
HAL Id: hal-01966020
https://hal.science/hal-01966020

Submitted on 4 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kernels for time series of exponential decay/growth
processes

Zineb Noumir, Paul Honeine, Cédric Richard

To cite this version:
Zineb Noumir, Paul Honeine, Cédric Richard. Kernels for time series of exponential decay/growth
processes. Proc. 22nd IEEE workshop on Machine Learning for Signal Processing (MLSP), 2012,
Santander, Spain. pp.1-6, �10.1109/MLSP.2012.6349753�. �hal-01966020�

https://hal.science/hal-01966020
https://hal.archives-ouvertes.fr


2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 23–26, 2012, SANTANDER, SPAIN

KERNELS FOR TIME SERIES OF EXPONENTIAL DECAY/GROWTH PROCESSES

Zineb Noumir, Paul Honeine

Institut Charles Delaunay (CNRS)
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ABSTRACT

Many processes exhibit exponential behavior. When kernel-

based machines are applied on this type of data, conventional

kernels such as the Gaussian kernel are not appropriate. In

this paper, we derive kernels adapted to time series of expo-

nential decay or growth processes. We provide a theoretical

study of these kernels, including the issue of universality. Ex-

perimental results are given on a case study: chlorine decay

in water distribution systems.

Index Terms— Kernel function, one-class classification,

normalization, kernel methods, support vector machines

1. INTRODUCTION

In a wide variety of situations, many processes exhibit an ex-

ponential behavior. This behavior follows from natural pro-

cesses, when a quantity decreases/increases at a rate propor-

tional to its value. Many quantities depend exponentially on

time, either by increasing such as in virus spread, economic

growth, nuclear chain reaction, or by decreasing such as given

in heat transfer, radioactivity, pharmacology, and chemical re-

actions, only to name a few. Exponential decay1 also arises in

many time series, such as the measure of degradation based on

vibration (bearings, dampers, etc), as well as any other char-

acteristic whose evolution represents an evolution to failure

[1, 2].

While all these problems are of interest, and without loss

of generality, this paper deals with chemical reactions, and

more precisely the decay of Chlorine concentration in a wa-

ter supply network. Chlorine is the most used disinfectant to

treat water for microbiological protection in a water supply

network [3]. It is injected at treatment stations, and chlorine

concentrations decay over time essentially as water disinfec-

tion takes place, while it must be present at the points of water

consumption. Chlorine exhibits an exponential decay behav-

ior [4, 5] while, at any given node (sensor), it largely fluctu-

This work was supported by ANR-08-SECU-013-02 VigiRes’Eau.
1Exponential decay includes exponential growth, when one measures the

negative quantity.

ates due to non-constant consumer demand, temperature, pH,

etc. These fluctuations inhibit the use of an adapted model to

characterize the domain of operation. See Figure 1.

By learning the system from available data, machine

learning provides an elegant approach to overcome model-

based techniques where a perfect understanding of the system

is necessary. This is the idea behind kernel-based machines,

pioneered by Vapnik’s support vector machines (SVM) for

classification and regression [6]. Domain description using

the so-called one-class SVM is proposed in [7], by solving

a quadratic programming problem. These machines share an

interesting property: sparsity. In fact, only a small number

of the training samples contributes to the final model. These

samples, the so-called Support Vectors, describe the diversity

within the training data.

The performance of a kernel-based learning machine is

highly related to the choice of the kernel function. The ker-

nel determines an implicit (nonlinear) map that transforms the

data, from the input space to a feature space, and therefore de-

termines its distribution in the latter space. Conventional ker-

nels include the polynomial, the exponential and the Gaussian

kernels. Because there is “no free lunch” in kernel selection

[8], the choice of the kernel should reflect prior knowledge

about the problem at hand.

In this paper, we design appropriate kernels for time se-

ries of exponential decay (or growth) processes. Conventional

kernels, such as the Gaussian kernels, are not appropriate for

this class of data. This is illustrated in practice by the large

dispersion of these data in the resulting feature space. In con-

sequence, one gets “less regularity” using kernel-based ma-

chines. This results in many support vectors, even when a

single steady (constant-parameter) process is under investiga-

tion. In this paper, we propose a class of kernel functions to

overcome these drawbacks. Inspired by the normalized ker-

nel [9], we derive several kernels, and study the generalization

ability in the sense of universality, as defined in [10].

The rest of the paper is organized as follows. Section 2

presents the time series for exponential decay processes. We

derive kernels adapted for these data in Section 3. Section 4



outlines the problem of chlorine concentration in water distri-

bution systems, and provide experimental results on real time

series. Conclusion and further directions are given in Sec-

tion 5. But before, we present the classical one-class SVM

for domain description.

One-class SVM for domain description

Let x1,x2, . . . ,xn be a set of samples, and let Φ(·) be a non-

linear transformation defined by some positive semi-definite

kernel κ(·, ·), i.e., κ(xi,xj) corresponds to the inner product

between Φ(xi) and Φ(xj).
The one-class SVM finds a sphere, of minimum volume,

containing all (or most of) the samples. Its center c and radius

r are obtained by solving the following optimization problem:

min
r,c,ζ

r2 +
1

νn

n
∑

i=1

ζi

subject to ‖Φ(xi)− c‖2 ≤ r2 + ζi for all i = 1, 2, . . . , n

where, ζ1, ζ2, . . . , ζn are non-negative slack variables and ν
is a positive parameter that specifies the tradeoff between the

sphere volume and the number of outliers, i.e., samples lying

outside the sphere. By introducing the Karush-Kuhn-Tucker

optimality conditions, we get the optimal model of the center

c =

n
∑

i=1

αiΦ(xi), (1)

where the αi’s are the solution of the so-called dual problem:

max
α

n
∑

i=1

αiκ(xi,xi)−

n
∑

i,j=1

αiαjκ(xi,xj)

subject to

n
∑

i=1

αi = 1 and 0 ≤ αi ≤
1

νn
for all i = 1, 2, . . . , n.

The one-class SVM for domain description can also be

considered for novelty detection tasks. To this end, any new

sample x can be regarded as novel to the domain described

by the sphere, namely to the distribution of the training sam-

ples, when its distance to the center is beyond some threshold,

where the distance is given as

‖Φ(x)−c‖2=
∑

i,j

αiαjκ(xi,xj)−2
∑

i

αiκ(xi,x)+κ(x,x).

The one-class SVM (derived above), as well as SVM ma-

chines for regression and classification [6], enjoy an impor-

tant property: sparsity. It is well known that only a small

fraction of the training samples contributes to the model (1).

These samples, called Support Vectors (SVs), provide a suf-

ficient representation of the samples, thus describing the di-

versity of the data. Other algorithms based on different SVs

selection criteria have been recently applied with success for
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Fig. 1. The time series of chlorine variation for three days for

a given sensor in the water distribution network of the city of

Cannes, in France.

the one-class problem in [11, 12]. All these algorithms per-

form essentially identically, while the performance depends

crucially on the choice of the kernel function. There is “no

free lunch” in kernel selection [8]. The choice of the ker-

nel should reflect prior knowledge about the problem at hand.

The main contribution of this paper is to design appropriate

kernels for time series of exponential decay processes.

2. PROBLEM STATEMENT

A quantity follows an exponential decay process if it de-

creases at a rate proportional to its value. Mathematically,

it satisfies the differential equation

∂x(t)

∂t
= −λx(t),

where x(t) is the positive quantity at time t and λ is a positive

number, often called the decay constant. Equivalently, the

solution to this differential equation is

x(t) = x(0) e−λ t, (2)

where x(0) is the initial quantity. When the parameter λ is

constant, we can define other parameters, such as the (mean)

lifetime 1/λ and the half-life (log 2)/λ of the process.

In real-life applications, the decay parameter λ may be

time-varying, often by increasing at some instant. A more

general model is

x(t) = x(0) e−λ(t) t, (3)

which allows to incorporate a process varying with time, e.g.,

having a decay parameter piecewise constant. As opposed to

include further models to track the variations, e.g., the non-

constant decay parameter λ(t), we consider in this paper a

machine learning approach.



We unfold the time-series into a phase space using time-

delay embedding process [13], by converting the time-series

x(t) into a set of vectors

xi = [x(i −m+ 1) · · · x(i − 1) x(i)]⊤, (4)

for i = m,m + 1, . . ., and where m, the embedding dimen-

sion, is fixed in advance. 2

With a set of (vector) samples {xm,xm+1,xm+2, . . .} at

hand, one can consider classical machine learning techniques

for pattern recognition or regression. Any kernel function can

be applied, the most primitive one being the inner product,

κ(xi,xj) = x
⊤
i xj , (5)

as well as the polynomial kernel, κp(xi,xj) = (x⊤
i xj + c)p,

for p > 0 and c ≥ 0. These kernels often perform poorly, as

opposed to the Gaussian kernel

κG(xi,xj) = e−
1

2σ2
‖xi−xj‖

2

,

where σ is the bandwidth parameter and ‖xi − xj‖ the Eu-

clidean distance. The consistency of this kernel is “guaran-

teed” by the concept of universal kernels, as derived in [10].

The use of the Euclidean metric, with the conventional in-

ner product or distance, within these classical kernels is not

adapted for exponential decay time-series. To illustrate this

issue, consider two samples, xi,xj (e.g., two consecutive

windows), drawn from the same constant-parameter process.

It is easy to see that these measures of similarity and dissimi-

larity, i.e., x⊤
i xj and ‖xi−xj‖

2, highly depend on the initial

value, namely another sample x(0). We propose to consider

kernels that are independent of the multiplicative scaling x0.

The functions that satisfy the property of invariance under di-

lations are also called homogeneous of degree zero.

3. KERNELS FOR TIME SERIES OF EXPONENTIAL

DECAY PROCESSES

A valid (reproducing) kernel function is a function that can

be expressed as an inner product in some arbitrary space. By

Mercer’s theorem, this property is satisfied by positive semi-

definite functions. Besides, one can engineer a valid kernel

from other kernels by applying the simple rules given in Ta-

ble 1. Moreover, one can provide valid kernels using a power

series (polynomial or a Taylor series expansion) of other ker-

nels, as long as the coefficients are non-negative.

3.1. Normalized kernels

As a first natural way to remove the dependence on the initial

quantity, i.e., x0, we consider the normalized kernel,

κn(xi,xj) =
κ(xi,xj)

√

κ(xi,xi)κ(xj ,xj)
, (6)

2The footnotes in this paper are given only for illustration:

We say xi ∼ ǫλ if entries of xi, as defined in (4), satisfy (2) for some x(0).

Rule Expression

1. Linear combination κ(xi,xj) =
∑

k γk κk(xi,xj)
2. Positive offset κ(xi,xj) = κ0(xi,xj) + γ0
3. Product κ(xi,xj) =

∏

k κk(xi,xj)

4. Exponential κ(xi,xj) = eκ0(xi,xj)

5. Normalization κ0(xi,xj)/
√

κ0(xi,xi)κ0(xj ,xj)

Table 1. Some simple rules for engineering a valid kernel

from available ones, with γk ∈ R+.

where κ(·, ·) is the classical inner product defined in (5). This

normalized kernel can be viewed as the (linear) inner product

kernel applied after normalizing the data, namely by using

xi/‖xi‖ for every xi.
3

The normalization removes the scaling factor by project-

ing the data onto the unit-radius sphere, then applying the

conventional inner-product kernel. This projection operation

reduces the dimension of the data, while the classical inner-

product kernel performs poorly in general. Next, we take ad-

vantage of the universality of the Gaussian kernel in order to

provide more interesting kernels.

3.2. Kernels with logarithmic distance

We consider another way to derive kernels independent of the

initial quantity, by modifying the metric and using the loga-

rithmic distance instead, with

‖ logxi − logxj‖,

where the logarithmic function log(·) is applied to each entry

of its (vector) argument. It is worth noting that this expression

is independent of the base of the logarithm.

Therefore, one can easily replace the classical Euclidean

distance with the above logarithmic distance, which allows us

to refashion translation-invariant kernels into scale-invariant

ones. This is the case of the Radial Basis Functions, with ker-

nels of the form f(‖xi − xj‖
2) such as the Gaussian kernel.

The Gaussian kernel with logarithmic distance is defined by

κG,log(xi,xj) = κG(log(xi), log(xj))

= e−
1

2σ2
‖ logxi−logxj‖

2

. (7)

This kernel can be equivalently obtained by considering

the inner product (5) on the log-transformed data, namely

κ(log(xi), log(xj)), and apply the Rule 4 (Exponential) and

3It is easy to see that, for xi ∼ ǫλi
and xj ∼ ǫλj

, we have

κn(xi,xj) =

∑

τ e−λi(i−τ)−λj(j−τ)

√

∑

τ e−2λi(i−τ)
∑

τ e−2λj(j−τ)

where the summation is on τ = 0, 1, . . . , m − 1, which is independent of

the initial value x(0).



the Rule 5 (Normalization) successively. This leads to a scale-

invariant Gaussian kernel. 4

The use of a logarithmic scale may sometimes be pre-

ferred on the linear scale. This is due to the property

that this nonlinear transformation stretches low values, and

shorten greater ones. Considering a distribution of samples

x1,x2, . . ., then in the logarithmic scale, samples closer to

the origin get further away from the “center” of the distribu-

tion5. Therefore, these samples are more likely to be outliers

when applying the one-class SVM algorithm. This yields an

interesting single-side detection property which, for the expo-

nential decay data, corresponds to distinguishing large values

of the decay parameter λ, namely when decay goes faster.

Finally, the logarithm can be viewed as a power transfor-

mation. By using a positive parameter µ, one can consider the

family of power transformations with the so-called Box-Cox

transformation, where each x(i) is substituted with:

{ (

x(i)µ − 1
)

/µ if µ 6= 0
log x(i) if µ = 0

This transformation has shown its suitability in many statisti-

cal problems. This is the case when one needs to transform

not normal-like distributed data into data that does follow ap-

proximately a normal distribution, namely turning skew uni-

modal distributions into nearly symmetric normal-like distri-

butions. The use of this transformation allows us to provide

a tunable transformation, with the tunable parameter µ, and

therefore give a new class of kernels. However, this is beyond

the scope of this paper.

3.3. More kernels

The normalized kernel (6) is a linear kernel applied on the

normalized data. Based on this kernel, we propose two differ-

ent kernels and study some of their properties.

Definition 1. The logarithmic (normalized) kernel is defined

as follows:

κlog,n(xi,xj) = − log(1 − κn(xi,xj))

Definition 2. The inverse hyperbolic tangent (artanh) kernel

is defined as follows:

κartanh,n(xi,xj) = artanh(κn(xi,xj))
4For xi ∼ ǫλi

and xj ∼ ǫλj
, i.e., λi (resp. λj ) is constant for all the

entries of xi (resp. λj ), we have

κG,log(xi,xj) = e
− 1

2σ2

∑
τ |λi(i−τ)−λj(j−τ)|2

.

For the same process, i.e., xi,xj ∼ ǫλ, we get

κG,log(xi,xj) = e
− 1

2σ2
λm|i−j|2

.

5To show this, consider three values (m = 1 for illustration) with values

x(i) < x(j) < x(k), and ‖x(i) − x(j)‖ = ‖x(j) − x(k)‖. Then, we

get in the logarithmic scale: ‖ log(x(i)) − log(x(j))‖ > ‖ log(x(j)) −
log(x(k))‖.

Proposition 3. The logarithmic (normalized) kernel and the

artanh kernel are valid reproducing kernels.

Proof. To prove this, we consider the expansion of each func-

tion into an infinite series:

− log(1 − κn(xi,xj)) =

∞
∑

k=0

κn(xi,xj)
k

k
, (8)

and

artanh(κn(xi,xj)) =
∞
∑

k=0

κn(xi,xj)
2k+1

2k + 1
, (9)

where we have −1 < κn(xi,xj) < 1. The validity of these

kernels results from applying rules of Table 1, namely Rule 1

and Rule 3. It is worth noting that these rules were also con-

sidered to show that the exponential kernel is a valid kernel,

by writing it as an infinite series.

These kernels are illustrated in Figure 2, as a function of

the normalized kernel κn(·, ·). The artanh kernel is related

to the logarithmic (normalized) kernel, since

artanh(z) = 1
2 (log(1 + z)− log(1− z))

for any z, and more specifically for z = κn(xi,xj). Beyond

these simple relations, the logarithmic (normalized) kernel

defines a feature space that allows to approximate all continu-

ous functions. This property is studied next, with the concept

of “universal kernels”.

Universality

The concept of universal kernels is proposed in order to study

the generalization ability of machine learning classifiers, in-

dependent of the learning scheme. In [10], the authors estab-

lish the existence of the class of “universal” kernels, as the set

of kernels that are consistent for a large variety of classifica-

tion problems, provided a suitably chosen regularization. Ex-

amples of universal kernels include the exponential and Gaus-

sian kernels. This is formalized here for the proposed kernel.

Proposition 4. The logarithmic (normalized) kernel is a uni-

versal kernel.

Proof. From the expansion of the logarithmic (normalized)

kernel into an infinite series, as given in (8), this kernel takes

the form
∞
∑

k=0

ak (κn(xi,xj))
k ,

with ak > 0, for all k ≥ 0. Due to Corollary 10 in [10] (given

here6 for completeness of this paper), we get the universality

of this kernel.

6Corollary 10 in [10]: Let 0 < r ≤ ∞ and f : (−r, r) → lR be

a C∞-function that can be expanded into its Taylor series in 0, namely

f(z) =
∑∞

n=0 an zn for all −r ≤ z ≤ r. If we have an > 0 for all

n, then κ(xi,xj) = f(〈xi,xj〉) defines a universal kernel on every com-

pact subset of {x ∈ lRd : ‖x‖22 ≤ r}.
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4. EXPERIMENTATIONS

Chlorine in water distribution systems

A drinking water system is a collection of pipes connecting

different nodes, reservoirs, pumps and valves used to trans-

port drinking water to consumers. To regulate the quality of

drinking water, all pathogenic microorganisms must be de-

stroyed using a chemical disinfectant. The best widely used

and inexpensive disinfectant is chlorine. For this reason, the

Environmental Protection Agency (USA) and many countries

such as France adopt the injection of chlorine into water sup-

ply networks, and enforces regulations regarding the mini-

mum amount of chlorine within a drinking water distribution

system. Chlorine is injected at treatment stations, and chlo-

rine concentrations decay over time essentially as water disin-

fection takes place (and reaction occurring at the pipe walls),

while it must be present at the points of water consumption.

Chlorine sensors are expensive, costly to implement, and

unfeasible to equip all the nodes for observability issues.

Thus, control algorithms remain inefficient, making auto-

mated closed-loop control not yet widely accepted. Cur-

rently, open-loop manual control schemes are often investi-

gated. Treatment stations inject just enough chlorine to main-

tain a minimum predicted chlorine residual everywhere in the

network (typically the allowable minimum is 0.2 mg/l). Occa-

sional offline measurements of chlorine concentration taken

within some given nodes are sometimes used to adjust the

chlorine input.

It is often assumed that the chlorine distribution within a

single pipe is described by

∂x(y, t)

∂t
+ ν

∂x(y, t)

∂y
= −λx(y, t) (10)

where x(y, t) is the chlorine concentration at position y
within the pipe and time t, ν is the water velocity, and λ is

the kinetics of water, also called first-order reaction constant.

One also assumes that chlorine completely mixes at pipe junc-

tions. For a single pipe, the exact solution of the above differ-

ential equation is given by

x(y, t) = x(y − νt, 0) e−λ t,

when y > νt; otherwise x(y, t) = x(0, t− y/ν) e−λy/ν .

In practice, the problem is more complicated. On the one

hand, the first-order reaction parameter λ is a function of sev-

eral parameters such as the wall reaction rate (which depends

on the pipe material, roughness, and age, and cannot be di-

rectly measured), and the bulk reaction rate (itself a function

of temperature, pH, ...). On the other hand, the water velocity

ν is never constant, due to the ever fluctuating consumer de-

mand (varies instantly, within the week, within the seasons,

...), while it is most of the time unknown (nominal values of

aggregate water demand are often assumed). Combining all

these uncertainties and variabilities, a model-based approach

is unrealistic.

Experimental results

In this paper, we study chlorine variation at a single location

(sensor), and propose to use domain description using one-

class SVM. The measurements of chlorine were taken from

the public water supplies of the city of Cannes, in France. We

considered 3 days of chlorine concentration measures, with

sampling at the rate of a sample every 3 minutes. This time

series exhibits large fluctuations due to the variations in wa-

ter consumption and an inefficient control system (no closed-

loop control, only one sensor for chlorine observability). See

Figure 1.

To capture the structure of the time series, a sliding win-

dow of length m = 10 was used, with

xi = [x(i − 9) · · · x(i − 1) x(i)]⊤.
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Fig. 3. The distance profile of all entries to the center of the one-class. The center is determined by classical one-class SVM

algorithm, using (from left to right) the normalized linear kernel, the gaussian kernel with logarithmic distance, the logarithmic

(normalized) kernel, and the inverse hyperbolic tangent (artanh) kernel.

As applications for the one-class SVM method, we consid-

ered the four types of kernel as studied in this paper:

• the normalized kernel, in (6);

• the Gaussian kernel with logarithmic distance, in (7);

• the logarithmic (normalized) kernel, in Definition 1;

• and the inverse hyperbolic tangent (artanh) kernel, in

Definition 2.

Figure 3 shows the profile of the distance of data to the

center of the one-class, as estimated by the one-class SVM al-

gorithm, where different kernels were used. To get compara-

ble results for all these kernels, the number of support vectors

was set to 145, which corresponds to 10% of the samples. It

is easy to see that the normalized kernel (left figure) provides

the largest fluctuations, as opposed to the other proposed ker-

nels. This illustration can be viewed as a better representation

of the time series with the latter kernels. One may also con-

sider a threshold (no illustrated) on the value of the distance,

in order to provide a decision rule for one-class detection.

5. CONCLUSION

In this paper, we studied time series from exponential de-

cay/growth processes, such as the chlorine concentration in

a water supply network. We derived several kernels appro-

priate for these data, and studied some theoretical properties.

Experiments conducted on real chlorine time series showed

the performance of these kernels using a one-class SVM al-

gorithm. As for future work, we are studying other theoret-

ical properties, as well as the use of the proposed approach

for classification and regression tasks. We are also investigat-

ing the use of these kernels when measurements from several

nodes of the network are available.
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