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ABSTRACT

Linear unmixing of hyperspectral images is a popular ap-
proach to determine and quantify materials in sensed im-
ages. The linear unmixing problem is challenging because
the abundances of materials to estimate have to satisfy non-
negativity and full-additivity constraints. In this paper, we
investigate an iterative algorithm that integrates these two
requirements into the coefficient update process. The con-
straints are satisfied at each iteration without using any extra
operations such as projections. Moreover, the mean transient
behavior of the weights is analyzed analytically, which has
never been seen for other algorithms in hyperspectral image
unmixing. Simulation results illustrate the effectiveness of
the proposed algorithm and the accuracy of the model.

Index Terms— Hyperspectral imagery, linear unmixing,
estimation under constraints

1. INTRODUCTION

Hyperspectral imagery has been applied to a number of areas,
including the environment, land use and agricultural monitor-
ing. It can be used for more accurate and detailed information
extraction than other types of remotely sensed data, as images
provide rich spectral information to identify and distinguish
between spectrally similar materials. This technology hasre-
ceived considerable attention.

In hyperspectral imagery, a pixel is a mixture of spec-
tral components associated with a number of pure materials
present in the scene. Although nonlinear mixture analysis has
begun to find novel applications, linear spectral mixture anal-
ysis is still a widely studied approach to determine and quan-
tify materials in sensed images, due to its simpler physicalin-
terpretation. In linear unmixing models, measured pixels can
be decomposed as linear combinations of constituent spectra,
the so-called endmembers, weighted by corresponding frac-
tions named abundances. A key aspect in determining abun-
dances is how to deal with the physical constraints, which
are non-negativity and full-additivity. This problem is usu-
ally resolved by minimizing a cost function such as the least
square criterion subject to these two constraints. In [1], the

authors derive an iterative algorithm referred to as fully con-
strained least square algorithm, which adopts the sum-to-one
constraint in the signature matrix and then performs the active
set nonnegative least square algorithm of [2]. This method
does not satisfy the full-additivity constraint exactly, and the
active set method for non-negative least square includes sub-
stantial computational complexity. In [3], another class of
algorithm is proposed where the full additivity constraintis
ensured by projecting estimates at each iteration.

In this paper, we propose a gradient descent method which
does not require any extra projection onto the space of con-
straints. It contains requirements for non-negativity andfull-
additivity into the coefficient update process. These two con-
straints are always fulfilled. Moreover, we derive an analyti-
cal analysis of the mean weight transient behavior of the pro-
posed algorithm. To the best of our knowledge, this is unusual
in the hyperspectral imaging community. Simulation results
illustrate the effectiveness of the proposed algorithm andthe
accuracy of the model.

2. LINEAR MIXTURE MODEL

Linear spectral mixing model is largely used in hyperspectral
imagery for determining and quantifying materials in sensed
images. The physical assumption underlying this model is
that each incident photon interacts with one Earth surface
component only, and reflected spectra that are collected are
not mixed with one another. LetL be the number of spectral
bands, andr = [r1, r2, . . . , rL]

⊤ anL-by-1 column pixel of
an hyperspectral image. Assume thatM is theL-by-R tar-
get matrix of endmembers, denoted by[m1,m2, . . . ,mR],
where each columnmi represents an endmember signature.
Let α = [α1, α2, . . . , αR]

⊤ be aR-by-1 abundance column
vector associated with the pixelr. The linear mixing model
is given by

r = Mα+ n (1)

wheren is an additive white noise sequence. In order to es-
timate the abundance vectorα, we consider here the least-
squares cost function

J(α) = (r −Mα)⊤(r −Mα) (2)



To be physically meaningful, this model is subject to two con-
straints onα. The non-negativity constraint requires all the
abundances to be nonnegative, that is,αi ≥ 0 for all i. The
full additivity constraint, also referred to as sum-to-onecon-
straint, requires

∑R
i=1

αi = 1. The linear unmixing problem
is cast as the following constrained optimization problem

α∗ = argmin
α

J(α) (3)

subject to αi ≥ 0, i = 1, . . . , R (4)
R
∑

i=1

αi = 1. (5)

3. CONSTRAINED ALGORITHM WITH GRADIENT
DESCENT METHOD

3.1. Solution with non-negativity constraints

In [4], we studied an algorithm for system identification
involving only constraint (4), without the full-additivity con-
straint (5). For this problem, using Lagrange multiplier
method, the Karush-Kuhn-Tucker conditions at the optimum
were combined into the following expression

αo
i [−∇αJ(α)]i = 0 (6)

where the minus sign is just used to make a gradient descent
of criterionJ(α) apparent. Equations of the formg(u) = 0
can be solved with a fixed-point algorithm, under some condi-
tions on functiong, by considering the problemu = u+g(u).
Implementing this fixed-point strategy with (6) leads us to the
component-wise gradient descent algorithm

αi(k + 1) = αi(k) + µi(k)αi(k)[−∇αJ(α(k))]i (7)

whereµi(k) > 0 is a positive step size that allows to control
convergence. Suppose thatαi(k) > 0. Non-negativity of
αi(k + 1) is guaranteed if, and only if,

1 + µi(k) [−∇αJ(α(k))]i > 0 (8)

If [∇αJ(α(k))]i < 0, condition (8) is satisfied and non-
negativity constraint does not impose any restriction on the
step size. Conversely, if[∇αJ(α(k))]i > 0, non-negativity
of αi(k + 1) holds if

0 < µi(k) ≤
1

[∇J(α)]i
(9)

3.2. Algorithm for fully constrained problem

If non-negativity of the parameters is guaranteed at each iter-
ation, we can make the following variable change to ensure
that the sum-to-one constraint (5) is satisfied

αj =
wj

∑R

ℓ=1
wℓ

(10)

With wi ≥ 0, the problem becomes unconstrained with re-
spect to constraint (5). The partial derivative of the cost func-
tion J with respect to the new variableswi can be expressed
as follows

∂J

∂wi

=

R
∑

j=1

∂J

∂αj

×
∂αj

∂wi

(11)

where

∂αj

∂wi

=

∂wj

∂wi

∑R

ℓ=1
wℓ −

∂
∑R

ℓ=1
wℓ

∂wi
wj

(

∑R
ℓ=1

wℓ

)2

=
δij − αj
∑R

ℓ=1
wℓ

(12)

The Kronecker symbolδij results from the derivative∂wj/∂wi.
Replacing (12) into (11), the negative partial derivative of J
with respect towi can now be written as

−
∂J

∂wi

=
1

∑R
ℓ=1

wℓ



−
∂J

∂αi

−

R
∑

j=1

αj

(

−
∂J

∂αj

)



 (13)

Let us now use the same rule as (7) for updating the non-
negative entrieswi(k). The component-wise update equation
is given by

wi(k + 1) = wi(k) + . . .

+ µ
wi(k)

∑M
ℓ=1

wℓ(k)



−
∂J

∂αi(k)
−

R
∑

j=1

αj(k)

(

−
∂J

∂αj(k)

)





(14)

It can be easily found that
∑R

i=1
wi(k+1) =

∑R

i=1
wi(k) for

all µ. The factor(
∑M

ℓ=1
wℓ(k))

−1 is thus constant and can be
absorbed intoµ. This yields

wi(k + 1) = wi(k) + . . .

+ µwi(k)



−
∂J

∂αi(k)
−

R
∑

j=1

αj(k)

(

−
∂J

∂αj(k)

)





(15)

Dividing by
∑R

i=1
wi(k + 1) and

∑R

i=1
wi(k) the left and

right sides of (15), respectively, and considering the variable
change defined by (10), we obtain

αi(k + 1) = αi(k) + . . .

+ µαi(k)



−
∂J

∂αi(k)
−

R
∑

j=1

αj(k)

(

−
∂J

∂αj(k)

)





(16)

We can verify that
∑R

i=1
αi(k + 1) =

∑R

i=1
αi(k), which

means that the algorithm satisfies the sum-to-one constraint



as long as the weight vector is initialized by any vectorα(0)

such that
∑R

i=1
αi(0) = 1.

The gradient of the least-squares criterion (2) is given by

∇αJ(α) = M
⊤
r −M

⊤
Mα. (17)

Considering now the component-wise update equation (16),
we get

α(k + 1) = α(k) + . . .

+µdiag{α(k)}
[

∇αJ(α)− 1∇αJ(α)⊤α(k)
] (18)

where1 is the all-one vector, and diag{·} a diagonal matrix

4. MEAN WEIGHT TRANSIENT BEHAVIOR

In this section, we are interested in studying the transientbe-
havior of the iteration governed by (18). As it is well known,
it is rather challenging to study the performance of such iter-
ative system. Therefore several simplifying assumption will
be adopted in the analysis process. However, experiments will
show that the simulated and predicted performance match al-
most perfectly. Firstly, we rewrite the expression (18) as

α(k + 1) = α(k) + . . .

+µ diag{α(k)}(M⊤
r −M

⊤
Mα(k))

+µ diag{α(k)}1(M⊤
r −M

⊤
Mα(k))⊤α(k)

(19)

Instead of studyingα(k) directly, we introduce the weight
error vector

v(k) = α(k)−α∗ (20)

with α∗ = argmin J(α) the solution of the unconstrained
problem. At each iteration, the residual error can be written
as follows

e(k) = r −Mα(k)

= n−Mv(k) (21)

Subtractingα∗ from both sides of (19) and considering the
above expression, the following iterative equation with re-
spect to the weight error vectorv(k + 1) is obtained after
some mathematical calculation

v(k + 1) =v(k) + µp1 − µp2 − µp3 + µp4 (22)

where vectorsp1 to p4 are defined by

p1 = diag{v(k)}M⊤n+ diag{α∗}M⊤n

p2 = diag{v(k)}M⊤M v(k) + diag{α∗}M⊤M v(k)

p3 = α∗α∗⊤M
⊤
n+α∗ v(k)M⊤

n+ v(k)α∗⊤M
⊤
n

+ v(k)v(k)⊤M⊤
n

p4 = α∗α∗⊤M
⊤
M v(k) +α∗v⊤(k)M⊤

M v(k)

+ v(k)α∗⊤M
⊤
Mv(k) + v(k)v⊤(k)M⊤

Mv(k)

Let us now analyzev(k) in terms of its expected value. Con-
sidering thatn is zero-mean white noise, and using the inde-
pendence ofv(k) andn, the expected values ofp

1
andp

3
are

equal to0. The expected values ofp2 andp4 are given by

E[p
2
] = M⊤Mdiag{K(k)} + diag{α∗}M⊤ME[v(k)]

E[p4] = α∗α∗
⊤

M
⊤
M E[v(k)] +α∗ trace{K(k)M⊤

M}

+K(k)M M
⊤
α∗ +K(k)M⊤

ME[v(k)]

whereK(k) = E[v(k)v⊤(k)] is the covariance matrix of
the weight error vector. Expected valuesE[p2] andE[p4] re-
quire second-order moments defined byK(n) in order to up-
dateE[v(k)]. To simplify the analysis, we use the following
separation approximation

K(k) ≈ E[v(k)]E[v⊤(k)]

This simplification allows us a more detailed study of the
mean weight behavior using analytical methods. See [5] for a
thorough discussion on this approximation. Extensive simula-
tion results have shown that this approximation achieves ade-
quate accuracy in modeling the mean behavior of the weights.
Finally, we obtain the following update equation for the mean
weight-error vector

E[v(k + 1)] = E[v(k)] + . . .

− µ
(

M⊤M diag{E[v(k)]E[v⊤(k)]}

+ diag{α∗}M⊤M E[v(k)]})

+ µ(α∗α∗
⊤

M⊤M E[v(k)]

+α∗trace{E[v(k)]E[v⊤(k)]M⊤M}

+ E[v(k)]E[v⊤(k)]M M⊤α∗

+ E[v(k)]E[v⊤(k)]M⊤M E[v(k)]
)

(23)

The behavior of the estimated abundance vectorα(k) is then
described byα(k) = α∗ + v(k). Simulations will be used to
evaluate the model performance.

5. COMPUTER SIMULATIONS

5.1. Synthetic mixture of real spectra

The proposed learning algorithm was used for hyperspectral
data unmixing, generated by linear combination of three pure
materials with abundanceα = [0.3 0.5 0.2]. These materials
are grass, cedar and asphalt, with spectral signatures extracted
from the USGC library. These spectra consist of 2151 bands
covering wavelengths ranging from 0.35 to 2.5µm. See Fig-
ure 1 (left). The data were corrupted by an additive Gaussian
noise with SNR≈ 20 dB. Figure 1 (middle and right) illus-
trates the convergence behavior of the algorithm for two dif-
ferent step sizes, averaged over50 runs. The method clearly
converges after several iterations. Note that the analytical
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Fig. 1. Spectra of the three endmembers used for synthesizing data (left). Estimated abundances as a function of the iteration number, with
two different step-sizes:µ = 0.1 (middle),µ = 0.05 (right). The red dashed curves represent the model output (23). The blue curves are the
result of Monte-Carlo simulations.

Fig. 2. Abundance maps estimated by the proposed algorithm (vegetation, soil and water, respectively)

model defined by equation (23) and simulated data match al-
most perfectly. These results clearly show that the derived
model can be used for design purposes and, in particular, to
derive a condition on the step-size for convergence.

For comparison, we generated a 50-by-50 hyperspectral
image with abundance vectorsαij uniformly generated in the
simplex defined by the positivity and sum-to-one constraints.
The SNR of this image was set to20 dB. We run the proposed
algorithm, the fully-constrained algorithm described in [1],
and the projected-gradient algorithm presented in [3]. The
root mean square error

RMSE=

√

∑

ij

‖αij − α̂ij‖2/NR

was used to compare these algorithms, and the following re-
sults were obtained:

RMSEproposed= 0.0107
RMSE[1]= 0.0103 (withδ = 0.1)
RMSE[1]= 0.0120 (withδ = 1)
RMSE[3] = 0.0228

These results show the competitive performance of the pre-
sented algorithm compared with state-of-the-art methods.

5.2. Simulation on real data

The studied image is the scene over Moffett Field (CA, USA),
captured by the airborne visible infrared imaging spectrome-
ter (AVIRIS). A sub-image of size50× 50 pixels was chosen
to evaluate the proposed algorithm. This scene is mainly com-
posed of water, vegetation and soil. The endmembers were
extracted by the VCA algorithm withR = 3. Figure 2 shows

the estimated abundance maps. Note that several areas with
dominant endmembers are clearly recovered.

6. CONCLUSION

This paper studied a new iterative algorithm for solving the
problem of linear unmixing of hyperspectral images. Its tran-
sient mean weight behavior was analytically analyzed. Sim-
ulations conducted on synthetic data and real data have val-
idated the algorithm and the proposed model. Future works
will include detailed study of convergence, including conver-
gence condition.
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