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ABSTRACT

Autoregressive (AR) modeling is a very popular method for

time series analysis. Being linear by nature, it obviously fails

to adequately describe nonlinear systems. In this paper, we

propose a kernel-based AR modeling, by combining two main

concepts in kernel machines. One the one hand, we map sam-

ples to some nonlinear feature space, where an AR model is

considered. We show that the model parameters can be deter-

mined without the need to exhibit the nonlinear map, by com-

puting inner products thanks to the kernel trick. On the other

hand, we propose a prediction scheme, where the prediction

in the feature space is mapped back into the input space, the

original samples space. For this purpose, a pre-image tech-

nique is derived to predict the future back in the input space.

The efficiency of the proposed method is illustrated on real-

life time-series, by comparing it to other linear and nonlinear

time series prediction techniques.

Index Terms— pre-image, kernel machine, autoregres-

sive modeling, pattern recognition, prediction

1. INTRODUCTION

Many – if not most – real-life systems are nonlinear by nature.

While linear concepts can be easily tackled using simple lin-

ear algebra, they fail to adequately explain nonlinear behavior.

This is the case of the autoregressive (AR) modeling for time

series analysis, where each sample is given by a linear com-

bination of a small number of previous samples. Under the

assumption of a (linear) AR process, it is easy to estimate the

model parameters, i.e., the weights in the linear expansion,

and thus predict future observations from previous ones.

One way to derive nonlinear techniques based on linear

ones, is to transform the data with some nonlinear map, and

apply the linear algorithm on the transformed data. This is

the essence of the kernel-based machines, contributing to the

proliferation of nonlinear techniques since Vapnik’s Support

Vector Machines (SVM) [1]. The key idea, known as the ker-

nel trick, lies in writing a classical linear algorithm in terms
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of inner products of the transformed data, only to evaluate

them using a (positive semi-definite) kernel, without any ex-

plicit knowledge of the mapping function. By substituting the

inner product with a kernel, the data are implicitly mapped

into some high dimension (even infinite-dimension for some

kernels) feature space, with essentially no further computa-

tional cost. Many nonlinear techniques have been derived on

this concept, such as the kernel principal component analysis,

kernel Fisher discriminant analysis, and SVM novelty detec-

tion, only to name a few.

Mapping the data to the feature space is of great impor-

tance to derive nonlinear techniques based on linear ones.

Nonetheless, mapping back from the feature space to the in-

put space is also of primary interest. This is mainly because

one often needs to interpret the results in the input space, i.e.,

the signal space in signal processing. Unfortunately, it turns

out that the inverse map generally does not exist and only

a few elements in the feature space have a valid pre-image

in the input space. This is the pre-image problem, as one

seeks an approximate solution by identifying data in the in-

put space from its counterpart in the high-dimensional feature

space. Many techniques have been proposed in the literature,

with a fixed-point iterative method [2], a method based on

the multidimensional-scaling approach [3], or a more direct

method based on the relationship between inner-products in

both spaces [4] (for a recent review, see [5]).

The linear AR model is one of the most successful, flexi-

ble, and easy to use models for the analysis of time series. In

this paper, we propose to extend theses advantages to the char-

acterization of nonlinear time series. A natural extension of

the linear AR modeling to nonlinear models is derived, in the

light of machine learning. To this end, samples are mapped

into a nonlinear feature space where, by minimizing the pre-

diction error, the parameters of the nonlinear model are easily

estimated using only kernel, without the need to exhibit the

nonlinear map. Once the model parameters determined, one

can apply a prediction scheme to forecast the future. How-

ever, the prediction stage still operates in the feature space. In

order to get back to the input space, i.e., the space of samples,

we derive an appropriate pre-image technique.



A few attempts have been made to tackle the nonlinear AR

model in the light of machine learning literature. A related

work by Kumar et al. [6] proposes an AR model in the fea-

ture space, however, without any ability to predict. Nonlinear

modeling and prediction still have not taken full advantage

of recent progress in machine learning, although many ef-

forts have been focused to develop nonlinear time series tech-

niques, such as support vector regression [1], kernel-based

Kalman filter [7], and online prediction with kernels [8].

The rest of the paper is organized as follows: In the next

section, we carry out a brief description of the AR model.

In Section 3, we describe the kernel-based AR model, with

both parameter estimation and prediction scheme. Section 4

illustrates the efficiency of the proposed method on several

time series.

2. LINEAR AUTOREGRESSIVE MODEL

The autoregressive (AR) modeling is a well-known prediction

method that has been applied successfully in numerous fields.

It is defined by a linear prediction formula where each sam-

ple in a time series can be predicted from previous samples.

Under the assumption of an AR process of order p, a discrete

time series x1, x2, . . . , xn is defined by the model

xi =

p
∑

j=1

αp−j+1 xi−j , (1)

up to some additive white noise, where the constants

α1, α2, . . . , αp are the model parameters. In other words,

each sample is expressed by a linear combination of the p
previous samples. To estimate the model parameters from n
available samples of the time series, one often minimizes the

mean square prediction error, given as

n
∑

i=p+1

(

xi −

p
∑

j=1

αp−j+1 xi−j

)2

.

By setting to zero the derivatives of the above cost function

with respect to each αp−j+1, for j = 1, 2, . . . , p, we get the

optimal parameters1. Once the model parameters determined,

one can predict a future value from the previous samples by

using the model (1).

3. KERNEL-BASED AUTOREGRESSIVE

MODELING WITH A PRE-IMAGE TECHNIQUE

The kernel-based AR modeling proposed in this paper com-

bines, on the one hand an AR model in the feature space with

parameters determined thanks to the kernel trick, and on the

other hand, a pre-image technique to predict the future back

into the input space. This is illustrated in Figure 1.

1Many methods have been proposed to determine the parameters of the

AR model, including the use of the Yule-Walker equations and the forward-

backward scheme. Such studies are beyond the scope of this paper.
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Fig. 1. Illustration of the kernel-based AR modeling. Samples

are mapped from the input space into the feature space (→),

where we identify the AR process (→). To predict back into

the input space, a pre-image problem is solved (→).

3.1. Autoregressive model in feature space

Let Φ(·) be nonlinear function, mapping any sample xi to an

element Φ(xi) of some feature space. For a time series with

samples x1 x2 · · · xn, the corresponding elements in the fea-

ture space are Φ(x1)Φ(x2) · · · Φ(xn). We suppose that these

elements satisfy an AR process in the feature space, namely

Φ(xi) =

p
∑

j=1

αp−j+1Φ(xi−j), (2)

where the predicted future is in the feature space. In matrix

form, this AR model can be written as

Φ(xi) = ϕi α

where ϕi contains the p previous samples of Φ(xi), ϕi =
[Φ(xi−1) Φ(xi−2) · · · Φ(xi−p)] andα = [αp αp−1 · · · α1]

⊤

the corresponding vector of parameters.

To estimate the parameters α, we minimize the mean

square prediction error in the feature space, between the esti-

mated value
∑p

j=1
αp−j+1Φ(xi−j) and the real one mapped

to Φ(xi). For a sequence of n available samples, we minimize

with respect to α the cost function

ξ(α) =
n
∑

i=p+1

∥

∥

∥
Φ(xi)−

p
∑

j=1

αp−j+1Φ(xi−j)
∥

∥

∥

2

(3)



where ‖Φ(xi)‖
2 = Φ(xi)

⊤Φ(xi) = κ(xi, xi). This leads to

the following expression

ξ(α) =
n
∑

i=p+1

(

α⊤ϕ⊤

i ϕiα−2α⊤ϕ⊤

i Φ(xi)+Φ(xi)
⊤Φ(xi)

)

.

By taking the derivative of this expression with respect to α,

∇αξ(α) = 2

n
∑

i=p+1

(

α⊤ϕ⊤

i ϕi −ϕ⊤

i Φ(xi)
)

,

and setting it to zero, we get the optimal parameters α of the

nonlinear AR model with

α =
(

n
∑

i=p+1

ϕ⊤

i ϕi

)−1
n
∑

i=p+1

ϕ⊤

i Φ(xi)

In matrix form, we define the p-by-p matrix K by taking all

the inner products between the p previous elements, ϕ⊤

i ϕi,

with

K =

n
∑

i=p+1

ϕ⊤

i ϕi,

and the p-by-1 vector k corresponding to

k =

n
∑

i=p+1

ϕ⊤

i Φ(xi).

This leads to a more compact form for estimating the param-

eters, as follows

α = K−1k. (4)

The parameter vector α can be estimated using only in-

ner products between pairs of elements in the feature space,

defined by the kernel function κ(xi, xj) = Φ(xi)
⊤Φ(xj). It

is clear that K is the p-by-p matrix whose (j, k)-th entry is
∑n

i=p+1
κ(xi−j , xi−k), and k is the p-by-1 column vector

whose j-th entry is
∑n

i=p+1
κ(xi−j , xi). We can therefore

consider any off-the-shelf (positive semi-definite) kernel to

provide a nonlinear AR model. From the learning machines

literature, the most used kernel function is the Gaussian radial

basis function, of the form κ(xi, xj) = exp( −1

2σ2 ‖xi − xj‖
2)

where σ is the bandwidth of the kernel.

3.2. Prediction scheme using a pre-image technique

Once, we have estimated the model parameters α, the predic-

tion stage consists of predicting a new value xi, for i > n,

from the p previous samples, xi−1, xi−2, . . . , xi−p. By ap-

plying the nonlinear AR model (2), we obtain

ψi =

p
∑

j=1

αp−j+1Φ(xi−j), (5)

where the prediction ψi lies in the feature space. However,

we are more interested in the predicted sample in the original

input space. Thus, we need to map back ψi from the feature

space to the input space.

In general, the exact pre-image may not exist, and even if

it exists, it may not be unique. This is referred to as the pre-

image problem, where one identifies the best x∗ in the input

space whose image Φ(x∗) is as close as possible to ψi. This

optimization problem consists of minimizing the distance be-

tween elements in the feature space, namely

x∗i = argmin
x

1

2
‖ψi − Φ(x)‖2.

Many methods have been introduced in literature to solve this

nonlinear optimization problem. We propose to use the it-

erative fixed-point method, in the same spirit as in [9]. By

injecting the model (5) into the above expression, we obtain

the following optimization problem for any xi:

x∗i = argmin
x

1

2

∥

∥

∥

p
∑

j=1

αp−j+1 Φ(xi−j)− Φ(x)
∥

∥

∥

2

This optimization problem can be written as

x∗i = argmin
x
Ji(x)

where Ji(x) is the cost function defined by

Ji(x) = −

p
∑

j=1

αp−j+1 κ(xi−j , x) +
1

2
κ(x, x).

In this expression, the term independent of x, i.e.,
1

2

∑p

k=1

∑p

j=1
αp−k+1αp−j+1κ(xi−k, xi−j), has been re-

moved.

To solve this problem, one may study the gradient of the

cost function Ji(x) with respect to x. At the optimum, the

gradient with respect to x disappears, namely ∇xJi(x) = 0.

The resulting gradient is given as

∇xJi(x) = −

p
∑

j=1

αp−j+1

∂κ(xi−j , x)

∂x
+

1

2

∂κ(x, x)

∂x
. (6)

This is the general form for all kernels. This expression can

be further simplified for the wide class of radial kernels, such

as the Gaussian kernel. In such cases, κ(x, x) is independent

of x, thus ∂κ(x, x)/∂x equals to zero, and only the first term

in (6) remains. Therefore, the gradient can be expressed as

∇xJi(x) = −

p
∑

j=1

αp−j+1

∂ exp(− 1

2σ2 ‖xi−j − x‖2)

∂x

= −
1

σ2

p
∑

j=1

αp−j+1 κ(xi−j , x) (xi−j − x).

Setting this gradient to zero at the optimum x∗i , we get the

fixed-point iterative expression

x∗i =

∑p

j=1
αp−j+1 κ(xi−j , x

∗

i )xi−j
∑p

j=1
αp−j+1 κ(xi−j , x∗i )

.



This result can be interpreted as an AR model, in the same

spirit as (1), although the parameters are no longer constants,

since we have the form x∗i =
∑p

j=1
βp−j+1xi−j , with

βp−j+1 =
(

p
∑

i=1

αp−i+1 κ(xi−i, x
∗

i )
)−1

αp−j+1 κ(xi−j , x
∗

i ).

4. EXPERIMENT

In this section, we show the relevance of the proposed method

on two real-life time series2: the Mackey-Glass MG30 time

series, modeling the blood cells production evolution with

dx(t)

dt
= −0.1 x(t) +

0.2 x(t− τ)

1 + x(t− τ)10

with τ = 30, and the Laser time series from the Santa Fe

competition (dataset A). For each time series, the first 300
samples were considered to determine the model parameters,

as well as estimating the best value for the order. The mean

square prediction error was estimated on the next 300 sam-

ples.

To give a well-defined benchmark for comparison, we

compare the proposed method to several time series predic-

tion techniques: the linear AR model, the multilayer percep-

tron with a tanh activation function, the support vector regres-

sion [1] and the nonlinear Kalman filter [7]. For the kernel

machines, the Gaussian kernel has been used, with the proper

bandwidth value estimated within the estimation stage. For

our approach, the bandwidth is set to σ = 0.3 and σ = 0.015
for the Laser and the MG30 time series, respectively. The

value of order was set to p = 6 for both sequences. Table 1

shows the mean square prediction error, where the values of

the methods multilayer perceptron, support vector regression

and nonlinear Kalman filter are borrowed from [7].

5. CONCLUSION

In this paper, we proposed a kernel-based AR modeling for

time series analysis and prediction, inspired by recent ad-

vances in machine learning. To this end, we bind, on the one

hand an AR model in a feature space with model parameters

estimated thanks to the kernel trick, and on the other hand, a

prediction scheme back into the input space using a pre-image

technique. Experiments on a benchmark of real-life time se-

ries confirm the relevance of the proposed method.

This strategy in combining kernel machines and AR mod-

els opens the way to the development of a range of diverse

nonlinear time series techniques. As future work, we are ex-

ploring many possibilities in this direction, such as the use

of the Yule-Walker equations, the extension to a vector AR

model, as well as a nonlinear ARMA model. The choice of

the optimal order remains an open question.

2The MG30 and the Laser time series are available from

http://www.bme.ogi.edu/∼ericwan/data.html.

Table 1. The mean square prediction error (MSE) for several

time series techniques.

Laser MG30

multilayer perceptron 1.4326 0.0461
support vector regression 0.2595 0.0313
nonlinear Kalman filter 0.2325 0.0307
linear AR modeling 16.6956 0.0158
kernel-based AR modeling 0.0702 0.00084
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