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(1)Laboratoire Fizeau, Université de Nice Sophia-Antipolis, France

(2)Institut Charles Delaunay, Université de Technologie de Troyes, France
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Abstract—In hyperspectral images, pixels are mixtures of
spectral components associated to pure materials. Although the
linear mixture model is the most studied case, nonlinear models
have been taken into consideration to overcome some limitations
of the linear model. In this paper, nonlinear hyperspectral un-
mixing problem is studied through kernel-based learning theory.
Endmember components at each band are mapped implicitly in a
high feature space, in order to address the nonlinear interaction
of photons. Experiment results with both synthetic and real
images illustrate the effectiveness of the proposed scheme.

I. I NTRODUCTION

By providing images with a large number of spectral bands,
hyperspectral imagery has been applied with success to a
large number of areas, as it allows to obtain more accurate
and detailed information than other types of remotely sensed
techniques. It has been applied to a number of areas, including
environment, land use and agricultural monitoring.

In hyperspectral imagery, each pixel is a mixture of spectral
components associated to a number of pure materials, often
present in the scene [1]. The unmixing problem consists
of identifying the pure materials, the so-called endmembers,
and estimating their contributions (or abundances). The linear
mixture model has been widely studied due to its simple
physical interpretation and its analytically tractable solution.
Although the linear mixture model has several advantages,
there are many situations, involving multiple light scattering
effects, which requires nonlinear mixture analysis. Researchers
have proposed several unmixing methods to addressr nonlinear
mixtures. In [2], [3], the authors designed neural networksfor
unmixing nonlinearly mixed pixels. However, these methods
require their networks to be trained by training data and the
quality of training data may affect the performance notably.
In [4], a nonlinear unmixing algorithm based on Bayesian
inference was proposed. This method has a high computational
complexity and it is dedicated to the bilinear model. In [5],the
researchers extended the endmember matrix with cross terms
of pure signatures to model the light scattering on different
materials. However it remains difficult to identify the number
and the elements involved in the cross terms.

In the machine learning community, kernel-based algo-
rithms in Hilbert space have been a topic of considerable

interest and have gained notable success to deal with nonlinear
problems in various applications. Kernel methods have been
studied for classification and detection problems for hyper-
spectral images [6], [7]. Kernel-based nonlinear unmixingap-
proaches have also been investigated [8], [9], [10], by deriving
nonlinear algorithms based on linear ones thanks to the kernel
trick. Kernels are however applied to the spectral signature
of each pure component, as a whole, and independently of
interactions between materials, thus operating as nonlinear
distortion functions.

In this paper, we formulate a new paradigm where each
kernel is applied at a given wavelength, thus combining the
contributions of each endmember via a nonlinear mixing
rule. This scheme thus has a clear physical interpretation.
The abundances can be determined by solving a constrained
kernel regression problem. Computer simulations will show
the effectiveness of the proposed approach.

II. N ONLINEAR MIXTURE MODELS

Suppose thatL is the number of spectral bands. Letr =

[r1, r2, . . . , rL]
⊤ be anL× 1 observed column pixel which is

a mixture ofR endmembers corrupted by an additive noise.
Assume thatM is theL × R target endmember matrix de-
noted by[m1,m2, . . . ,mR] with each columnmi a material
signature. For the sake of convenience in the following we
also denote theℓth row of M, namely, the signatures of the
ℓth wavelength band, bym⊤

λℓ
. Let α = [α1, α2, ..., αR]

⊤ be
aR× 1 abundance column vector associated with the pixelr.

There are muliple situations where light scattering effects
can be observed. For instance, multiple scattering effectscan
occur on complex vegetated surfaces where it is assumed that
incident solar radiation is scattered by the scene through mul-
tiple bounces involving several endmembers. Bilinear mixture
models account for the presence of multiple photon bounces
by introducing additional interaction terms in the linear model.
The generalized binlinear model studied in [4] assumes that
the observed pixel can be expressed as

r = Mα+

R−1
∑

i=1

R
∑

j=i+1

γijαiαjmi ⊗mj + n (1)



with n the noise vector and⊗ the Hadamard product. The
following constraints are considered for the parameters

αi ≥ 0, ∀i ∈ i, . . . , R and
R
∑

i=1

αi = 1

and0 ≤ γij ≤ 1.
If the components of interest are in an intimate association,

light interacts with more than one component as it is multiply
scattered. Hapke developed a bidirectional reflectance model
based on the fundamentals principles of radiative transfer
theory [11]. This model is usually referred to as the intimate
mixture model. The reflectance at a given wavelength is
approximately given by

r ≈ w

4(µ0 + µs)
H(w, µ0)H(w, µs) (2)

wherew is the average single-scattering ambedo,µ0 is the
cosine of the angle of emergence,µs is the cosine angle of
incidence, andH is Chandrasekhar’s function for isotropic
scattering. The average single-scattering albedo of a homoge-
neous surface composed by large spherical particles is

w =
R
∑

i=1

wi
Gi/(ρiDi)

∑R
j=1Gj/(ρjDj)

whereGi is the mass fraction for materiali,Di is the diameter
of the particles of materiali, ρi is the solid density of the
particles of materiali, andwi is the single-scattering albedo
of material i. Their abundances can be estimated from the
relative geometric cross sectionαi =

Mi/(ρiDi)∑
j
Mj/(ρjDj)

. Note that
the measures must be non-negative and sum-to-one similarly
to the constraints in linear mixing model.

III. K ERNEL BASED NONLINEAR ANALYSIS OF

HYPERSPECTRAL IMAGES

A. Presentation of the method

Considering the linear mixing model where an observed
pixel is a linear combination of the endmembers weighted by
fractional abundances, each pixel is given by

r = Mα+ n (3)

We estimate the abundance vector by minimizing the quadratic
cost function

J(α) = ‖r −Mα‖2

=

L
∑

ℓ=1

‖rℓ −α⊤mλℓ‖2 (4)

under the non-negativity and sum-to-one constraints. Now
consider a general mixing mechanism specified by

r = F(α,M) + n (5)

whereF is an unknown nonlinear function that defines the
interaction parameterized byM and α. This requires us to
consider a more general problem of the form

ψ∗ = argmin
ψ∈Hψ

L
∑

ℓ=1

(rℓ − ψ(α,mλℓ))
2 (6)

whereψ is element of the functional spaceHψ.
In order to extract the fraction of the pure endmembers, we

specify the functionψ as follows

ψ(α,mλℓ) = α⊤mλℓ + ϕ(mλℓ) (7)

whereϕ is an element of the functional spaceHϕ. This means
that the mixture mechanism consists of a linear mixing and
some kind of nonlinear fluctuation defined byϕ(·). Let Hϕ

be a reproducing kernel Hilbert space (RKHS) of real-valued
function on a compactM and 〈·, ·〉 be the inner product in
this space. We denoteκϕ : M × M → IR as the kernel
function of this space, which satisfies the reproducing property
ϕ(mλ) = 〈ϕ(·), κϕ(·,mλ)〉 for every functionϕ ∈ Hϕ and
mλ ∈ M. It can be found that the functional spaceHψ of
(7) is also a RKHS whose kernel function is

κψ(mλℓ ,mλp) = m⊤
λℓ
mλp + κϕ(mλℓ ,mλp) (8)

By virtue of the Riesz representation theorem, the function
ψ(·) of Hψ minimizing (6) can be written as a kernel ex-
pansion in terms of available data, namely, the endmember
components at each wavelength

ψ(·) =
L
∑

ℓ=1

βℓκψ(·,mλℓ) (9)

Replacing this expansion in (6), it can be shown the problem
becomes linear with respect to the parameters to estimate

β∗ = arg min
β∈IRL

‖r −Kψβ‖2 (10)

where Kψ is the Gram matrix whose(ℓ, p)-th element is
κψ(mλℓ ,mλp). With (8), it is can be found that

Kψ = MM
⊤ +Kϕ

whereKϕ is the Gram matrix corresponding to the nonlinear
mapϕ. The pixel vector can be thus reconstructed by

r̂ = Kψβ
∗

= M(M⊤β∗) +Kϕβ
∗

Comparing this expression with (7), it can be observed that the
second termKϕβ

∗ approximates the nonlinear effect defined
by ϕ(·). The first term, namely, the linear component, allows
us to determine the abundance vectorα∗ with

α∗ = M
⊤β∗ (11)



As abundances are determined in this form, taking the non-
negativity and sum-to-one constraints into considerationin this
context yields

M
⊤β ≥ 0

1
⊤(M⊤β) = 1

where1 is anR× 1 vector of ones.
The whole optimization problem is now expressed as

min
β

‖r −Kψβ‖2 (12)

subject to M
⊤β ≥ 0 (13)

1
⊤(M⊤β) = 1 (14)

Onceβ∗ is calculated, the abundances can be estimated by
(11). The problem defined by (12) to (14) is a quadratic
programming problem with both equality and inequality con-
straints. Numerous candidate methods can be found to solve
this problem and determineβ∗, as presented in [12], [13]. In
this paper, we do not focus our interests on detailed solution
approaches of this optimization problem.

B. Kernel selection and interpretation

The kernelκϕ is an important element that should be
defined in this approach and it modelizes the nonlinearity in
the mixture model. There is no limit in the choice of this kernel
function provided thatκϕ is an inner product in the given
Hilbert space. Note that it is not necessary to know explicitly
the nonlinear mapϕ. However it is possible to choose a kernel
which is closely associated to the application or to the inherent
mixing model.

A widely used kernel in machine learning community is the
Gaussian kernelκ(mλℓ ,mλp) = exp(−‖mλℓ −mλp‖2/σ2)

with bandwidthσ. Some well-known kernels are homogeneous
polynomial kernelsκ(mλℓ ,mλp) = 〈mλℓ ,mλp〉q. Polyno-
mial kernels map the input data into a finite dimensional
polynomial space. It can be noticed that the second-order
polynomial kernel (q = 2) is tightly related to the bilinear
mixture model. Moreover, a higher order polynomial implies
that multiple scatters between materials is considered.

In what follows, we shall illustrate the relation between
selection ofκϕ and physical models using a simple example.
Consider the case where there are three endmembers in the
scene and the generalized bilinear mixture model is the mixing
mechanism. A pixel is thus expressed by [4]

r = Mα+ γ12α1α2 m1 ⊗m2 + γ13α1α3 m1 ⊗m3

+ γ23α2α3 m2 ⊗m3 (15)

with constraints

α1, α2 andα3 ≥ 0
3

∑

i=1

αi = 1

where γ12, γ13 and γ23 are additional attenuation param-
eters, and⊗ denotes the Hadamard product. In this case
suppose that the second-order homogeneous polynomial kernel
is chosen for defining the functional spaceHϕ, namely,
κϕ(mλℓ ,mλp) = 〈mλℓ ,mλp〉2, which can be written in an
inner product form

κϕ(mλℓ ,mλp)

=
〈

(m2
λℓ,1 , m

2
λℓ,2 , m

2
λℓ,3 ,

√
2mλℓ,1mλℓ,2 ,√

2mλℓ,1mλi,3 ,
√
2mλℓ,2mλℓ,3),

(m2
λp,1 , m

2
λp,2 , m

2
λp,3 ,

√
2mλp,1mλp,2 ,√

2mλp,1mλp,3 ,
√
2mλp,2mλp,3)

〉

wheremλℓ,i is the ith component ofmλℓ . Thus the feature
map from input space to the high dimensional space is then
described by

Φ : mλℓ = (mλℓ,1 ,mλℓ,2 ,mλℓ,3)

 Φ(mλℓ) = (m2
λℓ,1

, m2
λℓ,2

, m2
λℓ,3

,
√
2mλℓ,1mλv,2 ,√

2mλℓ,1mλℓ,3 ,
√
2mλℓ,2mλℓ,3) ∈ IR6

The basis of this functional space is thus closely related to
the bilinear model defined by (15) except for the additional
auto-terms and the coefficient

√
2.

From this example it is clear that the kernelκϕ(·, ·) rep-
resents the nonlinear interactions between different material
signatures. However, thanks to the kernel, we do not need to
map explicitly the original input data into the high dimensional
space. This allows us to consider complex photon interaction
mechanism just by modifying the kernelκϕ. For example,
a polynomial kernel with orderq = 4 means that more
photon reflectance is modeled. Compared with the method
in [5], which inserts products of pure material signatures as
new endmembers, we do not need to extend the endmember
matrix by adding such terms. The endmember matrix does not
suffer from the problem of choosing cross terms and of large
expansion in dimension.

IV. EXPERIMENT RESULTS

A. Experiments with synthetic images

Firstly, we study the proposed algorithm using synthetic
data, generated by the bilinear mixture model and the intimate
mixture model using three pure materials. We consider three
mineral materials with spectral signatures from the USGC
library. These spectra consist of480 contiguous bands ranging
from 0.35 to 2.5µm (See Fig. 1). Two hyperspectral images
composed of 2500 pixels were generated respectively with
these two models. All the fractions were subject to nonnega-
tivity and constant sum-to-one constraints. Both images were
corrupted by additive noise with SNR equal to20 dB and30
dB. The Gaussian kernel function was used for the proposed
algorithm and preliminary experiments were conducted to
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Fig. 1. Three endmembers used in the simulation

finally set the kernel bandwidthσ = 2. For both models,
we compared the results of the proposed approach with the
following three linear/nonlinear algorithms:

1) Fully constrained least square method in [14] (denoted
by FCLS). This method was derived based on linear
mixture model and provides the optimal solution in the
linear sense.

2) Nonlinear method in [5] (denoted by NLCT). This
method extends the endmember matrix with cross terms
of pure signatures, to model the light scatter effects.
In the experiment, we added all the second-order cross
terms so that it corresponds to the bilinear model.

3) Kernel fully constrained least square method in [9]
(denoted by KFCLS). This is a kernel method which
replaces the inner products in the linear mixture problem
by kernel functions.

The root mean square error

RMSE=

√

1

LR

∑

jk

‖αij − α̂ij‖2

was used to compare these algorithms. The simulation results
of these algorithm are reported in Table I.

TABLE I
RMSECOMPARISONS

SNR = 30 dB SNR = 20 dB
bilinear intimate bilinear intimate

FCLS [14] 0.1218 0.1389 0.1256 0.1421
NLCT [5] 0.0456 0.1356 0.0696 0.1396
KFCLS [9] 0.1608 0.1732 0.1863 0.1800
Proposed 0.0295 0.0711 0.0551 0.0860

As the method FCLS was initially derived for linear mixture
models, it has a relatively large RMSE compared with the
other nonlinear methods. With added second order cross terms,
NLCT reduces notably the RMSE for the bilinear mixture
model. However, with the intimate model, it marginally im-
proves the performance. This means it does not match this

model. KFCLS, which maps signatures of different material
into a high dimensional space, performs even worth than
the linear method. Compared with all these linear/nonlinear
methods, the proposed approach clearly shows a notable
improvement of the RMSE.

B. Experiments with a real image

Let us now study these algorithms with a real image,
the scene of the Cuprite mining district (Nevada, USA),
captured by the airbone visible infrared imaging spectrometer
(AVIRIS). A sub-image of size81 × 101 pixels was chosen
here to evaluate the proposed algorithm. The averaged spectral
angle betweenr and reconstructed̂r was used

SA =
1

N

N
∑

n=1

θ(rn, r̂n)

whereN is the total number of pixels and

θ(r, r̂) = cos−1

( 〈r, r̂〉
‖r‖‖r̂‖

)

In this experiment, we used VCA algorithm [15] to extract the
endmembers, wasR = 3 andR = 5 for illustration purpose.
The results are shown in the Table II.

TABLE II
SPECTRAL ANGLE COMPARISONS

R = 3 R = 5

FCLS [14] 0.0594 0.0233
NLCT [5] 0.0591 0.0213
KFCLS [9] - -
Proposed 0.0281 0.0183

Note that the results for KFCLS can not be listed as there
is no reconstruction model for this kernel method scheme.
Compared with the others, the proposed algorithm has the
lowest reconstruction errors for3 and 5 endmembers. The
estimated abundances of these four algorithms are illustrated
in Fig. 2.
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