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ABSTRACT

Nonlinear unmixing of hyperspectral images has generated

considerable interest among researchers, as it may overcome

some inherent limitations of the linear mixing model. In this

paper, we formulate the problem of estimating abundances

of a nonlinear mixture of hyperspectral data based on a new

multi-kernel learning paradigm. Experiments are conducted

using both synthetic and real images in order to illustrate the

effectiveness of the proposed method.

Index Terms— Hyperspectral image, nonlinear unmix-

ing, multi-kernel learning

1. INTRODUCTION

Spectral unmixing is an important issue to analyze remotely

sensed hyperspectral data, due to the relatively low spatial res-

olution of images. This involves the decomposition of each

mixed pixel into a combination of pure endmember spectra,

and the estimation of the abundance value for each endmem-

ber [1]. Under the assumption that the endmembers have been

identified, hyperspectral image unmixing thus reduces to an

inverse problem for estimating the abundances. To be physi-

cally interpretable, the latter are required to satisfy two con-

straints: they must be nonnegative and their sum equal to one.

Although the linear mixture model has been widely used

due to its simple physical interpretation and tractable estima-

tion process, there are many situations in which it may not be

appropriate and could be advantageously replaced by a non-

linear one. Nonlinear unmixing has generated considerable

interest among researchers, and different methods have been

proposed to account for nonlinear effects. Using supervised

approaches, such as neural network training, is a way to by-

pass difficulties that come along with unknown complex mix-

ing mechanism [2, 3]. Unsupervised approaches that do not

require training samples have also been extensively studied

in the literature. In [4], a nonlinear unmixing algorithm for

generalized bilinear mixture model has been proposed based

on Bayesian inference. In [5, 6], the authors have extended

the collection of endmembers by adding artificial cross-terms

of pure spectral signatures to model light scattering effects

on different materials. In [7], the authors have addressed the

nonlinear unmixing problem with an intimate mixture model.

Nonlinear algorithms operating in reproducing kernel

Hilbert spaces (RKHS) have also been investigated. In [8],

the authors have proposed a kernelization of the FCLS algo-

rithm [9]. Unfortunately, even though this approach considers

nonlinear distortions of spectral signatures, it does not explic-

itly include nonlinear interactions of the endmember spectra.

To overcome this drawback, in our previous work [10], we

have proposed a new framework based on reproducing ker-

nel machinery in order to possibly take nonlinear photon

interactions into account. The family of mixing models that

was considered in that paper are partially linear models,

which combines a linear mixing model parameterized by the

abundances to be estimated, with a nonlinear nonparametric

function in a RKHS. In this paper, we extend this approach by

formulating the problem as a multi-kernel learning paradigm,

in order to optimize the tradeoff between the linear and non-

linear terms in the mixing model. Experiments are conducted

using both synthetic and real images in order to illustrate the

effectiveness of the proposed method.

2. PRESENTATION OF THE ALGORITHM

2.1. Notations

Suppose that in a given hyperspectral image, there exist R
significant endmembers with spectral signature mi ∈ R

L,

where L denotes the number of spectral bands. Note that,

usually, we have R ≪ L. Let r ∈ R
L be an observed hyper-

spectral pixel, and α ∈ R
R the unknown abundance fractions

associated to the latter. Let M = [m1, . . . ,mR] ∈ R
L×R be

the matrix of the endmembers. For the sake of convenience,

the ℓ-th row ofM is denoted bym⊤
λℓ

∈ R
L, that is, the vector

of the endmember signatures at the ℓ-th wavelength band.

2.2. Formulation of the nonlinear unmixing problem

There are many situations where it is inappropriate to assume

a linear model for hyperspectral data unmixing. See, e.g.,

the intimate mixture model [1]. This motivate us to consider



general mixing mechanisms of the form

r = Ψ(α,M) + n (1)

with Ψ an unknown nonlinear function that defines the in-

teractions between the endmembers in matrix M , and n a

measurement noise vector. To address the estimation of the

abundance vector α, we suggest to consider the following in-

verse problem

ψ∗ = argmin
ψ∈H

1

2
‖ψ‖2H +

1

2µ

L
∑

ℓ=1

(rℓ − ψ(mλℓ
))2 (2)

with H a given functional space, and µ a positive parameter

that controls the trade-off between regularization and fitting.

Clearly, this approach may fail if the functionals ψ of H can-

not be adequately and finitely parameterized. Kernel-based

methods can lead to efficient and accurate resolution of the

inverse problem (2). In order to extract the mixing ratios of

the endmembers, we define the function ψ in (2) as a partially

linear model, which combines a linear mixing model param-

eterized by the abundances to be estimated, with a nonlinear

nonparametric function, namely,

ψ(mλℓ
) = α⊤mλℓ

+ ψnlin(mλℓ
)

subject to α � 0 and 1
⊤α = 1

(3)

with ψnlin any real-valued function on a compact M, found

from an RKHS denoted by Hnlin. Let κnlin be its reproducing

kernel. The constraints in (3) ensure that the abundance frac-

tions are nonnegative, and that their sum is equal to one. We

propose to conduct hyperspectral data unmixing by solving

the following optimization problem

ψ∗, u∗ = argmin
ψ,u

1

2

(

1

u
‖ψlin‖

2
Hlin

+
1

1− u
‖ψnlin‖

2
Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

where ψ = ψlin + ψnlin

with ψlin(mλℓ
) = h⊤mλℓ

subject to eℓ = rℓ − ψ(mλℓ
) and h � 0

0 ≤ u ≤ 1

(4)

where u is used to optimize the tradeoff between the lin-

ear model ψlin and the nonlinear nonparametric function

ψnlin. Learning simultaneously the parameter u, and func-

tions ψlin and ψnlin, in a single optimization problem is known

as the multi-kernel learning problem. See [11] and references

therein. The rest of this section is devoted to the formulation

and resolution of a convex optimization problem. Comparing

equations (3) and (4), it is important to note that the sum-

to-one constraint 1⊤h = 1 has been given up due to the

antagonistic action of the parameter u. To get α after reach-

ing convergence, an explicit normalization of h by the sum

of its entries can be performed.

2.3. Convexity of the problem

Problem (4) is a convex optimization problem by virtue of the

convexity of the function f(u, ψ) = ‖ψ‖2
H
/u over H × R

∗
+.

See [12]. This allows us to formulate the following two-stage

optimization problem, with respect to ψ and u successively,

in order to solve problem (4)

min
u
J(u) subject to 0 ≤ u ≤ 1 (5)

where J(u) is defined by (6), see next page.

The function J(u) in subproblem (6) is defined as the op-

timum of a family of convex functions in (u, ψ), subject to

convex constraints over ψ. As proven in [12], it turns out

that J(u) is convex in u and, as a consequence, that the con-

strained optimization problem (5) is convex.

2.4. Solution to the problem

By the strong duality property, we can derive a dual problem

that has the same solution J(u) = F (u, ψ∗) as the primal

problem (6). Let us introduce the Lagrange multipliers βℓ
and γr. The Lagrange function associated with problem (6)

can be written as

G =
1

2

(

1

u
‖h‖2 +

1

1− u
‖ψnlin‖

2
Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

−
L
∑

ℓ=1

βℓ (eℓ − rℓ + ψ(mλℓ
))−

R
∑

r=1

γr hr

(8)

with γr ≥ 0, where we have used ‖ψlin‖
2
Hlin

= ‖h‖2. The

conditions for optimality ofG with respect to the primal vari-

ables are given by











h∗ = u
(

∑L

ℓ=1
β∗
ℓ mλℓ

+ γ∗

)

ψ∗
nlin = (1− u)

∑L

ℓ=1
κnlin(·,mλℓ

)β∗
ℓ

e∗ℓ = µβ∗
ℓ

(9)

As expected, note from equation (9) that u and 1 − u con-

trol proportions of the linear and nonlinear components in the

model. By substituting equation (9) into (8), we get the dual

problem (11), see next page, where Knlin is the Gram matrix

associated with ψnlin, defined by

[Knlin]ℓ,p = κnlin(mλℓ
,mλp

). (10)

Problem (11) is a quadratic program (QP). Numerous candi-

date methods exist to solve it, such as interior point, active set

and projected gradient. Function J(u) can thus be evaluated

at any point u0 by solving this QP problem, with u = u0.

Once the problem (11) has been solved, the variable u in

the problem (5) is updated using a gradient descent strategy.

The existence and computation of the derivatives of supre-

mum functions such as J(u) have been largely discussed in



J(u) =























min
ψ
F (u, ψ) =

1

2

(

1

u
‖ψlin‖

2
Hlin

+
1

1− u
‖ψnlin‖

2
Hnlin

)

+
1

2µ

L
∑

ℓ=1

e2ℓ

subject to eℓ = rℓ − ψ(mλℓ
) with ψ = ψlin + ψnlin

and ψlin(mλℓ
) = h⊤mλℓ

with h � 0

(6)

J(u) =























max
β,γ

G′(u,β,γ) = −
1

2

(

β

γ

)⊤ (

Ku + µI uM

uM⊤ uI

)(

β

γ

)

+

(

r

0

)⊤ (

β

γ

)

subject to γ � 0

with Ku = uMM⊤ + (1− u)Knlin

(11)

the literature [13]. The derivatives of J at u0 can be calculated

as if the corresponding minimizer (β∗

0,γ
∗
0) was independent

of u0, i.e.,

dJ(u)

du

∣

∣

∣

∣

u=u0

=
∂G′(u,β∗

0,γ
∗
0)

∂u

∣

∣

u=u0

= −
1

2

(

‖M⊤β∗

0 + γ∗
0‖

2 − β∗

0

⊤
Knlin β

∗

0

)

(12)

An appropriate selection of the step size allows the gradient

descent algorithm to ensure that the constraint 0 ≤ u ≤ 1
is satisfied. After a given stopping criterion is met, such as

small modulus of the derivative (12), pixel reconstruction can

be performed using

r∗ = [ψ∗(mλ1
), . . . , ψ∗(mλL

)]⊤ (13)

with ψ∗(mλℓ
) = m⊤

λℓ
h
∗ + ψ∗

nlin(mλℓ
) defined in (9). Fi-

nally, the estimated abundance vector is given by

α∗ =
M⊤β

∗ + γ∗

1
⊤(M⊤β∗ + γ∗)

. (14)

3. EXPERIMENTS

We shall now conduct some simulations to validate the pro-

posed unmixing algorithm, and to compare it with state-of-

the-art methods, using both synthetic and real images.

3.1. Experiments on synthetic images

Let us first report some experimental results on synthetic im-

ages. The materials considered in the following scenes are

epidote, kaolinite, buddingtonite, alunite, calcite, almandine,

jarosite and lepidolite, whose spectra consist of 420 contigu-

ous bands. In the first scene, only the first three materials

were selected to generate images. In the second scene, the

first five materials were used. In the third scene, the eight

materials were considered. For each scene, three 50-by-50
images were generated with different mixture models, each

providing N = 2500 pixels for evaluating and comparing

performances. These three models were the linear model, the

generalized bilinear mixture model with attenuation factors

γij equal to 1, and a post-nonlinear mixing model (PNMM)

defined by r = (Mα)0.7 + n, where ( · )0.7 denotes the ex-

ponential value 0.7 applied to each entry of the vector. All

these images were corrupted with an additive white Gaussian

noise n with SNR of 30 dB, except in the case illustrated by

Figure 1 that is described hereafter. For our algorithm, the

Gaussian kernel

κnlin(mλp
,mλℓ

) = exp(−‖mλp
−mλℓ

‖2/2σ2)

was selected to be the reproducing kernel of Hnlin.

For illustration purpose only, Figure 1 depicts the evolu-

tion of u and 1−u that was observed during a run of the two-

stage optimization algorithm derived from (5)-(6). These pre-

liminary simulations were conducted with a noiseless mixed

pixel composed of 5 endmembers. The step sizes were ad-

justed in order to provide a clear demonstration. It can be

observed that, in the case of the linear mixing, the weight-

ing coefficient u converged towards 1. This means that, as

expected, the ummixing algorithm only captured the linear

component with ψlin. It converged to other values when con-

fronted with the bilinear and post-nonlinear mixing models.

Our approach was compared with the fully constrained

least square method (FCLS) [9], the kernel fully constrained

least square method (KFCLS) [8], the extended endmember-

matrix method (ExtM) [5], and the Bayesian algorithm de-

rived for generalized bilinear model (BilBay) [4]. The root

mean square error was used to compare these five algorithms.

Preliminary runs were performed using independent data to

tune their parameters. The results are reported in Table 1.

Our method was the most efficient one in these experiments.

3.2. Experiments with AVIRIS images

Let us now illustrate the performance of the proposed algo-

rithm, when applied to a well known image captured on the

Cuprite mining district (NV, USA) by AVIRIS. A sub-image

of 30×101 pixels was chosen to evaluate and compare the per-

formance of the algorithms that have been previously enumer-

ated. This area of interest has L = 189 spectral bands. VCA
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Fig. 1. Evolution of u (curves with ’o’) and 1− u (curves with ’x’) for the three models. From left to right: linear, bilinear, PNMM

Table 1. RMSE comparison
R = 3 R = 5 R = 8

linear bilinear PNMM linear bilinear PNMM linear bilinear PNMM

FCLS 0.0037 0.0758 0.0604 0.0134 0.1137 0.1427 0.0148 0.0930 0.1079

ExtM 0.0079 0.0312 0.0601 0.0157 0.0575 0.1427 0.0173 0.0560 0.1126

KFCLS 0.0054 0.2711 0.2371 0.0200 0.2051 0.1955 0.0216 0.1431 0.1274

BilBay 0.0384 0.0285 0.1158 0.0585 0.0441 0.1741 0.0448 0.0369 0.1159

Proposed 0.0104 0.0315 0.0230 0.0196 0.0288 0.0346 0.0185 0.0221 0.0291

algorithm was used to extract four endmembers. To evalu-

ate the performance, the averaged spectral angle between the

original r and the reconstructed r∗ pixel vectors was used

SA =
1

N

N
∑

n=1

θ(rn, r
∗
n)

with N is the number of pixels. The performance of each

approach is reported in Table 2. Note that KFCLS was not

considered in these tests as there is no possible direct recon-

struction of pixels. Clearly, in this example, our algorithm

had lower reconstruction errors than the other approaches.

Table 2. Spectral angles comparison
FCLS ExtM BilBay Proposed

SA 0.0206 0.0126 0.0154 0.0110
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