact, they use the absolute value of the spectral angle. However, this
quantity is nonnegative for (positive-value) spectral data.

2An orthant is the analogue in high dimensional spaces of a quadrant in
the plane or an octant in three dimensions.

for any pair(xi,xj) ∈ X 2. This kernel corresponds to a
monotonic increasing transformation of the normalized linear
kernel, with values ranging betweenπ/2 andπ.

Proposition 1. The angular kernel defined in(3) is a valid
reproducing kernel.

Proof. To prove this, recall from trigonometric identities the
expansion of thearccos function into an infinite series:

arccos z =
π

2
− arcsin z

=
π

2
−

∞
∑

k=0

(2k)!

22k(k!)2(2k + 1)
z2k+1,

for any |z| ≤ 1. By substitutingz with the normalized linear
kernel, we obtain the expansion of the angular kernel:

α(xi,xj) =
π

2
+

∞
∑

k=0

(2k)!

22k(k!)2(2k + 1)

( 〈xi,xj〉
‖xi‖ ‖xj‖

)2k+1

(4)
This expansion is a positive-coefficient polynomial of the nor-
malized linear kernel, resulting from rules R1, R2, and R3.
Thus, the angular kernel is a valid reproducing kernel.

Therefore, one can use the angular kernel with any kernel-
based learning machine, in order to adapt them for (hyper-)
spectral data. Next, we give some insights on the geometric
structure of the feature space associated to the angular kernel.

2.1. Properties of the angular kernel and its feature space

Before proceeding, we establish the connection between the
angular kernel and the spectral angle defined in (1), the latter
being a distance. For this purpose, recall the trigonometric
identityarccos(−u) = π − arccos(u). Thus, we have

α(xi,xj) = π − θ(xi,xj). (5)

This equivalence will be useful throughout this paper.
The space associated to the angular kernel has a very rich

structure. From the expansion (4), it is obvious that the di-
mension of the feature space is infinite. Letφ(·) denotes the
map induced by this reproducing kernel, mapping the input
space to the feature space, i.e.φ : X → H. The norm of the
image of any mapped data is

‖φ(xi)‖2H = α(xi,xi) = arccos (−1) = π.

Therefore, all data of the input space are mapped onto the
sphere of radius

√
π. Moreover, sinceα(xi,xj) ≥ 0 onX 2,

the images lie in the positive orthant. The distance is defined
as the norm of the difference, with its square value

‖φ(xi)− φ(xj)‖2H = 2 (π − α(xi,xi)) = 2 θ(xi,xi),

where the last equality follows from (5). In other words, the
square distance is equal to twice the spectral angle. Since
α(xi,xi) ∈ [π/2 π], such a distance is upper bounded by√
π. We refer the interested reader to [11] for a deeper under-

standing of the geometry of the feature space.



2.2. Performance associated to the angular kernel

All these properties provided so far do not give any informa-
tion about the performance associated to the use of the angu-
lar kernel in machine learning, e.g. SVM for classification.
Kernels based on the exponential function are the most used
ones, such as the Gaussian and exponential kernels. The per-
formance associated to these kernels is often assigned to their
expansion in terms of an infinite series of monomials, with
fast falling weightings. The angular kernel shares with these
kernels such a property, as given in the expansion (4), and
thus is likely to give comparable performance.

The generalization abilities of machine learning classifiers
of SVM type, independent of the learning scheme, are studied
in [12], using the concept ofuniversalkernels. The authors
show that there exists a certain class of kernels that are con-
sistent for a large class of classification problems, provided a
suitably chosen regularization. This class of so-called univer-
sal kernels, includes the Gaussian and the exponential kernels.
This is formalized here for the angular kernel.

Proposition 2. The angular kernel is a universal kernel on
every compact subset ofX .

Sketch of proof.From (4), the angular kernel takes the form

α(xi,xj) =
∞
∑

k=0

ak

( 〈xi,xj〉
‖xi‖ ‖xj‖

)k

,

with ak > 0 for all k ≥ 0. Due to [12, Corollary 10], we get
the universality of the kernel.

The universality of the angular kernel means that the func-
tions of its associated feature space are capable of approxi-
mating all continuous functions on compact subsets inX .

2.3. A class of angular kernels

In previous section, we compared the proposed kernel to clas-
sical Gaussian and exponential kernels, despite the fact that
the angular kernel has no tunable parameter. This property
may be advantageous, since we do not need a tuning step to
adapt the kernel to the problem under consideration. Next,
we provide a class of kernels (with tunable parameters) based
on the angular kernel, following the same scheme provided in
Section 1.1.

The (homogeneous) polynomial kernel associated to the
angular kernel takes the form

αp(xi,xj) = (α(xi,xj))
p
,

for p ∈ IN+. An inhomogeneous counterpart of this kernel
can be given by(α(xi,xj) + c)

p, for any positivec. The
exponential kernel is defined as the exponential of the angular
kernel, up to a multiplicative bandwidth parameter, namely

αe(xi,xj) = exp
(

1
σ2α(xi,xj)

)

.

It is worth noting that it is more convenient to useangular
values for the bandwidth parameterσ2, for instanceσ2 = π
which results into a kernel with values within[

√
e e].

In order to construct the equivalent of the Gaussian kernel
for the class of angular kernels, we apply the normalization
rule R5 to the above exponential kernel. We obtain

αG(xi,xj) =
αe(xi,xj)

√

αe(xi,xi)αe(xj ,xj)

= exp
(

− 1
σ2 (π − α(xi,xj))

)

= exp
(

− 1
σ2 θ(xi,xj))

)

,

where the identity (5) is applied. The resulting kernel is
equivalent to the Gaussian kernel based on the spectral angle
(2), and extensively used in the literature on hyperspectral
data. In other words, the angular kernel (3) can be considered
as alinear counterpart of the Gaussian kernel (2).

3. EXPERIMENTAL RESULTS

Data sets are taken with the ROSIS-03 (Reflective Opti-
cal System Imaging Spectrometer) provided by the HySenS
project. The original hyperspectral image is of the University
of Pavia, Italy, with 610-by-340 pixels and 103 frequency
bands. For experiments, we took a sub-image of 250-by-250
pixels representing the south-east of the original image, il-
lustrated in Figure 1 (left). Ground truth information about 6
classes are included to train and test the classifiers, as given
in Table 2 and illustrated in Figure 1 (middle and right).

For experimentations, an off-the-shelf SVM classifier is
used, and applied here in a one-against-all scheme: binary
classifiers are trained on each class against the others, while
each test observation is assigned to the class with the maxi-
mum output. Preliminary experiments were conducted in or-
der to adjust the regularization term in SVM,C, by a search
over a logarithmic grid[10−3 103] with increment10−k. For
the angular Gaussian kernel, we need also to adjust the band-
width parameter,σ2, which is determined over a grid search
over[π/26 π/2], with increment of the formπ/2k.

Experiments were conducted on different kernels from the
class of angular kernels. Table 2 summarizes the results as-
sociated to three kernels, and give the misclassification error

Table 2. The 6 classes with the ratio of train/test samples, and
the misclassification error rates associated to angular kernels.

Class-name #train #test α α3 αG

� Asphalt 210 2238 7.9 % 6.3 % 11.3 %
� Meadow 188 4259 3.9 % 3.9 % 3.9 %
� Tree 144 889 4.0 % 4.2 % 3.8 %
� Metal sheet 129 647 0.1 % 0.1 % 0.2 %
� Brick 93 741 4.0 % 15 % 8.8 %
� Shadow 12 84 1.0 % 0.5 % 4.7 %

Overall error: 4.4 % 5.2 % 5.7 %



Fig. 1. The hyperspectral image (slice at mid spectral-band) considered in this paper (left), with the spatial distribution of the
training (middle) and test (right) datasets. The legend is indicated in Table 2.

rates. The polynomial kernel with degrees ranging from 2 to
10 was used, with the cubic oneα3 giving the best perfor-
mance. Both the exponential and the Gaussian kernels give
comparable results, given in the table for the optimal pair of
parameters(C, σ2). The angular kernel gives slightly better
classification performance for almost all the 6 classes, andan
overall better classification rate, even though the other kernels
have been tune to their best parameter values.

4. CONCLUSION

This paper has addressed the problem of classification of hy-
perspectral data, providing a new class of kernels for machine
learning. The analysis has been carried out on the angular
kernel, enumerating some of its properties and giving con-
nections to other kernels. Moreover, we showed that this is
a universal kernel, resulting into the consistency of the ob-
tained classifier. Preliminary experimental results indicate the
adequacy of such reproducing kernels for the classificationof
hyperspectral data.
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