N
N

N

HAL

open science

A novel kernel-based nonlinear unmixing scheme of

hyperspectral images
Jie Chen, Cédric Richard, Paul Honeine

» To cite this version:

Jie Chen, Cédric Richard, Paul Honeine. A novel kernel-based nonlinear unmixing scheme of hyper-
spectral images. Proc. 45th Asilomar Conference on Signals, Systems and Computers (ASILOMAR),
2011, Pacific Grove (CA), USA, United States. pp.1898-1902, 10.1109/ACSSC.2011.6190353 . hal-
01966037

HAL Id: hal-01966037
https://hal.science/hal-01966037
Submitted on 27 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01966037
https://hal.archives-ouvertes.fr

A novel kernel-based nonlinear unmixing scheme of
hyperspectral images

Jie Chefi-?), Cédric Richartl), Paul Honeing)
(U Laboratoire Fizeau, Université de Nice Sophia-Antipdfisance
() Institut Charles Delaunay, Université de Technologie dey&s, France
E-mail: jie.chen@uitt.fr, cedric.richard@unice.fr, paoheine@utt.fr

Abstract—In hyperspectral images, pixels are mixtures of interest and have gained notable success to deal with mamlin
spectral components associated to pure materials. Althotigthe  problems in various applications. Kernel methods have been
linear mixture model is the most studied case, nonlinear moels studied for classification and detection problems for hyper

have been taken into consideration to overcome some limitains tral i 61 171, K b d i .
of the linear model. In this paper, nonlinear hyperspectral un- spectral images [6], [7]. Kernel-based nonlinear unmixapg

mixing problem is studied through kernel-based learning treory.  Proaches have also been investigated [8], [9], [10], byvifegi
Endmember components at each band are mapped implicitly in a nonlinear algorithms based on linear ones thanks to theskern

high feature space, in order to address the nonlinear interetion  trick. Kernels are however applied to the spectral sigmatur
of photons. Experiment results with both synthetic and real ¢ o450k pure component, as a whole, and independently of
images illustrate the effectiveness of the proposed scheme . . . . .
interactions between materials, thus operating as nanline
|. INTRODUCTION distortion functions.

By providing images with a large number of spectral bands, In this paper, we formulate a new paradigm where each
hyperspectral imagery has been applied with success tdkeanel is applied at a given wavelength, thus combining the
large number of areas, as it allows to obtain more accuraentributions of each endmember via a nonlinear mixing
and detailed information than other types of remotely seénseule. This scheme thus has a clear physical interpretation.
techniques. It has been applied to a number of areas, imgudThe abundances can be determined by solving a constrained
environment, land use and agricultural monitoring. kernel regression problem. Computer simulations will show

In hyperspectral imagery, each pixel is a mixture of spéctrine effectiveness of the proposed approach.
components associated to a number of pure materials, often
present in the scene [1]. The unmixing problem consists
of identifying the pure materials, the so-called endmermber Suppose thaf. is the number of spectral bands. Let=
and estimating their contributions (or abundances). Tineali [r1,72,...,7.]T be anL x 1 observed column pixel which is
mixture model has been widely studied due to its simpke mixture of R endmembers corrupted by an additive noise.
physical interpretation and its analytically tractabléuson. Assume thafM is the L x R target endmember matrix de-
Although the linear mixture model has several advantagemted by[mi,mo, ..., mpg] with each columnm; a material
there are many situations, involving multiple light scettg signature. For the sake of convenience in the following we
effects, which requires nonlinear mixture analysis. Reseas also denote thé!” row of M, namely, the signatures of the
have proposed several unmixing methods to addressr nanlin€” wavelength band, bynL. Leta = [ay,as,...,ag|" be
mixtures. In [2], [3], the authors designed neural netwddts a R x 1 abundance column vector associated with the pixel
unmixing nonlinearly mixed pixels. However, these methods There are muliple situations where light scattering effect
require their networks to be trained by training data and tlvan be observed. For instance, multiple scattering effeats
quality of training data may affect the performance notablgccur on complex vegetated surfaces where it is assumed that
In [4], a nonlinear unmixing algorithm based on Bayesiaimcident solar radiation is scattered by the scene througlh m
inference was proposed. This method has a high computétiotigle bounces involving several endmembers. Bilinear orixt
complexity and it is dedicated to the bilinear model. In B models account for the presence of multiple photon bounces
researchers extended the endmember matrix with cross tebysntroducing additional interaction terms in the lineawatel.
of pure signatures to model the light scattering on differeifhe generalized binlinear model studied in [4] assumes that
materials. However it remains difficult to identify the nuenb the observed pixel can be expressed as
and the elements involved in the cross terms. R-1 R

In the machine learning community, kernel-based algo- r=Ma + Z Z Vi m; @ m; +n (1)
rithms in Hilbert space have been a topic of considerable =1 j—it1

II. NONLINEAR MIXTURE MODELS



with n the noise vector anc the Hadamard product. Thewhere F is an unknown nonlinear function that defines the

following constraints are considered for the parameters  interaction parameterized byl and «. This requires us to

R consider a more general problem of the form

a;>0,Vici,...,R and » a;=1 L
i=1 Y* =argmin Yy _(ry — (a,my,))? (6)

and0 < Yij < 1. Ve =1

If the components of interest are in an intimate associatiomhere) is element of the functional spagé,.

light interacts with more than one component as it is mujtipl In order to extract the fraction of the pure endmembers, we

scattered. Hapke developed a bidirectional reflectanceemosgpecify the function) as follows

based on the fundamentals principles of radiative transfer

theory [11]. This model is usually referred to as the intinat v(a,my,) = a'my, +p(my,) ()

mixture model. The reflectance at a given wavelength \'/§I’1erego

] ) is an element of the functional spakk,. This means
approximately given by

that the mixture mechanism consists of a linear mixing and
~ w (2) Some kind of nonlinear fluctuation defined by-). Let #,,

r~———H(w, po) H(w, s
4(po + ps) (o0, o) H (0, 1) be a reproducing kernel Hilbert space (RKHS) of real-valued

wherew is the average single-scattering ambegdg,is the function on a compaci and (-,-) be the inner product in
cosine of the angle of emergenge, is the cosine angle of this space. We denote, : M x M — R as the kernel
incidence, andH is Chandrasekhar's function for isotropicfunction of this space, which satisfies the reproducing ertyp
scattering. The average single-scattering albedo of a gemo®(ma) = (¢(-), ki (-, my)) for every functiony € #,, and

neous surface composed by large spherical particles is ~ ™x € M. It can be found that the functional spagg, of
(7) is also a RKHS whose kernel function is

4 Gi/(piD;
w:Zw /(piDi)

3 _ T
Zf:l G;/(p;Dj) Ky(my, my,) = my,my, + Ke(my,,my,) (8)

=1
whered, is the mass fraction for materialD; is the diameter By virtue of the Riesz representation theorem, the function
of the particles of material, p; is the solid density of the ¥(*) of H, minimizing (6) can be written as a kernel ex-
particles of materiaf, andw; is the single-scattering albedoP@nsion in terms of available data, namely, the endmember
of materiali. Their abundances can be estimated from tf@mponents at each wavelength
relative geometric cross section = %. Note that L
the measures must be non-negative and sum-to-one similarly P() = Zﬂemp(nmxz) 9)
to the constraints in linear mixing model. =1

Replacing this expansion in (6), it can be shown the problem

1. K ERNEL BASED NONLINEAR ANALYSIS OF becomes linear with respect to the parameters to estimate

HYPERSPECTRAL IMAGES
* . _ 2
A. Presentation of the method B" = arg Jnin |r — Kyl (10)

Considering the linear mixing model where an observgghere K, is the Gram matrix whosé/, p)-th element is
pixel is a linear combination of the endmembers weighted t;af){p(wwmﬂ,lk ). With (8), it is can be found that
fractional abundances, each pixel is given by ’
Ky, =MM' +K,
r=Ma+n 3)
whereK,, is the Gram matrix corresponding to the nonlinear
cost function

r=Ky8"

J(a) = HT - Ma”2 _ M(MTﬂ*) + Kgaﬂ*

L
= Z lre — " my, |2 (4) Comparing this expression with (7), it can be observed tiat t
=1 second ternK, 3" approximates the nonlinear effect defined
under the non-negativity and sum-to-one constraints. Ndw ¢(-). The first term, namely, the linear component, allows
consider a general mixing mechanism specified by us to determine the abundance veatdr with

r=F(a,M)+n (5) o =M'g" (11)



As abundances are determined in this form, taking the nomhere ~12, 13 and 7,3 are additional attenuation param-
negativity and sum-to-one constraints into consideratidhis eters, and® denotes the Hadamard product. In this case
context yields suppose that the second-order homogeneous polynomiallkern
M3 > 0 is chosen for defining the functional spaéé,, namely,
- Ko(ma, my,) = <m>\e,mAp>2, which can be written in an
1M p)=1 inner product form
wherel is an R x 1 vector of ones.

L. K . /@p(mh,m)\p)
The whole optimization problem is now expressed as

_ 2 2 2
_<( o1 Mg o Mg g0 \/imMJm)\tz,za

min ||r — K, 8|2 (12)
B H v H \/im/\tz,1m>w,35\/im/\tz,zmktz,a)v
subjectto M3 > 0 (13) (m?2 . m? y m? . \/imxp M,
T T - P P, P, ’ ’
1'M'B)=1 (14) V2ma, yma, 5, V2ma, ma, )

Once B* is calculated, the abundances can be estimated \Weremk, is the " component ofm,,. Thus the feature
(11). The .problem deflr_1ed by (12) tp (14) ,'S a qgadratﬁap from’input space to the high dimensional space is then
programming problem with both equality and inequality CONYescribed by

straints. Numerous candidate methods can be found to solve

this problem and determing@*, as presented in [12], [13]. In D my, = (Mg, Mg, M)

this paper, we do not focus our interests on detailed solutio ., (i) = (mil . m2 mie i, ﬁmkeylm%m

A )
approaches of this optimization problem. N \/im:'z m, ) € R®
2,1 2,39 2,2 2,3

B. Kernel selection and interpretation ) ) ) )
The basis of this functional space is thus closely related to

The k.erne.l K 1S an impor.tant element that should. bG‘{he bilinear model defined by (15) except for the additional
defined in this approach and it modelizes the nonlinearity Nito-terms and the coefficient2

the mixture model. There is no limit in the choice of this kalrn

. . . . _ ) From this example it is clear that the kernel(-,-) rep-
function provided thats, is an inner product in the given

ib hat it K 7 resents the nonlinear interactions between different madte
Hilbert space. Note that it is not necessary to know eX'U"C'tsignatures. However, thanks to the kernel, we do not need to

thﬁ_ nr?!'lllnlear :napp. que\(/jer it r|1$ possl!ble.to choosi a.k(:]rne ap explicitly the original input data into the high dimeorsal
which'is closely associated to the application or to theriaht space. This allows us to consider complex photon intenactio

mixing model. ) ) _ ... mechanism just by modifying the kerngl,. For example,
A widely used kernel in machine learning community is thg polynomial kernel with orde; — 4 means that more

; _ _ _ 2/ .2
Ggrl:i&ag Kzrr;:k(;rer,mAﬁ)k_ eXpE( HmIA@ ";APH /%) photon reflectance is modeled. Compared with the method
with bandwidtho. Some well-known kernels are omogeneoyy [5], which inserts products of pure material signatures a

i — q -
polynomial kemelss(my,, my,) = (my,, m, )% Polyno- endmembers, we do not need to extend the endmember

mial kernels map the input data into a finite dImenSIonﬂllatrix by adding such terms. The endmember matrix does not

po:ynom!a: Epace;. It czn .be. nr(l)tllcedl tha; thehseg(_)lhd'ords‘?fffer from the problem of choosing cross terms and of large
polynomial kernel ¢ = 2) is tightly related to the bilinear expansion in dimension.

mixture model. Moreover, a higher order polynomial implies
that multiple scatters between materials is considered. IV. EXPERIMENT RESULTS
In what follows, we shall illustrate the relation betweemn Experiments with synthetic images

selection ofx,, and physical models using a simple example. Eirstly, we study the proposed algorithm using synthetic

Consider the case where there are three endmembers in hF o . o
. . . _ ._.dafa, generated by the bilinear mixture model and the iéma
scene and the generalized bilinear mixture model is thengixi

mechanism. A pixel is thus expressed by [4] m@xture model_ using_ three pure materials. We consider three
' mineral materials with spectral signatures from the USGC
r=Ma+ yai0 my @ ma + yi30103 My @ M3 library. These spectra consist 40 contiguous bands ranging
+ Yoz Qa3 e & T3 (15) from 0.35 to 2.5um (See Fig. 1). Two hyperspectral images
composed of 2500 pixels were generated respectively with

with constraints these two models. All the fractions were subject to nonnega-

aq, 00 andas > 0 tivity and constant sum-to-one constraints. Both imagesewe

3 corrupted by additive noise with SNR equal26 dB and30
Zai =1 dB. The Gaussian kernel function was used for the proposed
i=1 algorithm and preliminary experiments were conducted to



0.7 , ‘ : model. KFCLS, which maps signatures of different material
06l :Zfﬁgsa“, into a high dimensional space, performs even worth than
et the linear method. Compared with all these linear/nonlinea

methods, the proposed approach clearly shows a notable

improvement of the RMSE.

reflecance

B. Experiments with a real image

Let us now study these algorithms with a real image,
the scene of the Cuprite mining district (Nevada, USA),
oo : s 5 - captured by the airbone visible infrared imaging spectiteme
wavelength (um) (AVIRIS). A sub-image of size81 x 101 pixels was chosen
here to evaluate the proposed algorithm. The averagedrapect

angle betweem and reconstructedl was used

Fig. 1. Three endmembers used in the simulation

N
finally set the kernel bandwidter = 2. For both models, SA = % Ze(rn,m)
we compared the results of the proposed approach with the n=1
following three linear/nonlinear algorithms: where N is the total number of pixels and
1) Fully constrained least square method in [14] (denoted A o (7
by FCLS). This method was derived based on linear O(r,7) = cos (W)

mixture model and provides the optimal solution in th?n this experiment, we used VCA algorithm [15] to extract the

Ilnea_r SENse. _ _endmembers, wag = 3 and R = 5 for illustration purpose.
2) Nonlinear method in [5] (denoted by NLCT). Thls.l.he results are shown in the Table II.

method extends the endmember matrix with cross terms
of pure signatures, to model the light scatter effects. TABLE Il

. SPECTRAL ANGLE COMPARISONS
In the experiment, we added all the second-order cross
terms so that it corresponds to the bilinear model.

; : R=3[ R=
3) Kernel fully constrained least square method in [9] FCLS [14] 0.05934 0_02353
(denoted by KFCLS). This is a kernel method which NLCT [5] || 0.0591 | 0.0213

replaces the inner products in the linear mixture problem KFCLS [9] - -
. Proposed 0.0281 | 0.0183
by kernel functions.

The root mean square error

i Note that the results for KFCLS can not be listed as there

RMSE = \/ﬁz lloi; — G| is no reconstruction model for this kernel method scheme.
ik Compared with the others, the proposed algorithm has the

was used to compare these algorithms. The simulation sesiwest reconstruction errors fd¥ and 5 endmembers. The

of these algorithm are reported in Table 1. estimated abundances of these four algorithms are illastra
in Fig. 2.
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