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I. INTRODUCTION

Optimizing an objective function subject to constraints
is very common in statistical signal and image processing.
Constraints represent prior knowledge that may lead to proper
solutions, or may reduce the feasible space of solutions when
the problem is ill-conditioned. Non-negativity is probably one
of the most commonly used constraints. It is often imposed
on the parameters to estimate in order to avoid physically
absurd and uninterpretable results. Non-negative least-square
problems (NNLS) have been addressed in applications ranging
from image deblurring [1] to impulse response estimation [9].
Non-negative matrix factorization (NMF) [8], which is closely
related to blind deconvolution problems, have found direct
application in hyperspectral imaging [2].

A variety of methods have been proposed in the literature
to tackle the NNLS problem. Active set algorithm of Lawson
and Hanson [7] is a batch resolution technique for NNLS
problems, which has become a standard among the most
frequently used methods. Projected gradient methods [3], [10]
are based on successive projections on the feasible region.
Multiplicative algorithms are very popular to solve NMF
problems [6]. All these algorithms are however based on
batch processing, which is not suitable for online system
identification problems. In [4], [5], online system identification
subject to non-negativity constraints on the parameters to
estimate was addressed. A LMS-type algorithm, called non-
negative LMS algorithm (NN-LMS) was proposed to compute
solutions adaptively. It relies on stochastic gradient descent
combined with a fixed point iteration scheme to converge to
a solution that satisfies Karush-Kuhn-Tucker conditions.

During convergence of NN-LMS algorithm, it has been
observed that weights may have different convergence rates
and accuracy, especially those in the active set since they
become smaller and finally tend to zero as iterations proceed.
In this paper we introduce a modified NN-LMS algorithm
in order to alleviate these unbalanced convergence rates. We
also proposed analytical models to characterize the stochastic
behavior of this algorithm.

II. MODIFIED NN-LMS ALGORITHM

Consider an unknown system, only characterized by a set of
real-valued discrete-time responses to known stationary inputs.

The problem is to derive a transversal filter model

y(n) = α>x(n) + z(n), (1)

with α = [α1, α2, . . . , αN ]> the vector of model parameters,
and x(n) = [x(n), x(n−1), . . . , x(n−N+1)]> the observed
data vector. The input signal x(n) and the desired output
signal y(n) are assumed zero-mean stationary. Sequence z(n)
represents measurement noise and modeling errors. Due to
the inherent physical characteristics of systems under investi-
gation, the problem of identifying the optimum model can be
formalized as follows

αo = argmin
α
J(α)

subject to αi ≥ 0, ∀i,
(2)

with J(α) = E{[y(n) − α>x(n)]2}, and αo the solution of
the constrained optimization problem. The KKT conditions
at the optimum αo can be combined into the following
expression [4], [5]

αoi [−∇αJ(αo)]i = 0, (3)

where the extra minus sign is just used to make a gradient
descent of J(α) apparent. Applying a fixed-point iteration
strategy and using usual stochastic gradient approximations,
we obtain the NN-LMS algorithm [4], [5]

α(n+ 1) = α(n) + η e(n)Dα(n)x(n) (4)

where η is a positive step size that must be tuned to construct
a contraction scheme and to control the convergence rate.
Dα(n) stands for the diagonal matrix with diagonal entries
given by α(n), and e(n) = y(n) − α>(n)x(n). It is
interesting to note that the αi(n)’s in the second term of the
r.h.s of expression (4) are factors that modify the step size
along each axis. This results in different convergence rates
and accuracy for each component of α(n), especially for
the weights corresponding to the active set as they become
smaller through iterations and finally tend to zero. In order
to compensate this unbalance of convergence rates, we now
introduce the modified NN-LMS algorithm. Considering KKT
condition (3), we can equivalently write

[αoi ]
γ [−∇αJ(αo)]i = 0, (5)

with γ a positive real number. Implementing the fixed-point
iteration strategy with equation (5) and using instantaneous



estimates for the gradient leads us to the following algorithm

α(n+ 1) = α(n) + η e(n)Dx(n)α
γ(n) (6)

Without ambiguity αγ(n) denotes the exponential value γ
applied to each component of α(n). We recommend to specify
parameter γ in the form γ = p

q where p and q are both odd
numbers, and 0 < p ≤ q. The oddness of p and q preserves the
sign of αi(n) at each iteration. Although it can be shown that
weights are always non-negative thanks to an appropriate step
size, the fixed-point 0 can be reached by the left side 0− with
less strict step size selection. See [4] for more details with
NN-LMS. Just as the gamma correction in image processing,
an exponential value 0 < γ < 1 reduces the dynamic range of
parameter vector α(n). Each component αi(n) will be closer
to 1 no matter it is larger or smaller than 1.

III. ALGORITHM BEHAVIOR MODELING

Let us denote by α∗ the solution of the unconstrained least-
mean-square problem minαE{[y(n) − α>x(n)]2}. Defining
the weight-error vector by v(n) = α(n) − α∗, the update
equation (4) can be written as

v(n+ 1) = v(n) + η e(n)Dx(n)
(
v(n) +α∗

)γ
. (7)

It is assumed that z(n) is stationary, zero-mean and statis-
tically independent of any other signal, which implies that
E{z(n)Dx(n} = 0. After some calculation and approxima-
tion, the expected value of the weight vector error can be
expressed recursively by

E{v(n+ 1)} = E{v(n)} − ηDr(n)RxE{v(n)}
− ηDs(n) diag{RxE{v(n)}E{v>(n)}}.

(8)

where Dr(n) and Ds(n) are diagonal matrices with diagonal
entries defined by

rii(n) = (E{vi(n)}+α∗i )γ−γ (E{vi(n)}+α∗i )γ−1E{vi(n)}

sii(n) = γ (E{vi(n)}+ α∗i )
γ−1

We now briefly present the model for the stochastic behavior
of the second-order moments of the adaptive weights. As the
mean-square estimation error is expressed

E{e2(n)} = σ2
z + trace{RxK(n)}, (9)

we thus derive a recursion for K(n) = E{v(n)v>(n)} start-
ing from the weight error update equation (7). Premultiplying
equation (7) by its transpose, taking the expected value, and
using the statistical properties of z(n) leads us to a recursion
of the form

K(n+ 1) =K(n)

− ηP 1(n)K(n)− ηK(n)P>1 (n)

+ η2σ2
z P 2(n)

+ η2σ2
z (P 3(n) + P

>
3 (n)) + η2σ2

z P 4(n)

− η (P 5(n) + P
>
5 (n)) + η2P 6(n)

+ η2 (P 7(n) + P
>
7 (n))

+ η2P 8(n)

(10)

where P 1 to P 8 are functions of K(n), E{v(n)} and Rx.
Due to space constraints in the abstract, their expressions will
be given in the final paper.

We now present simulation examples to illustrate the accu-
racy of the first and second-order models derived in this paper.
We consider an example where the correlated inputs x(n) are
generated by the AR(1) model x(n) = 1

2 x(n−1)+w(n). The
noise w(n) is i.i.d. and drawn from a zero-mean Gaussian
distribution so that σ2

x = 1. Noise z(n) is drawn from a
Gaussian distribution with zero mean and σ2

z = 0.1. The
impulse response α∗ is given by

α∗ = [0.8 0.6 0.5 0.4 0.3 0.2 0.1 − 0.1 − 0.3 − 0.6]>

Note that it contains negative entries in order to better test the
behavior of the algorithm. The mean value E{αi(n)} of each
coefficient is shown in Figure 1 and the excess mean square
error Jemse = trace{RxK(n)} is shown in Figure 2. The
simulation curves (blue line) were obtained from Monte Carlo
simulation averaged over 100 realizations. The theoretical
curves (red line) were obtained from the models. One can
notice that all the curves are perfectly superimposed. We
then compare NN-LMS and modified NN-LMS with adjusted
parameters so that they reach the same steady state error. The
results are shown in the Figure 3. Unlike NN-LMS, whose
small weights converge more slowly, our modified NN-LMS
has more balanced first-order convergence rate. It also has
better second-order convergence performance than NN-LMS.
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Fig. 1. Convergence of the coefficients αi(n) for the modified NN-LMS, in the case of correlated input x(n). Two different step sizes are
considered: η = 10−2 on the left, and η = 3 ·10−3 on the right. The theoretical curves (red line) obtained from the model (8) and simulation
curves (blue line) are perfectly superimposed.
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Fig. 2. Corresponding convergence of Jemse(n) of the modified NN-LMS in these experiments. The theoretical curves (red line) were
obtained with the model (10).
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Fig. 3. Comparison of NN-LMS and modified NN-LMS. Left: first-order performance. The modified algorithm has a more balanced weight
convergence rate. Right: Excess mean square error.


