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ABSTRACT independent of their dimension. Recently, SVM were inves-

tigated for hyperspectral data classification, and haveesro

Support vector machines have been investigated with SHICCER) provide high performance of detection and discriminatio

for hyperspeciral data classification. In this paper, we prolnitially, conventional kernels were used such as the Ganss

posela nkew klern\/ev to mgz\sure specftr_:zll smﬂan;y, Ca"edhthﬁemel [1, 2], or adjusted to select optimal spectral baBils [
f';tmgu ar ernet. i c prot\_/l € some ot 11s p"roper Ies, S;J.C a5r even combined using spatial and spectral information [4]
IS Invariance to iumination energy, as wetl as connacio Taking into account the spectral signature concept with an

previous work. Furthermore, we show that the performanczlvariance to overall energy (e.g. illuminations), thectra

?faclgssme_r aslfoua':e_d tt?] the angu!zr kerlr_lel\lli Cgmmrab ngle [5] as a measure of distance has been adapted to operate
o the Gaussian kernel, in the senseioiversality We derive | =~ cio1 kernel in 6, 7, 8].

a class of kernels based on the angular kernel, and study the In this paper, we propose tiaagular kernel a new mea-

performance on an urban classification task. sure of similarity between two spectra which is insensitive
Index Terms— Hyperspectral data, spectral angle, SVM, their energies. We provide some of its properties and connec

reproducing kernel, machine learning tions to previous work. Performance associated to thisétern

are studied in the light of theniversalityproperty, comparing

it to the consistency well-known kernels such as the clabsic

Gaussian kernel. We derive a class of kernels based on the

Hvperspectral images are now widelv available. owing to theangular kernel, and illustrate their performance on a rgal h
ypersp 9 y ' 9 rtarspectral image for classification of urban data. Butiggfo

development of remote sensing sensors with an improveme : :
. : : . . we review the concept of kernel-based machines for hyper-
in both spectral and spatial resolutions. For instancboaire o

spectral data classification.

sensors provide hyperspectral images with more than a hun-
dred spectral bands and a spatial resolution up to one me- .
ter per pixel. Such resolution allows classification of urba 1-1- Kernel-based machines for hyperspectral data

structures by virtue of, on the one hand the spatial visualpioneered by Vapnik's SVM [9], kernel-based machines have
perception, and on the other the spectral physical-featureprgyen to be successful in many pattern recognition proslem
Finer resolution provides an increase in the dimensignalitTpe key issue behind the high generalization ability of SVM
of the processed data, allowing for a better discriminatiols maintained by a complexity control of the solution, tun-
be_tween different classes of data,_ e.g. between treess,roa@lue by a regularization parameter (often denat@dvhich
bricks, etc. Furthermore, only a limited set of observation ¢onirols the tradeoff between the model simplicity and the fi
with labels is available. However, constructing a clasaific ess to the training data. Furthermore, a central chaisiiter
tion rule based on a small training set in a high dimensionakf these machines is that they can be expressed in terms of
space is an ill-posed problem. inner products of input data. Replacing these inner praduct
Kernel-based methods provide the opportunity to overyth areproducing kerneprovides an efficient way to implic-
come these problems, with the Support Vector Machinegy map the data into a high, even infinite, dimensional spac
(SVM) which take advantage of the combination of the regand apply the original algorithm in this space. Hence, perfo
ularized structure of the decision rule and the elegant éise ¢nance depends crucially on the chosen reproducing kernel.
a reproducing kernel to measure the similarity between, data By Mercer's theorem, reproducing kernels are positive

The authors wish fo thank the University of Pavia and the igSe semi-definite functions, hence can be expressed as an inner

project, for providing the data which made this work possimnd Prof. ~ Productin a high'dimenSional feature space. An easy way
Paolo Gamba for sharing such data. to construct valid (reproducing) kernels is to apply rules f

1. INTRODUCTION




for any pair(z;,z;) € X2. This kernel corresponds to a
monotonic increasing transformation of the normalizeddin
kernel, with values ranging betweeri2 andr.

Table 1. Some simple rules for engineering a valid kernel
from available ones, witf¥;, c € IR, ando € R.

Rule Expression N ] o .
R1. Linear combinations(z;, @) = >, Bk (i, ;) Proposition 1. The angular kernel defined i{8) is a valid
R2. Positive Offset k(xg, ) = k1(zi, x5) + ¢ reproducing kernel.
R3. Product k(xs, ) = [, wr (i, x5) Proof. To prove this, recall from trigonometric identities the
R4. Exponential k(@i ;) = exp (25 ki (@i, T;)) expansion of therccos function into an infinite series:
R5. Normalization  k(z;,x;) = o (1) m .

V(@2 k() ,2;) arccosz = o —arcsinz
o . . _ T i _CRY e
engineering more complicated kernels from simple ones. ) 22k (k1)2(2k + 1) ’
k=0

Some basis rules are enumerated in Table 1. The first three T _ _ _
rules can be combined into the rule: a positive-coefficientor any|z| < 1. By substitutingz with the normalized linear
polynomial of a reproducing kernel is a valid one. Thesekernel, we obtain the expansion of the angular kernel:

rules allow to generate most well-known kernels from the r & (2k)! (@i, @;) 2k+1
linear kernel(z;, z;). For instance applying rule R3, or a(z;,x;) = 5+ Z )22k 1 1) (”m_ﬂ";_”)
combining rules R2 and R3, withy(x;, ;) = (z;,x;) k=0 ' el

gives respectively the homogeneous and inhomogeneous (4)

polynomial kernels, while rule R5 provides the normalized! NiS €xpansionis a positive-coefficient polynomial of tioe-n
linear kernel(z;, x;)/||z;| |=;|. The exponential kernel malized linear kernel, resulting from rules R1, R2, and R3.

exp(L (z;,@,)) results from rule R4, while the Gaussian ThUS: the angular kernelis a valid reproducing kernel. OJ

| : ) o _
kernelexp(— 5oz [l@: — ‘BJj”Q) is obtained from normalizing Therefore, one can use the angular kernel with any kernel-
the exponential kern_el with rule R5. based learning machine, in order to adapt them for (hyper-)

In order to take into account the nature of spectral CharSpectraI data. Next, we give some insights on the geometric

acteristics in the hyperspectral data, the spectral angle [ structure of the feature space associated to the angulselker
as a measure of distance is extensively used in the litesatur
t_hanks_to |ts.|nvar|ance to the spectral energy, e.g. ilhani 2.1. Properties of the angular kernel and its feature space
tion. It is defined between two specttaandx; as
Before proceeding, we establish the connection between the
0(x;, ;) = arccos ( (i, ;) ) , (1)  angular kernel and the spectral angle defined in (1), therlatt
[EAINIEA being a distance. For this purpose, recall the trigonometri

where]| - || is the Euclidean distance arid ) its inner prod-  'dentityarccos(—u) = m —arccos(u). Thus, we have

uct. In order to provide a kernel based on this measure, most alxi, zj) =7 — 0(x;, ;). (5)

work conS|d(_er f as a distance, and ada_pt any d'Stance'bas_eﬂwis equivalence will be useful throughout this paper.
kernel for .th's purpose [6]. The most investigated kernel is The space associated to the angular kernel has a very rich
the Gaussian kernel [8], of the form structure. From the expansion (4), it is obvious that the di-

K@i, ;) = exp (— 522 0(ms, ;) , ) mens_ion of the feat_ure space i_s infinite. lggt) de_notes th_e
map induced by this reproducing kernel, mapping the input
or substituting the angle with its square value in [7]. space to the feature space, i¢ge: X — H. The norm of the
image of any mapped data is
2. THE ANGULAR KERNEL H¢($z‘)|\3{ = afx;, x;) = arccos (—1) = 7.

Since each spectrum is positive by nature, as well as the ratil herefore, aII- data of the input.space are mapped °Qt° the
in (1), all spectra lie in the positive orthdntWe define in ~ SPhere of radiug/7. Moreover, sincex(x;, ;) > 0 on X,
this orthant, denoted hereafter B, the angular kernel as a the images lie in the positive orthant. The distance is define

similarity measure between two spectra, with as the norm of the difference, with its square value
(x;, ;) p(xi) — ¢(x;)|F, = 2 (7 — ez, 2)) = 20(zi, ),
a(z;, ;) = arccos (__”miI ||mj|) ' (3) where the last equality follows from (5). In other words, the

_ square distance is equal to twice the spectral angle. Since
1In fact, they use the absolute value of the spectral angleveder, this

quantity is nonnegative for (positive-value) spectrabdat a(wi{/\:fi) ? [ﬂ|’<2 ,ﬂ]’ SUChda dISJanCG ZII_Sl ufpperdbounded gy
2An orthant is the analogue in high dimensional spaces of drgu&in VT vere er the interested reader to [11] for a deeper under-
the plane or an octant in three dimensions. standing of the geometry of the feature space.



2.2. Performance associated to the angular kernel It is worth noting that it is more convenient to uaagular

All th i ided so far do not di inf values for the bandwidth parametet, for instancer? = =
€S€ properties provided so far do not give any INNorMay, yjqp, resyits into a kernel with values withfiye e].

tion about the performance associated to the use of the angu- In order to construct the equivalent of the Gaussian kernel

lar kernel in machine learning, 9. SV.M for classmcatlon.f r the class of angular kernels, we apply the normalization
Kernels based on the exponential function are the most usefa R5 to the above exponential kernel. We obtain

ones, such as the Gaussian and exponential kernels. The per-
formance associated to these kernels is often assigneelito th
expansion in terms of an infinite series of monomials, with \/ae(a;i, x;) ae(xj, x;)

fast falling weightings. The angular kernel shares wittséhe exp (— & (1 — al@:, z;)))

kernels such a property, as given in the expansion (4), and ”12 e

thus is likely to give comparable performance. = exp (—z0(zi z;)))

The gener_alization abilities of machine learning classifie_ where the identity (5) is applied. The resulting kernel is
of SVM type, independent of the learning scheme, are studiegyivalent to the Gaussian kernel based on the spectra angl
in [12], using the concept ainiversalkernels. The authors () and extensively used in the literature on hyperspkctra
show that there exists a certain class of kernels that are cogaig |n other words, the angular kernel (3) can be considere

sis_tent for a large class _of C_Iassific_ation problems, p_rmrid as alinear counterpart of the Gaussian kernel (2).
suitably chosen regularization. This class of so-callddarn

sal kernels, includes the Gaussian and the exponentiadlsern
This is formalized here for the angular kernel.

Qe (i, T))

O‘G(mi’mj) =

3. EXPERIMENTAL RESULTS

Proposition 2. The angular kernel is a universal kernel on Data sets are taken with the ROSIS-03 (Reflective Opti-
every compact subset af cal System Imaging Spectrometer) provided by the HySenS

project. The original hyperspectral image is of the Uniitgrs
Sketch of proofFrom (4), the angular kernel takes the form of payia, ltaly, with 610-by-340 pixels and 103 frequency
oo & bands. For experiments, we took a sub-image of 250-by-250
o, xj) = Zak (M) 7 pixels representing the south-east of the original imalge, i
| lustrated in Figure 1 (left). Ground truth information abéu
_ classes are included to train and test the classifiers, as giv
with a; > 0 forall & > 0. Due to [12, Corollary 10], we get jn Taple 2 and illustrated in Figure 1 (middle and right).
the universality of the kernel. - For experimentations, an off-the-shelf SVM classifier is

The universality of the angular kernel means that the funcysed' and applied here in a one-against-all scheme: binary

tions of its associated feature space are capable of approﬁlass'f'ers at:e tram_ed (_)n ea(?h CIZSS agalnlst the .o rt}h(;rke Wh'.
mating all continuous functions on compact subset¥'in each test observation Is assigned to the class with the maxi-

mum output. Preliminary experiments were conducted in or-
der to adjust the regularization term in SVKI, by a search
over a logarithmic grid10~3 10°] with incrementl0—*. For

In previous section, we compared the proposed kernel te claghe angular Gaussian kernel, we need also to adjust the band-
sical Gaussian and exponential kernels, despite the fatt thwidth parameterg?, which is determined over a grid search
the angular kernel has no tunable parameter. This propergver[r/2° 7 /2], with increment of the formr/2".

may be advantageousy since we do not need a tuning Step to EXperimentS were conducted on different kernels from the
adapt the kernel to the problem under consideration. Nexglass of angular kernels. Table 2 summarizes the results as-
we provide a class of kernels (with tunable parameters)baséociated to three kernels, and give the misclassificatioor er

on the angular kernel, following the same scheme provided in

k=0

2.3. Aclass of angular kernels

Section 1.1.
The (homogeneous) p0|ynomia| kernel associated to th@ab'e 2. The 6 classes with the ratio of train/test samples, and
angular kernel takes the form the misclassification error rates associated to angulaeker
Class-name #train #test « o3 ag
oap(xi, x;) = (a(z, ;)" Asphalt 210 223§ 79% 63% 11.3%
) . Meadow 188 4259 3.9% 3.9% 3.9%
forp € N+. An mhomogeneopus counterparF _of this kernel| w Tree 144 839l 40% 42% 3.8%
can be given b)(a(a:i,:c?») + ¢)”, for any pos_|t|vec. The Metal sheet 129 6471l 01% 01% 02%
exponential kernel is defined as the exponential of the angul|| w Brick 93 7241 | 40% 15% 8.8%
kernel, up to a multiplicative bandwidth parameter, namely || w shadow 12 84l 1.0% 05% 4.7%
o (@i, ) = exp (Lalzs, ;). Overallerror:|| 44% 52% 57%



A

Fig. 1. The hyperspectral image (slice at mid spectral-band)idensd in this paper (left), with the spatial distributiohtloe
training (middle) and test (right) datasets. The legenddsciated in Table 2.

rates. The polynomial kernel with degrees ranging from 2 to [4] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-

10 was used, with the cubic onreg giving the best perfor-

mance. Both the exponential and the Gaussian kernels give

comparable results, given in the table for the optimal p&ir o

parameter$C, o). The angular kernel gives slightly better [5]

classification performance for almost all the 6 classes,zand

overall better classification rate, even though the otherdds
have been tune to their best parameter values.

4. CONCLUSION

[6]

This paper has addressed the problem of classification of hy-

perspectral data, providing a new class of kernels for nmechi

[7]

learning. The analysis has been carried out on the angular
kernel, enumerating some of its properties and giving con-
nections to other kernels. Moreover, we showed that this is
a universal kernelresulting into the consistency of the ob- [8]

tained classifier. Preliminary experimental results intBdhe

adequacy of such reproducing kernels for the classification

hyperspectral data.
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