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∗Laboratoire d’Analyse et de Surveillance des Systèmes (LASYS), Faculty of Engineering, Lebanese University, Lebanon
†Institut Charles Delaunay (UMR CNRS 6279), Université de Technologie de Troyes, France
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Abstract—One may monitor the heart normal activity by
analyzing the electrocardiogram. We propose in this paper
to combine the principle of kernel machines, that maps data
into a high dimensional feature space, with the autoregressive
(AR) technique defined using the Yule-Walker equations, which
predicts future samples using a combination of some previous
samples. A pre-image technique is applied in order to get back
to the original space in order to interpret the predicted sample.
The relevance of the proposed method is illustrated on real
electrocardiogram from the MIT benchmark.

Index Terms—kernel machines, ECG signals, autoregressive
model, nonlinear models, pre-image problem

I. INTRODUCTION

Heart disease remains the main cause of death nowadays.

There are many different forms of heart disease, such as the

heart failure, the narrowing or blockage of the coronary arter-

ies. One way to monitor the heart is the electrocardiography.

The record, which is called the electrocardiogram (ECG),

shows the series of waves that relate to the electrical impulses

which occur during each beat of the heart, and can be detected

at the surface of the body. Many studies have been made in

order to detect and classify the heart diseases of the ECG

signals [1], [2], and [3].

An ECG is a time series corresponding to the electrical

activity of the heart. The autoregressive (AR) model is one

of the most useful technique for time series analysis [4]. Its

concept is the prediction of a sample using a combination of

some previous ones. Being a linear combination, the model is

thus defined by the coefficients, or the weights in the linear

expansion. In order to use such model, one has to identify

its model parameters that are the coefficients and its order

which is the number of the previous samples. A technique used

to estimate its coefficients is the Yule-Walker equations. It is

based on the evaluation of the autocorrelation function. Still,

this linear technique is inappropriate for nonlinear systems

such as modeling ECG.

In order to extend the AR to the case of nonlinear systems,

we propose to apply the concept of the kernel methods. The

main idea behind using the kernels is to map the data from

an input space to a feature space using a nonlinear mapping

function. In practice, it is not necessary to explicitly determine

the mapping function, one can transform a linear algorithm

into a nonlinear one by applying the kernel trick [5]. Initially

introduced with Vapnik’s Support Vector Machines (SVM) [6],

the use of kernels proliferated in machine learning due to their

low computational cost with high performances. Recently,

some kernel-based methods were considered for the analysis

and prediction of time series data [7], including the SVM for

regression and kernel Kalman filter [8].

In this paper, we propose to combine the concept of the ker-

nel machine with the simplicity of the AR model for modeling

real ECG signal. The kernel AR is determined using the Yule-

Walker equations in the feature space. Thus, parameters are

estimated using the (lagged) expected kernels. To this end, we

use a Gaussian kernel with the AR model estimated using the

Yule-Walker equations. Eventhough, the kernel AR estimates

the samples in some feature space. Therefore, being in a high

dimensional space, one cannot interpret the sample. Thus, it

is required to map back the data from the feature space to

the input space where the sample can be interpreted. This

necessitate the use of a pre-image technique to predict the

future sample into a space where it can be observed. Many

techniques have been presented in literature, in order to solve

the pre-image problem. See [9] for a recent review. The paper’s

authors have solved the pre-image problem for biomedical

signal processing in [10], [11], [12].

The rest of the paper is organized as follows: in the next

section, we define the Yule-Walker equations used to estimate

the coefficients of the AR model. In section III, we present

the principle of the kernel methods in machine learning, and

we extend the use of the AR model to the nonlinear systems.

A pre-image technique is described in section IV in order to

estimate the future sample. Section V illustrates the efficiency

of the proposed technique on some real ECG signal taken from

the MIT-BIH Normal Sinus Rhythm Database.

II. YULE-WALKER EQUATIONS FOR AR MODEL

A real-valued stochastic process xi is said to be an autore-

gressive process of order p, denoted by AR(p) if there exists

α1, . . . , αp ∈ IR, with αp 6= 0, and a white noise εi such that

xi =

p
∑

j=1

αjxi−j + εi. (1)
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Fig. 1. Illustration of the AR concept, where the xi is defined using the
parameters αk and the p previous xi−k .

Therefore, the set xp+1, xp+2, . . . , xn defines a time series,

described by the AR model of order p. The concept of the

AR model is illustrated in figure 1. Several techniques in the

literature allow to determine the parameters αk. One of them

is the resolution of the Yule-Walker equations. They entail

the recursive computation of the autocorrelation function ρ of

the AR(p)-process. The recursion ρ(s) =
∑p

j=1 αjρ(s − j),
for lag s > 0 refers to the Yule-Walker equations. Having

ρ(−s) = ρ(s), and taking the empirical counterparts r(j) of

the autocorrelation ρ(j), we get a more formal equation

r = Rα,

where r = [r(1) . . . r(p)]>, α = [α1 . . . αp]
>, and

R =











1 r(1) . . . r(p− 1)
r(1) 1 . . . r(p− 2)

...
. . .

...

r(p− 1) r(p− 2) . . . 1











.

When the p × p matrix R is invertible, we can rewrite the

formal equation as R
−1

r = α.

III. AR MODEL WITH KERNEL MACHINES

A. Kernel methods

The aforementioned techniques are used in the case of linear

data. In order to extend their use to the nonlinear case, we

propose the kernel machines. Kernel functions are typically

viewed as providing an implicit mapping of points into a high-

dimensional space, with the ability to gain much of the power

of that space.

Let X be an input space with the canonical (Euclidean) dot

product xi · xj for any xi, xj ∈ X . Let κ : X × X 7→ H be a

symmetric and continuous function, i.e., a kernel. A kernel is

positive semi-definite if and only if a matrix K with entries

κ(xi, xj) for any finite subset of X is positive semi-definite,

that is
∑

i,j αiαjκ(xi, xj) ≥ 0 for all αi, αj ∈ IR and all

xi, xj ∈ X . Based on the Moore-Aronszajn theorem [13],

any positive semi-definite kernel guarantees the existence of

a unique1 feature space (or reproducing kernel Hilbert space)

H, where κ defines an inner product. Let Φ(·) denotes the

1Unique, up to an isometry.

mapping function from the input space X , into the feature

space H, then

κ(xi, xj) = 〈Φ(xi), Φ(xj)〉H,

for any xi, xj ∈ X , where 〈· , ·〉
H

denotes the corresponding

inner product in H, and ‖ · ‖
H

its norm.

B. Kernel AR model

Using the concept of the kernel machines, and applying

it to the data of some time series, each xi of the series is

mapped into the feature space using the mapping function

Φ(·), yielding to Φ(xi). So in the case of the AR model, when

extending it to the nonlinear systems, and applying the kernel

machines, it will be defined in the feature space by

Φ(xi) =

p
∑

j=1

αj Φ(xi−j) + εΦi .

Figure 2 illustrates the concept of the kernel AR model. Let

µ be the mean of the mapped time series, namely

µ = IE[Φ(xi)],

where IE[·] is the expectation of Φ(xi) over all xi’s. Then,

Φ(xi)− µ =

p
∑

j=1

αjΦ(xi−j) + εΦi − µ

=

p
∑

j=1

αj

(

Φ(xi−j)− µ
)

+ εΦi −
(

1−

p
∑

j=1

αj

)

µ.

With the expectation of both sides, the times series being

assumed stationary, we get (1 −
∑p

j=1 αj)µ = IE[εΦi ]. By

taking the centered data (Φ(xi−τ ) − µ), with lag τ > 0, we

get

〈Φ(xi)− µ, Φ(xi−τ )− µ〉
H
= 〈εΦi − IE[εΦi ], Φ(xi−τ )− µ〉

H

+

p
∑

j=1

αj〈Φ(xi−j)− µ, Φ(xi−τ )− µ〉
H
.

(2)

Using the kernel trick, we replace the dot product in the feature

space by some kernel function, we define the centered version

of a kernel κ(·, ·) with

κc(xi, xj) = 〈Φ(xi)− µ, Φ(xj)− µ〉
H
.

By analogy with the linear AR case, we assume that the

noise εΦi and Φ(xi−τ ) are uncorrelated for every positive lag

τ . Therefore, by taking the expectations of expression (2) and

assuming the stationarity, we get for any τ ≥ 1:

IE[κc(xi, xi−τ )] =

p
∑

j=1

αj IE[κc(xi−j , xi−τ )], (3)

where the notion of expected kernels is equivalent to the one

recently studied in [14]. By considering all the lag values,

expression (3) is written in matrix form

rκ = Rκ α,
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Fig. 2. Illustration of the Kernel AR model concept, for which, the data are mapped from X to H, where the linear AR concept is applied on the mapped
data. However, once ψi is evaluated, a mapping back from H to X is needed to interpret xi.

where

rκ=
[

IE[κc(xi, xi−1)] IE[κc(xi, xi−2)] · · · IE[κc(xi, xi−p)]
]>

,

and Rκ is the matrix described by the expected kernels with










IE[κc(xi, xi)] IE[κc(xi−2, xi−1)] · · · IE[κc(xi−p, xi−1)]
IE[κc(xi−1, xi−2)] IE[κc(xi, xi)] · · · IE[κc(xi−p, xi−2)]

...
...

. . .
...

IE[κc(xi−1, xi−p)] IE[κc(xi−2, xi−p)] · · · IE[κc(xi, xi)]











The vector of coefficients α is can be calculated by inverting

the matrix Rκ, with

α = R
−1
κ rκ.

In practice, the expectations are estimated over a set of

n available samples. The centered version of the kernel is

determined using

κc(xi, xj) = κ(xi, xj)−
1

n

n
∑

k=1

κ(xi, xk)−
1

n

n
∑

k=1

κ(xj , xk)

+
1

n2

n
∑

k,k′=1

κ(xk′ , xk).

IV. PRE-IMAGE TECHNIQUE AS A PREDICTION OF FUTURE

SAMPLES

When the learning stage has been completed with some

n available samples, the model parameters are estimated. The

AR model in feature space can thus estimate the future sample

by

ψi =

p
∑

j=1

αj Φ(xi−j),

starting with i = n + 1. This evaluation of p samples in the

feature space gives a sample in such space. Nonetheless, in

a high space, this sample can not be interpreted. Thus in

order to predict a future sample in the original space, one

needs to map back ψi from the feature space into the input

space. Nevertheless, a combination can lead to sample outside

the image space, as shown in figure 2, thus, the sample may

not have a pre-image, or if it exists it may not be unique.

This is the pre-image problem, where one seeks to find an

approximate solution in the input space, whose image by

the nonlinear function is as close as possible to the sample

estimated in the feature space. Several techniques have been

proposed to solve this ill-posed problem. This includes a

multidimensional scaling technique, a conformal map, and a

learning scheme. See [9] for a formal definition of the pre-

image problem, and a recent survey of the literature.

As aforementioned, the pre-image problem is solved when

we can find an approximate solution x∗i whose image Φ(x∗)
is as close as possible to ψi. This is defined by the following

optimization problem:

x∗i = argmin
x

1

2

∥

∥

∥
Φ(x)−

p
∑

j=1

αj Φ(xi−j)
∥

∥

∥

2

H

.

In general, we can write it as

x∗i = argmin
x
Ji(x),

with

Ji(x) = −

p
∑

j=1

αj κ(xi−j , x) +
1

2
κ(x, x), (4)

where the term independent of x has been removed.

One technique used to solve such optimization problem

is the fixed-point iterative technique. Based on the gradient



TABLE I
MSE CALCULATED FOR THE LINEAR AR MODEL AND THE KERNEL AR MODEL USING THE YULE-WALKER EQUATIONS TO MODEL ECG SIGNALS, AND

THE MEAN OF THE MSE OVER THE 10 SIGNALS.

Signal number 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean of MSE
over the 10 signals

Kernel AR 0.00056 0.00030 0.00021 0.00027 0.00014 0.00022 0.00018 0.00039 0.00021 0.00059 0.000313
Linear AR 0.0396 0.0091 0.0631 0.0210 0.0203 0.0268 0.0619 0.221 0.0169 0.0077 0.04874
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Fig. 3. The modeling of 2 signals, using the kernel AR method, and the linear AR method. The blue signal presents the original one, the red is the one
modeled using the kernel method, and the cyan is the one modeled using the linear AR.

descent scheme, and the type of kernel used, we can imple-

ment an iterative scheme to identify the pre-image [15]. The

Gaussian kernel is the most used one. It is defined by

exp(−‖xi − xj‖
2/2σ2),

for any xi, xj ∈ X , where σ defines its bandwidth parameter.

The resulting cost function Ji(x) is defined by

−

p
∑

j=1

αj exp(−‖xi−j − x‖2/2σ2).

Taking the derivative of the above expression with respect to x,

and setting it to zero, we get the fixed-point iterative expression

x∗i,t+1 =

∑p

j=1 αj exp(−‖xi−j − x∗i,t‖
2/2σ2)xi−j

∑p

j=1 αj exp(−‖xi−j − x∗i,t‖
2/2σ2)

.

V. EXPERIMENTATIONS

We applied the proposed method to predict future samples

of the ECG signals on some real ones taken from the MIT-

BIH Normal Sinus Rhythm Database. The ECG signals are

considered stationary, foe they are taken in a 1 minute of time.

To this end, the gaussian kernel was used. The experiments

were divided into two stages: learning and testing. 150 samples

from each signal were used in the learning stage, where the

order and the coefficients of the AR model and the bandwidth

of the kernel were optimized. The same order for each signal

is taken for both the linear AR and the kernel AR models.

The following 150 samples were used to test the relevance

of the proposed kernel AR model, to the linear AR model

where its coefficients are estimated using a linear Yule-Walker

equations.

A comparison between the kernel AR method, and the linear

AR model has been made. The comparison is evaluated based

on the calculation of mean square error estimated on the 150

samples of the test stage. The mean square error (MSE) was

estimated with

ε =
1

n

2n
∑

i=n+1

‖x∗i − xi‖
2,

where x∗i is the predicted value at instant i, and xi is the true

value of the ECG signal at the same time. Table I shows the

MSE for the kernel AR method and the linear AR method for

the ECG signals, while the last column shows the mean of the

MSE over the 10 signals. As we can see, the kernel AR model

gives better results than the linear AR model. The MSE in the

first case is approximately 100 times less than in the linear

AR case.

Figure 3 shows two examples of modeling signals for

normal cardiac rhythm, on the one hand, using the kernel

AR technique estimated with the Yule-Walker equations in the

feature space, and on the other, using the linear AR technique



evaluated with the Yule-Walker equations. The blue line is

the original ECG signal, the red is the one modeled using

the proposed kernel AR method, and the cyan is the one

modeled using the linear AR. As we can see, the proposed

method presents a more appropriate modeling than the linear

AR method. The linear AR method fails to model the QRS

complex of the heart beat, while the kernel AR method models

the complex for each person based on his heart rate.

VI. CONCLUSION

Heart disease is one of the main death causes these days.

Yet by analyzing and monitoring the ECG signals, one can

predict when an arrythmia may occur. In this paper, we have

presented a way to predict the evolution of the electrical

activity of the heart using kernel machines. To this end, we

have combined the concept of the AR model, which is a linear

way to predict sample for time series, with the kernel methods

in machine learning, where the data are mapped into a high

dimensional feature space. We have defined the kernel AR

in feature space using the Yule-Walker equations in order to

estimate its coefficients. Once the future samples are estimated

using this technique, a pre-image technique is required to map

the data back to the input space, where the samples can be

interpreted. The pre-image technique used was the fixed-point

iterative method. The efficiency of the proposed method is

illustrated on some real ECG signals taken from the MIT-BIH

Normal Sinus Rhythm Database.

As for future work, we consider the estimation of the

AR model using the partial autocorrelation function, or the

Bayesian Information Criterion. Also, we intend to extend

the use of the kernel machines to the autoregressive moving

average or autoregressive integrated moving average model.
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