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ABSTRACT

During the last few years, kernel methods have been very useful

to solve nonlinear identification problems. The main drawback of

these methods resides in the fact that the number of elements of the

kernel development, i.e., the size of the dictionary, increases with

the number of input data, making the solution not suitable for on-

line problems especially time series applications. Recently, Richard,

Bermudez and Honeine investigated a method where the size of the

dictionary is controlled by a coherence criterion. In this paper, we

extend this method by adjusting the dictionary elements in order to

reduce the residual error and/or the average size of the dictionary.

The proposed method is implemented for time series prediction us-

ing the kernel-based affine projection algorithm.

Index Terms— Nonlinear adaptive filters, machine learning,

nonlinear systems, kernel methods.

1. INTRODUCTION

Nonlinear models represent a challenge in many practical situations,

for which numerous methods have been considered such as neural

networks [1] and series expansion methods [2, 3]. Function approxi-

mation methods based on reproducing kernel Hilbert spaces (RKHS)

are of great importance in kernel-based regression methods such as

support vector regression [4, 5]. Computational requirements for

kernel-based methods depend on matrices which size increases with

the number of observations. This characteristic makes them unsuit-

able for online applications. Several methods have been proposed to

overcome these calculation costs for online applications. The main

idea consists in introducing a new sample to the model if it con-

tributes significantly in reducing the approximation error and, if nec-

essary, removing the element which contributes the least. In [6, 7],

the authors proposed a sparsification rule based on the orthogonal

projections, while in [8] the approximate linear dependence criterion

was considered.

The computational cost is further reduced in [9, 10], where the

authors introduced the dictionary1 coherence criterion, where the in-

clusion of a new input data into the dictionary is performed if the dic-

tionary still has a small coherence. They demonstrated that the num-

ber of elements in the dictionary remains finite with time. The coher-

ence criterion was coupled with Kernel Affine Projection Algorithm

(KAPA) and Kernel Normalized Least Mean Squares (KNLMS) as

particular cases.

In all above methods, each element injected into the dictionary

remains permanently unchanged, even if the non stationarity makes

1The term dictionary stands for a set of input vectors (or their correspond-
ing kernel functions in the RKHS) used to estimate the nonlinear model.

it later useless for estimating the solution. This is the reason why

adaptation of the dictionary appears necessary to obtain a better ac-

curacy and/or a smaller size of the dictionary. In this paper, we study

the adjustment of the dictionary elements using an adaptive algo-

rithm to make it more efficient in minimizing the resulting approxi-

mation error. We make use of the coherence criterion, which gives

us the possibility to reduce, in average, the size of the dictionary. To

illustrate the efficiency of the proposed method, we present several

experiments using a well known benchmark.

2. BRIEF REVIEW OF THE MODEL REDUCTION

METHOD USING THE COHERENCE CRITERION

Consider an online prediction problem and let un ∈ U the input

data vector at time step n and dn ∈ R the corresponding desired

output of the model. Let k : U × U → R be a kernel and H is the

RKHS associated with it. Due to the representer theorem [11, 12],

the predicted model can be written as follows:

ψn(·) =
m
∑

j=1

αn,j κ(·, uwj
) (1)

where the coefficients αn,j ∈ R and ψn(·) is a real-valued func-

tion in the Hilbert space associated with the kernel function κ. The

κ(·, uw1
), . . . , κ(·, uwm) form a m-elements subset called the dic-

tionary Dn and m ≪ n is the model order by analogy with linear

transverse filters. The response of the model to un at time n is:

ψn(un) =
m
∑

j=1

αn,j κ(un, uwj
)

The main problem in kernel online prediction is the unknown order

of the model which increases with time and hence, the necessity to

control it at each time step. The coherence criterion is of a great

importance to overcome this problem and it is widely used to char-

acterize a dictionary in linear sparse approximation techniques [13].

In [10], the authors proposed to define this parameter for kernel-

based models by:

µ = max
i6=j

|κ(uwi
, uwj

)|

where κ is a unit-norm2 kernel, i.e., κ(uk, uk) = 1 for all uk. The

parameter µ is the largest absolute value of the off-diagonal entries

in the Gram matrix and reflects the largest cross-correlation of the

2Otherwise, replace κ(·, uk) with κ(·, uk)/
√

κ(uk, uk).



elements of the dictionary. The dictionary is said to be µ-coherent.

Note that µ = 0 for an orthogonal basis.

In order to derive a model of the form (1) with the coherence

parameter, at each time step n, a candidate function κ(·, un) is in-

troduced into the dictionary if the following condition is satisfied:

max
κ(.,uwj

)∈Dn

|κ(un, uwj
)| ≤ µ0 (2)

where µ0 ∈ [0, 1[ is a threshold parameter determining the level of

sparsity and the coherence of the dictionary. A very important con-

sequence of the use of the coherence criterion is that the dimension

m of the dictionary remains finite as n goes to infinity. Obviously,

m increases with µ0.

3. THE KERNEL AFFINE PROJECTION ALGORITHM

Let Dn be a µ0-coherent dictionary at time step n (Dn satisfies

(2)), and m be its order. In (1), the optimal solution vector αn =
(αn,1 · · · αn,m)t is obtained in accordance with the least-squares

problem

min
αn

= ‖dn −Hnαn‖2, (3)

where Hn is a p × m matrix whose (i, j)-th element is

κ(un−i+1, uwj
). Let p be the number of inputs/outputs used in (3).

This means that, at each time step n, only the p most recent inputs

{un, ..., un−p+1} and observations dn = (dn · · · dn−p+1)
t are

considered [14, 15, 16]. When a new input data vector un+1 is fed

to the model, one of the following two cases occurs:

• First case: maxj=1,...,m |κ(un+1, uwj
)| > µ0

κ(·, un+1) is not introduced into the dictionary Dn and the

solution vector αn+1 is updated as follows:

αn+1 = αn+ηH
t
n+1(ǫI+Hn+1H

t
n+1)

−1(dn+1−Hn+1αn)

where η is a step-size control parameter and ǫI is a regular-

ization factor.

• Second case: maxj=1,...,m |κ(un+1, uwj
)| ≤ µ0

κ(·, un+1) is introduced into the dictionary. Thus, Dn+1 =
Dn ∪ {κ(·, uwm+1

)} with uwm+1
= un+1. The solution

vector αn+1 is updated according to:

αn+1 =

[

αn

0

]

+ ηH
t
n+1(ǫI + Hn+1H

t
n+1)

−1×
(

dn+1 − Hn+1

[

αn

0

])

These recursions define the Kernel Affine Projection Algorithm

(KAPA). See [10] for more details.

4. DICTIONARY ADJUSTMENT

In this section, we describe our approach to adjust the elements of

the dictionary Dn to obtain DA
n using an adaptive method, by sub-

stituting each uwk
with an appropriate u

A
wk

, for k = 1...m. The

objective is to minimize the quadratic approximation error e2n:

en = dn − ψn(un) = dn −
m
∑

j=1

αn,j κ(un, uwj
).

Since the coherence criterion (2) is satisfied at each time instant,

before any adaptation, for all pairs of elements in the dictionary, this

constraint must remain satisfied after the adjustment, leading to

max
i6=j

|κ(uA
wi
, uA

wj
)| ≤ µ0. (4)

The i-th element of the dictionary is adapted using a perturbation in

the opposite direction of the gradient of the instantaneous quadratic

error with respect to uwi
, as follows:

u
A
wi

= uwi
− νngwi

∀i = 1...m (5)

where

gwi
= −2en αn,i ∇uwi

κ(un, uwi
) (6)

is the gradient of the instantaneous quadratic error and νn represents

the step size used to adjust all the elements of the dictionary. Then,

for any pair of dictionary elements, we obtain

u
A
wi

− u
A
wj

= δu − νnδg ∀i, j = 1...m

where δu = uwi
− uwj

and δg = gwi
− gwj

. Under the coher-

ence constraint, νn cannot be chosen arbitrarily. The problem is to

determine an appropriate νn at each time step n in order to adapt the

dictionary.

The iterative approach to find the best step size is explored in the

case of Radial Basis Functions, of the form

κ(ui, uj) = f(‖ui − uj‖2), (7)

where f ∈ C∞. A sufficient condition for this function to be a valid

positive-definite kernel is the complete monotonicity of the function

f [17], i.e.,

(−1)kf (k)(r) ≥ 0,∀r ≥ 0 (8)

where f (k)(·) denotes the k-th derivative of f(·). From (7), we get

∇ujκ(ui, uj) = −2(ui − uj) f
(1)(‖ui − uj‖2)

and the coherence condition (4) leads to

f(‖δu − νn δg‖2) ≤ µ0. (9)

It is possible to construct a local model of the kernel function, by

approximating it with a Taylor series around νn ∼ 0:

f(‖δu−νnδg‖2)=f(‖δu‖2)−2νn(δu
tδg−νn‖δg‖2)f (1)(‖δu‖2)+O(νn)

Using this approximation, condition (9) becomes

−
(

2‖δg‖2ν2n−2νnδu
tδg)f (1)(‖δu‖2

)

+µ0−f(‖δu‖2) ≥ 0. (10)

The discriminant of this quadratic inequality in νn is:

∆ =
(

δu
tδg f (1)(‖δu‖2)

)2

+ 2‖δg‖2f (1)(‖δu‖2)(µ0 − f(‖δu‖2)

If ∆ < 0, there is no constraint on the value of νn; otherwise, if ∆ ≥
0, the boundary points of (10) will be νi,j− and νi,j+ as follows:

νi,j± =
−δu

tδg f (1)(‖δu‖2)±
√
∆

−‖δg‖2f (1)(‖δu‖2)

Since the quadratic expression in (10) must be positive, the interval

of possible values for νn is ]−∞, νi,j−] ∪ [νi,j+,+∞[

νi,j− νi,j+
+ | − | +



Obviously, for each pair of dictionary elements (uwi
, uwj

), νn = 0
always belongs to the feasible domain, since in this case there is no

adaptation of the dictionary, and the last was µ0-coherent. Because

the constant term in (10) is positive, νi,j− and νi,j+ have the same

sign3.

The interpretation of the two bounds for νn is straightforward.

When adjusting any two elements of the dictionary, each one accord-

ing to the gradient of the quadratic error with respect to this element,

the bounds (νi,j−, νi,j+) must be satisfied to avoid any overlap of

the influence regions of the two considered elements, and thus vio-

lation of the coherence constraint (4). (see Fig. 1).

νi,j+

νi,j− u
A
wi

u
A
wi

uwi

u
A
wj

−gwi

Fig. 1. A 2D illustration showing the constraint of choosing νn ≤
νi,j− or νn ≥ νi,j+ to avoid the overlap of the influence regions of

u
A
wi

and u
A
wj

.

We now propose a heuristic for selecting νn. Other heuristics

could be considered, but our main objective is to illustrate the effi-

ciency of dictionary adaptation. We initially select a reference step

size ν0 > 0, as commonly done for adaptive algorithms with a fixed

step size. By considering all the (νi,j−, νi,j+) pairs, νn is selected

as follows:

• if max
i,j

νi,j+ ≤ 0 ⇒ νn = ν0;

• if 0 ≤ min
i,j

νi,j− ≤ ν0 ⇒ νn = min
i,j

νi,j−;

• if 0 ≤ ν0 ≤ min
i,j

νi,j− ⇒ νn = ν0;

• if 0 ≤ min
i,j

(νi,j−)+ ≤ ν0 ⇒ νn = min
i,j

(νi,j−)
+

;

• if 0 ≤ ν0 ≤ min
i,j

(νi,j−)
+ ⇒ νn = ν0.

In these expressions, (νi,j−)
+ indicates all the positive values of

νi,j−’s. Note that ν0 must be selected relatively small. If ν0 is too

large, the elements of the dictionary can be spread over a non useful

region of the input space, inducing an increase of the size of the

dictionary without reducing the approximation error.

5. EXPERIMENTATIONS

In our experimentation, we used the same benchmark and the same

parameter settings as in [10]. It consists of a one step prediction of

3This property is due to the fact that the kernel function satisfies the va-

lidity condition (8), namely f(1)(‖δu‖2) ≤ 0, and µ0 ≥ f(‖δu‖2) as the
coherence constraint is satisfied at any time step.
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AKAPA, µ0= 0.2, ν0 = 0.033

m = 2.865, NMSE = 0.09401

AKAPA, µ0= 0.3, ν0 = 0.04

m = 3.29, NMSE = 0.0903

KAPA, µ0 = 0.3

m= 2.655, NMSE = 0.1597

KAPA, µ0 = 0.4875

m = 3.285, NMSE = 0.14588

Fig. 2. Learning curves for KAPA and AKAPA using a Gaussian

kernel (σ = 0.42) for different coherence parameters µ0 and gradi-

ent step sizes ν0.

the following discrete-time nonlinear dynamical system:

{

vn = 1.1 exp(−|vn−1|) + un

dn = v2n

where un and dn are the input and the desired output, respectively.

The data were generated from the initial condition v0 =0.5. The in-

put was sampled from a zero-mean Gaussian distribution with stan-

dard deviation 0.25. The system output was corrupted by an additive

zero-mean white Gaussian noise with standard deviation equal to 1.

The system to identify is of the form dn = ψn(un).

The KAPA algorithm is used with the following parameters set-

tings: number of Inputs/Outputs p = 3, step-size control parameter η
= 0.01, regularization factor ǫ = 0.07 (see section 3 for details).The

acronym AKAPA is adopted to indicate the dictionary Adaptation

for Kernel Affine Projection Algorithm.

A set of 200 time series of 3000 samples each was used to com-

pare the KAPA and AKAPA using the Normalized Mean Squared

Error (NMSE) which was computed over the last 500 samples ac-

cording to:

NMSE = E

{

∑3000
i=2501(dn − ψn(un))

2

∑3000
i=2501 d

2
n

}

Another indicator that must be computed is the average final size of

the dictionary m calculated for the 200 time series. For the simula-

tions, we adopted both the Gaussian kernel κ(ui, uj) = exp(−‖ui −
uj‖2/2σ2) with a bandwidth σ = 0.42 and Exponential kernel

κ(ui, uj) = exp(−‖ui − uj‖/σ) with a bandwidth σ = 0.33.

The learning curves shown in Figure 2 and Figure 3 depict the

Mean Squared Error and compare different settings for the coherence

criterion µ0 and for the adjustment step size ν0. ν0 has been selected

using a rough grid search so as to obtain the best performances for

the given value of µ0. Table 1 gives a summary of the obtained re-

sults for the KAPA and the AKAPA algorithms. The obtained results

lead to the following observations:

1. For the same coherence parameter µ0 = 0.3, AKAPA shows

a 23.92% increase in the average size of the dictionary m
with a decrease of 41.60% in the NMSE for the Gaussian

kernel (12.12% and 16.93% respectively for the Exponential

kernel). See rows 1 and 3 in Table 1.



Table 1. Experimental Setup and Performance, with p = 3, η = 0.01, and ǫ = 0.07

Gaussian kernel (σ = 0.42) Exponential kernel (σ = 0.33)

Algorithm Parameter Settings m NMSE Parameter Settings m NMSE

KAPA [10] µ0=0.3 2.655 0.15970 µ0=0.3 5.61 0.15392

KAPA [10] µ0=0.49 3.285 0.14588 µ0=0.345 6.26 0.15070

AKAPA (this paper) µ0=0.3, ν0=0.04 3.29 0.090327 µ0=0.3, ν0=0.01 6.29 0.12786

AKAPA (this paper) µ0=0.2, ν0=0.033 2.865 0.09401 µ0=0.25, ν0=0.005 5.41 0.12751

0 500 1000 1500 2000 2500 3000

10
−1

10
0

iteration

m
ea

n−
sq

ua
re

d 
er

ro
r AKAPA, µ0= 0.25, ν0 = 0.005

m = 5.41, NMSE = 0.12751

AKAPA, µ0= 0.3, ν0 = 0.01

m = 6.29, NMSE = 0.12786

KAPA, µ0 = 0.3

m= 5.61, NMSE =0.15392

KAPA, µ0 = 0.345

m = 6.26, NMSE = 0.15070

Fig. 3. Learning curves for KAPA and AKAPA using an Exponen-

tial kernel (σ = 0.33) for different coherence parameters µ0 and

gradient step sizes ν0.

2. Comparing NMSE for the same average sizes of the dictio-

naries m using different values for µ0, AKAPA led to a de-

crease of 38.08% for the Gaussian kernel and 15.15% for the

Exponential kernel. See rows 2 and 3 in Table 1.

From these observations we can deduce that, if µ0 and ν0 were prop-

erly selected, the size of the dictionary and the approximation error

can be greatly reduced. These results were also observed on other

(synthetic and real) time series, omitted here due to space limitations.

6. CONCLUSION

In this paper, we demonstrated the interest of adjusting the dictionary

elements within the context of online predictions with kernel-based

methods. Our idea was to use an iterative gradient adaptation al-

gorithm that satisfies a coherence measure for the elements of the

dictionary. Pruning the dictionary to reduce its size, as well as other

adaptation algorithms, will be considered in our future work.
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