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A GRADIENT BASED METHOD FOR FULLY CONSTRAINED LEAST-SQUARE S
UNMIXING OF HYPERSPECTRAL IMAGES

Jie Chen', Cedric Richard', Henri Lanéri T, C&line Theys, Paul Honeiné

* Institut Charles Delaunay, Université de Technologie o®/@s, CNRS, STMR, Troyes, France
fUniversité de Nice Sophia-Antipolis, CNRS, Observataieda Cote d’Azur, Nice, France

ABSTRACT authors derive an iterative algorithm referred to as futipc

) o ) ) strained least square algorithm, which adopts the summéo-o
Linear unmixing of hyperspectral images is a popular apxonstraintin the signature matrix and then performs thieect
proach to determine and quantify materials in sensed iMset nonnegative least square algorithm of [2]. This method
ages. The linear unmixing problem is challenging becausgges not satisfy the full-additivity constraint exactipdathe
the abundances of materials to estimate have to satisfy Nnoggtive set method for non-negative least square includes su
negativity and full-additivity constraints. In this papeve  giantial computational complexity. In [3], another clags o
investigate an iterative algorithm that integrates these t algorithm is proposed where the full additivity constrat
requirements into the coefficient update process. The cormsyred by projecting estimates at each iteration.
straint§ are satisfied at_eagh iteration without using anlyiex. In this paper, we propose a gradient descent method which
operations such as projections. Moreover, the mean tr@nsiejoes not require any extra projection onto the space of con-
behavior of the weights is analyzed analytically, which hasyraints. It contains requirements for non-negativity &t
never been seen for other algorithms in hyperspectral imaggqitivity into the coefficient update process. These two-co
unmixing. Simulation results illustrate the effectives@s  gyaints are always fulfilled. Moreover, we derive an arialyt

the proposed algorithm and the accuracy of the model. cal analysis of the mean weight transient behavior of the pro
Index Terms— Hyperspectral imagery, linear unmixing, Posed algorithm. To the best of our knowledge, this is unusua
estimation under constraints in the hyperspectral imaging community. Simulation result

illustrate the effectiveness of the proposed algorithm taed
accuracy of the model.
1. INTRODUCTION
. : 2. LINEAR MIXTURE MODEL
Hyperspectralimagery has been applied to a number of areas,
including the environment, land use and agricultural nanit
ing. It can be used for more accurate and detailed informatio
extraction than other types of remotely sensed data, asisnag
provide rich spectral information to identify and distingfu

Linear spectral mixing model is largely used in hypersgctr
imagery for determining and quantifying materials in sehse
images. The physical assumption underlying this model is
between spectrally similar materials. This technologyreas that each incident photon interacts with one Earth surface
ceived considerable attention ' comppnent _onIy, and reflected spectra that are collected are
i ' o ) not mixed with one another. Ldt be the number of spectral
In hyperspectral imagery, a pixel is a mixture of SP€Chands, and: — [r1,72,...,72] T anL-by-1 column pixel of

tral components associated with a number of pure materialg, hyperspectral image. Assume thdt is the L-by-R tar-
presentin the scene. Although nonlinear mixture analyasss h get matrix of endmembers, denoted o1, m2 mg

be_gqnto_fmd r_10ve| appl_lcat|0ns, linear spectral_m|xturaelan where each columm; represents an endmember signature.
ysis is still a widely studied approach to determine and quan ot o — a1, s ar]T be aR-by-1 abundance column

tify mate_rlals in s_ensed images, due to its simpler phymeal vector associated with the pixel The linear mixing model
terpretation. In linear unmixing models, measured pixals ¢ is given by

be decomposed as linear combinations of constituent spectr
the so-called endmembers, weighted by corresponding frac-
tions named abundances. A key aspect in determining abuaheren is an additive white noise sequence. In order to es-
dances is how to deal with the physical constraints, whichimate the abundance vector, we consider here the least-
are non-negativity and full-additivity. This problem iswis squares cost function

ally resolved by minimizing a cost function such as the least

square criterion subject to these two constraints. In [i8, t Ja)=(r—Ma)" (r — M) 2

r=Ma+n (1)



To be physically meaningful, this model is subject to two-con With w; > 0, the problem becomes unconstrained with re-
straints ona. The non-negativity constraint requires all the spect to constraint (5). The partial derivative of the castcf
abundances to be nonnegative, thabis> 0 for all i. The tion J with respect to the new variables can be expressed
full additivity constraint, also referred to as sum-to-aw®-  as follows

straint, require$"" | o; = 1. The linear unmixing problem aJ "o o 11
is cast as the following constrained optimization problem ow; Z aT,éj . ow; (11)
ot = arg IIHDJ(Q) (3) where
[e 2
. . W B w
subjectto a; >0, i=1,...,R 4) Do ng Zf:l wy — 82{9@;: L,
R _— =
awi R 2
D ai=1. (5) (Zzzl W) (12)
= _ i —ay
T R
3. CONSTRAINED ALGORITHM WITH GRADIENT 2 g1 We

DESCENT METHOD The Kronecker symbdl;; results from the derivativéw; /Ow;.
3.1. Solution with non-negativity constraints Rgplacmg (12) into (11), the negative partial derivative/o
with respect tav; can now be written as

In [4], we studied an algorithm for system identification

involving only constraint (4), without the full-additiwitcon- o.J 1 o.J R a7
straint (5). For this problem, using Lagrange multiplier = 237 T oa. Zaj (a) (13)
method, the Karush-Kuhn-Tucker conditions at the optimum ’ ¢=1 ¢ b= !

were combined into the following expression .
gexp Let us now use the same rule as (7) for updating the non-

¢ [~VaJ(a)]; =0 (6) hegative entries; (k). The component-wise update equation
is given by
where the minus sign is just used to make a gradient descent
of criterion J () apparent. Equations of the forgfu) = 0 wi(k + 1) = w;(k) + ...

can be solved with a fixed-point algorithm, under some condi- R

tions on functiory, by considering the problem= u+ g(u). Ty ?Ui(k) o7 Z a;(k) (_i)
Implementing this fixed-point strategy with (6) leads ushte t o we(k) dai(k) = da; (k)
component-wise gradient descent algorithm (14)

ai(k+1) = ai(k) + pi(k) i (k) [=Va S ()l (7) It can be easily found th@fil w;i(k+1) = Zle w; (k) for

wherey; (k) > 0 is a positive step size that allows to control all z.. The factor(Zé”i1 wye(k)) ™1 is thus constant and can be
convergence. Suppose that(k) > 0. Non-negativity of absorbed intq:. This yields

a;(k + 1) is guaranteed if, and only if,
wi(k+1)=w;(k)+...

14 pi(k) [-Vad (a(k))]; >0 (8) R
(k) ( aaajm -2 (k) ( aj{k)))

If [VoJ(e(k))]; < 0, condition (8) is satisfied and non-
Dividing by S°%  w;(k + 1) and 3.7 w; (k) the left and

negativity constraint does not impose any restriction an th
step size. Conversely, [V, J(a(k))]; > 0, non-negativity

1 ) right sides of (15), respectively, and considering thealzd
change defined by (10), we obtain

of a;(k + 1) holds if

0 < pi(k) < m

3.2. Algorithm for fully constrained problem ai(k+1) = ai(k) + ...

If non-negativity of the parameters is guaranteed at each it +paa(k) | - oJ i a;(k) (- aJ (16)
ation, we can make the following variable change to ensure peti / Oa; (k)
that the sum-to-one constraint (5) is satisfied

wj

_ We can verify thaty "™ | ai(k + 1) = 31 a,(k), which
25:1 we

means that the algorithm satisfies the sum-to-one constrain

(10)

aj



as long as the weight vector is initialized by any veeidf)  Let us now analyze(k) in terms of its expected value. Con-
suchthat " | «;(0) = 1. sidering thatn is zero-mean white noise, and using the inde-
The gradient of the least-squares criterion (2) is given bypendence ob (k) andn, the expected values pf andp; are
equal to0. The expected values pf, andp, are given by
Val(a)=M"r - M"Ma. (17)

E[p,) = M " Mdiag{ K (k)} + diag{a*} M " M E[v(k)]
Considering now the component-wise update equation (16),
we get Elp,] = o*a* MM E[v(k)] + o* trace K (k) M " M}

alk+1) = k) + ... y +K(k)MM'"a* + K(k) M" ME[v(k)]

+ pdiag{a(k)} [VaJ(a) — 1VaJ(a) "a(k)] (18) where K (k) = E[v(k)v' (k)] is the covariance matrix of
the weight error vector. Expected valuBfp,| andE[p,] re-
quire second-order moments definedKyn) in order to up-
date E[v(k)]. To simplify the analysis, we use the following
4. MEAN WEIGHT TRANSIENT BEHAVIOR separation approximation

wherel is the all-one vector, and digg a diagonal matrix

In this section, we are interested in studying the trandient K (k) =~ E[v(k)] E[v" (k)]

havior of the iteration governed by (18). As it is well known,

it is rather challenging to study the performance of suah ite This simplification allows us a more detailed study of the

ative system. Therefore several simplifying assumptiolh wi mean weight behavior using analytical methods. See [5] for a

be adopted in the analysis process. However, experimelhts wihorough discussion on this approximation. Extensive &mu

show that the simulated and predicted performance match aion results have shown that this approximation achieves ad

most perfectly. Firstly, we rewrite the expression (18) as ~ quate accuracy in modeling the mean behavior of the weights.
Finally, we obtain the following update equation for the mea

ak+1) =ak) +... weight-error vector

+udiag{a(k)} (M Tr — M " Ma(k)) (19)

+pdiag{a(k)}1(M v — M Ma(k)Ta(k) otk + D] = Blp®) + ..

— u (MM diag{ E[v(k)) E[o” (k)]}

Instead of studyingx(k) directly, we introduce the weight 4 dlag{a*}MTME[v(k:)]})
error vector -
v(k) = ak) — a* (20) + (et MM E[v(k)] (23)
with a* = argmin.J(a) the solution of the unconstrained +a’trace E[v(k)] E[v " (k)] MTM}
problem. At each iteration, the residual error can be writte + E[v (k) E[v" (k)] M M«
as follows

+ E[p(k)] E[v' (k)] M "M Elv(k)])
e(k) i ;—]‘Aﬁjgg 21) The behavior of the estimated abundance veet@r) is then

described byx(k) = a* 4+ v(k). Simulations will be used to

Subtractinga* from both sides of (19) and considering the evaluate the model performance.

above expression, the following iterative equation with re

spect to the weight error vecter(k + 1) is obtained after 5. COMPUTER SIMULATIONS
some mathematical calculation

5.1. Synthetic mixture of real spectra

v(k +1) =v(k) + ppy — ppy — p1p3 + 1Py (22) . )
The proposed learning algorithm was used for hyperspectral

where vectorp, to p, are defined by data unmixing, generated by linear combination of three pur

, T , T materials with abundanee = [0.30.50.2]. These materials

p, = diag{v(k)} M 'n + diagia"} M ' n are grass, cedar and asphalt, with spectral signaturesesdr

p, = diag{v(k)} M " M v(k) + diag{a*} M " M v(k) from the USGC library. These spectra consist of 2151 bands

ok xToagT X T *TagT covering wavelengths ranging from 0.35 to 2%. See Fig-

py=c’a’ M n+ato(k) M n+u(k)a” M n ure 1 (left). The data were corrupted by an additive Gaussian
+ok)v(k) ' M'n noise with SNR~ 20 dB. Figure 1 (middle and right) illus-

Py = a*a*TMTMv(k:) +av (k) MTMv(k) trates the convergence behavior of the algorithm for twe dif

ferent step sizes, averaged o%6rruns. The method clearly

* T T T T
+ou(k)a™ M Muv(k) +v(k)v (k) M Mo(k) converges after several iterations. Note that the analytic
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Fig. 1. Spectra of the three endmembers used for synthesizing ldé)a Estimated abundances as a function of the iterationbrer, with
two different step-sizeg: = 0.1 (middle),x = 0.05 (right). The red dashed curves represent the model out@lt The blue curves are the

result of Monte-Carlo simulations.
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Fig. 2. Abundance maps estimated by the proposed algorithm (émgetaoil and water, respectively)

model defined by equation (23) and simulated data match athe estimated abundance maps. Note that several areas with
most perfectly. These results clearly show that the derivedominant endmembers are clearly recovered.
model can be used for design purposes and, in particular, to
derive a condition on the step-size for convergence. 6. CONCLUSION

For comparison, we generated a 50-by-50 hyperspectral
image with abundance vectass; uniformly generated inthe  This paper studied a new iterative algorithm for solving the
simplex defined by the positivity and sum-to-one constgaint problem of linear unmixing of hyperspectral images. Itsitra
The SNR of this image was set20 dB. We run the proposed sjent mean weight behavior was analytically analyzed. Sim-
algorithm, the fully-constrained algorithm described &},[ ulations conducted on synthetic data and real data have val-
and the projected-gradient algorithm presented in [3]. Thedated the algorithm and the proposed model. Future works
root mean square error will include detailed study of convergence, including cenv
gence condition.

RMSE = ZHaij —dinQ/NR
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