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ABSTRACT

Non-negativity is a widely used constraint in parameter estimation
procedures due to physical characteristics of systems under investi-
gation. In this paper, we consider an LMS-type algorithm for sys-
tem identification subject to non-negativity constraints, called Non-
Negative Least-Mean-Square algorithm, and its normalized variant.
An important contribution of this paper is that we study the stochas-
tic behavior of these algorithms in a non-stationary environment,
where the unconstrained solution is characterized by a time-variant
mean and is affected by random perturbations. Convergence anal-
ysis of these algorithms in a stationary environment can be viewed
as a particular case of the convergence model derived in this paper.
Simulation results are presented to illustrate the performance of the
algorithm and the accuracy of the derived models.

Index Terms— Non-negativity constraint, adaptive filtering,
non-stationary signal, convergence analysis

1. INTRODUCTION
Optimizing a cost function given a set of constraints is a common ob-
jective in parameter estimation problems. The constraints are usually
imposed by system specifications which provide a priori informa-
tion on the feasible set of solutions. Estimating parameters subject
to constraints poses specific problems in online applications. Non-
negativity is one of the most commonly stated constraints. It is often
imposed on the parameters to estimate in order to avoid physically
absurd and uninterpretable results. For instance, non-negativity con-
straints were used for image deblurring [1], deconvolution of system
impulse response estimation [2] and audio processing [3]. Anoth-
er similar problem is the non-negative matrix factorization (NMF),
which is now a popular dimension reduction technique [4, 5, 6]. This
problem is closely related to blind deconvolution, and has found di-
rect application in neuroscience [7] and hyperspectral imaging [8].
Separation of non-negative mixture of non-negative sources has also
been considered in [9, 10].

Over the last fifteen years, a variety of methods have been devel-
oped to tackle non-negative least-squares (NNLS) problems. Active
set techniques use the fact that if the set of variables which acti-
vate constraints is known, then the solution of the constrained least-
squares problem can be obtained by solving an unconstrained one
that includes only inactive variables. The active set algorithm of
Lawson and Hanson [11] is a batch resolution technique for NNL-
S problems. It has become a standard among the most frequently
used methods. In [12], Bro and De Jong introduced a modification
of the latter, called Fast NNLS, which takes advantage of the special

characteristics of iterative algorithms involving repeated use of non-
negativity constraints. Projected gradient algorithms [13, 14, 15, 16]
form another class, which is based on successive projections onto
the feasible region. In [17], Lin used this kind of algorithm for NMF
problems. Low memory requirements and simplicity make these al-
gorithms attractive for large scale problems. Nevertheless, they are
characterized by slow convergence rate if not combined with appro-
priate step size selection. The class of multiplicative algorithms is
very popular for dealing with NMF problems [5, 18]. Particular-
ly efficient updates were derived in this way for a large number of
problems involving non-negativity constraints [19]. However, these
algorithms require batch processing, which is not suitable for online
system identification problems.

An LMS-type adaptive algorithm called Non-Negative Least
Mean Square (NNLMS), which is suitable for online applications,
has been proposed in [20]. It is based on stochastic gradient de-
scent approach combined with a fixed point iteration scheme. The
NNLMS algorithm was studied in [20] for operation in stationary
environments, and was shown to converge to a solution satisfying
the Karush-Kuhn-Tucker conditions. In this paper we study the
stochastic behavior of the NNLMS algorithm and its normalized
counterpart for operation in a nonstationary environment, where the
unconstrained solution is characterized by a time-variant mean and
is affected by random perturbations. Convergence analysis of these
algorithms in a stationary environment can be viewed as a particular
case of the convergence model derived in this paper.

2. NON-NEGATIVE LEAST-MEAN-SQUARE ALGORITHM
Consider the estimation problem where the unknown system is char-
acterized by real-valued observations

y(n) = α∗�x(n) + z(n), (1)

where (·)� denotes the vector transpose, α∗ = [α∗
1,α

∗
2, . . . ,α

∗
N ]�

is the vector of model parameters, and x(n) = [x(n), x(n −
1), . . . , x(n − N + 1)]� is the input data vector. The input sig-
nal x(n) and the additive noise z(n) are assumed stationary and
zero-mean.

In certain applications, inherent physical characteristics impose
a non-negativity constraint on the estimate α. Therefore, the prob-
lem of identifying the optimum non-negative model can be formal-
ized as follows

αo = argmin
α

J(α)

subject to αo
i ≥ 0, ∀i,

(2)



where J(α) is a continuously differentiable and strictly convex
cost function in RN , and αo is the solution to the constrained op-
timization problem. To solve the problem (2), let us consider its
Lagrangian function Q(α,λ) given by [21]

Q(α,λ) = J(α)− λ�α,

where λ is the vector of non-negative Lagrange multipliers. The
Karush-Kuhn-Tucker conditions must necessarily be satisfied at the
optimum defined by αo, λo, namely,

∇αQ(αo,λo) = 0 (3)
αo
i [λ

o]i = 0, i = 1, . . . , N (4)

where ∇α stands for the gradient operator with respect to α. Using
that ∇αQ(α,λ) = ∇αJ(α)−λ, these equations can be combined
into the following expression

αo
i [−∇αJ(α

o)]i = 0, i = 1, . . . , N (5)

where the extra minus sign is just used to make a gradient descent
of J(α) apparent. Equations of the form ϕ(u) = 0 can be solved
with a fixed-point iteration algorithm by considering the problem
u = u+ ϕ(u) under some conditions on function ϕ. Implementing
this strategy with equation (5) leads to the component-wise gradient
descent algorithm

αi(n+ 1) = αi(n) + ηi(n)αi(n)[−∇αJ(α(n))]i (6)

with ηi(n) a positive step size required to get a contraction scheme
and to control the convergence rate.

Consider the criterion JMSE(α) = E{[y(n) − α�x(n)]2} to
be minimized with respect to α so that

αo = argmin
α

E{[y(n)−α�x(n)]2}

subject to αi ≥ 0, ∀i
(7)

The gradient of JMSE(α) with respect to α is ∇αJMSE(α) =
2 (Rxα − rxy), where Rx is the autocorrelation matrix of x(n),
and rxy is the correlation vector between x(n) and y(n). Following
a stochastic gradient approach, the second-order moments Rx and
rxy are replaced in (6) by the instantaneous estimates x(n)x�(n)
and y(n)x(n), respectively. Choosing a positive fixed step size η,
defining Dα(n) as the diagonal matrix with diagonal entries given
by α(n), leads to the stochastic update given by

α(n+ 1) = α(n) + ηDα(n)x(n) e(n) (8)

where the estimation error e(n) = y(n) − α�(n)x(n), and the
algorithm is required to be initialized with all αi(0) > 0. We refer
to this method as the Non-Negative LMS algorithm (NNLMS).

Compared with the classical LMS algorithm, the direction of
the (instantaneous) gradient vector in (8) is modified by the pre-
multiplication by ηDα(n), i.e., the ith component is scaled by
η αi(n). The weight vector update is then no longer in the direction
of the gradient, as a consequence of the constraints. This effect en-
ables the weight corrections to reduce gradually to zero for weights
approaching zero from the positive phase. These weights tend to
converge without becoming negative. If a weight that approaches
zero turns negative due to the stochastic update, the instant multi-
plicative weight αi(n) turns the update from the gradient descend
strategy to a gradient ascend one, and the weigth tends to turn pos-
itive again. Hence, differently from LMS, the NNLMS correction
term is a nonlinear function of α(n). This causes the two algorithms
to have completely different convergence behavrios

A direct extension of the NNLMS is the Normalized NNLMS.
Conditionally to α(n), the product e(n)Dx(n) in (8) is proportional
to the power of the input signal. Hence, setting a constant value for
the step size η leads to different weight updates for different signal
power levels. This is the same sensitivity to signal power verified
in the LMS algorithm. A popular way to address this limitation is
to normalize the weight update by the input vector squared �2-norm
which yields the Normalized NNLMS update equation

α(n+ 1) = α(n) +
η

x�(n)x(n) + �
Dα(n)α(n) e(n) (9)

A small positive regularization parameter � is added to the denomi-
nator x�(n)x(n) to avoid numerical difficulties.

3. STOCHASTIC BEHAVIOR STUDY FOR
NON-STATIONARY ENVIRONMENTS

The nonlinearity of the weight correction term with respect to the es-
timated weight vector makes the theoretical analysis of the NNLMS
algorithm quite different from that of LMS. Models for the behav-
ior of the algorithm in stationary environments have been studied in
[20]. We now study the stochastic behavior of the NNLMS and its
normalized variant with fixed step sizes for a non-stationary environ-
ment. To this end, instead of considering a constant system weight
vector α∗ in (1), the system is characterized by a time variant weight
vector α∗(n) given by

α∗(n) = α∗
o(n) + ξ(n) (10)

with α∗
o(n) a deterministic time-variant mean trajectory, and ξ(n) a

zero-mean random variable with covariance matrix Ξ = σ2
ξI that is

independent of any other signal. The deterministic trajectory may re-
sult from inherent properties of the system, such as cosine or circular
behavior [22]. This model leads to a tractable analysis and permits
inferences about the behavior of the algorithms in time variant en-
vironments, by varying the trajectory α∗

o(n) and the power σ2
ξ of

ξ(n). For the analyses that follow, we shall define the weight error
vector with respect to the mean unconstrained solution α∗

o(n) as

v(n) = α(n)−α∗
o(n). (11)

The following analysis is performed for x(n) and z(n) zero-mean
stationary Gaussian, and for z(n) white and statistically indepen-
dent of any other signal. We assume in the subsequent mean weight
behavior analysis that the input and weight vectors are statistically
independent, according to the well-known Independence Assump-
tion [23]. We start by studying the behavior of the NNLMS in non-
stationary environments. The result will be extended to its normal-
ized variant at the end of this section.

3.1. Mean weight behavior analysis

Considering that the estimation error can also be expressed by
e(n) = z(n) − (v(n) − ξ(n))�x(n), and using the relation (11)
in (9) the weight error update equation of NNLMS can be written as

v(n+ 1) = v(n) + ηz(n)Dx(n)v(n)

+ ηz(n)Dx(n)α
∗
o(n)− ηDx(n)α

∗
o(n)x

�(n)v(n)

− ηDx(n)v(n)v
�(n)x(n) + ηDx(n)v(n)ξ

�(n)x(n)

+ ηDx(n)α
∗
o(n)ξ

�(n)x(n)−∆(n).

(12)



where Dx(n) is the diagonal matrix with x(n) as diagonal entries,
and ∆(n) = α∗

o(n + 1) − α∗
o(n) is a deterministic vector propor-

tional to the derivative of the mean unconstrained optimal solution.
Taking the expected value of (12) and noting that the expectations of
the second, third, sixth and seventh terms on the r.h.s. are equal to
zero by virtue of the natures of z(n) and ξ(n) yields

E{v(n+ 1)} = E{v(n)}− ηE
�
Dx(n)α

∗
o(n)x

�(n)v(n)
�

− ηE
�
Dx(n)v(n)v

�(n)x(n)
�
−∆(n). (13)

where E {·} denotes the expected value. Using the independence
assumption, the second expectation in the r.h.s. of (13) can be written
as

E
�
Dx(n)α

∗
o(n)x

�(n)v(n)
�
= Dα∗

o
(n)RxE{v(n)} (14)

The third term is given by

E{Dx(n)v(n)v
�(n)x(n)} = diag{Rx K(n)} (15)

with K(n) the correlation matrix of the weight error K(n) =
E{v(n)v�(n)}. Hence the mean behavior model (13) is ex-
pressed by

E{v(n+ 1)} =
�
I − ηDα∗

o
(n)Rx

�
E{v(n)}

− η diag{Rx K(n)}−∆(n)
(16)

This recursion in the variable E{v(n)} requires a model for K(n).
A recursive model will be derived for K(n) in the later subsec-
tion. We have observed that a sufficiently accurate and more intuitive
mean behavior model can be obtained by neglecting the weight error
fluctuation terms and by using the following separation approxima-
tion K(n) ≈ E{v(n)}E{v�(n)}. A discussion about the validity
of this approximation can be found in [20]. We thus obtain the fol-
lowing first-order model

E{v(n+ 1)} =
�
I − ηDα∗

o
(n)Rx

�
E{v(n)} (17)

− η diag
�
Rx E{v(n)}E{v�(n)}

�
−∆(n)

3.2. Second-order moment analysis

The excess means square estimation error (EMSE) is given by
JEMSE(n) = E

�
(α(n)−α∗(n))�x(n)x�(n)(α(n)−α∗(n))

�
.

Using (10)-(11), the properties of ξ(n), we can write JEMSE(n) as

JEMSE(n) = E
�
(v(n)− ξ(n))�x(n)x�(n)(v(n)− ξ(n))

�

= trace{Rx K(n)}+ trace{Rx Ξ} (18)

The term trace{Rx Ξ} is the direct contribution of the random non-
stationarity of the system to the EMSE. In order to estimate the
EMSE, we need to derive a recursive model for K(n). The same
statistic assumptions A1–A4 as in [20] are used in the following
derivation.

Post-multiplying (12) by its transpose, taking the expectation, it
can be observed that

K(n+1) = K(n)+Kξ(n+1)+Kξ(n+1)+K∆(n+1) (19)

Matrix Kξ(n+ 1) consists of the expectations of products between
the pairs of the first to fifth terms in (12), and is not affected by

the random fluctuation ξ(n). Matrix Kξ(n + 1) consists of cross-
products where ξ(n) is involved. The last term K∆(n) conveys the
effect of deterministic variation of the mean of system weights.

Decoupled with the random perturbation, matrix Kξ(n+1) evo-
lution has the same form as the recursive equation of the weight error
covariance matrix derived in [20] for the case of a stationary envi-
ronment, except that the system weight α∗ has to be replaced here
by its time variant counterpart α∗

o(n). This leads to the following
expression for Kξ(n+ 1)

Kξ(n+ 1) = η2(Dα∗
o
(n)Q(n)Dα∗

o
(n) +Q(n) ◦K(n))

+ ησ2
z(Dα∗

o
(n)RxDα∗

o
(n) +Rx ◦K(n)) + (P 1(n) + P�

1 (n))

with Q(n)= 2RxK(n)Rx+trace{RxK(n)}Rx, and

P 1(n) = −η (Dα∗
o
(n)RxK(n) +K(n)Rx E{Dv(n)})

+ η2Dα∗
o
(n)Q(n)E{Dv(n)}+ η2σ2

zE{Dv(n)}Rx Dα∗
o
(n),

where o denotes the so-called Hadamard entry-wise product. Notice
that the cross-products of the sixth and seventh terms of (12) with the
other terms lead to zero mean values. This leaves only auto-product
terms

Kξ(n+ 1) = η2 (P 2(n) + P 3(n) + P 4(n) + P�
4 (n)) (20)

with

P 2(n) = E{ξ�(n)x(n)ξ�(n)x(n)Dx(n)v(n)v
�(n)Dx(n)}

P 3(n) = E{ξ�(n)x(n)ξ�(n)x(n)Dx(n)α
∗
o(n)α

∗�
o (n)Dx(n)}

P 4(n) = E{ξ�(n)x(n)ξ�(n)x(n)Dx(n)v(n)α
∗�
o (n)Dx(n)}

These terms convey the effect of the random part of the environment
non-stationarity. Computing the (i, j)-th entry of P 2(n) leads to

[P 2]ij(n) =
�

k

�

l

E {ξk(n)ξl(n)} E {vi(n)vj(n)}

· E {xk(n)xl(n)xi(n)xj(n)}
(21)

As E {ξk(n)ξl(n)} �= 0 only for k = l, using the Gaussian mo-
ment factorizing theorem for the term with fourth-order statistics
of x(n), yields

�
k E

�
x2
k(n)xi(n)xj(n)

�
=

�
Rx trace{Rx} +

2Rx Rx

�
ij

. We can thus write the result in matrix form

P 2(n) = σ2
ξ K(n) ◦ (Rx trace{Rx}+ 2Rx Rx) (22)

Similarly, we have the expected values for P 3(n) and P 4(n)

P 3(n) = σ2
ξ

�
α∗

o(n)α
∗�
o (n)

�
◦ (Rx trace{Rx}+ 2Rx Rx)

P 4(n) = σ2
ξ

�
E {vN(n)}α∗�

o (n)
�
◦ (Rx trace{Rx}+ 2Rx Rx)

Finally, it can be easily observed that the last term in (19) writes

K∆(n+ 1) = ∆(n)∆�(n)−∆(n)
�
E {v(n+ 1)}+∆(n)

��

−
�
E {v(n+ 1)}+∆(n)

�
∆�(n) (23)

With these closed form expressions for Kξ(n+1), Kξ(n+1),
and K∆(n+1), we can characterize the transient behavior of EMSE
via (18). Taking n → ∞ the steady state performance can also be
studied.



(a) 1st-order behavior for the stationary case (b) 1st-order behavior for the non-stationary case (c) 1st-order behavior for the Normalized NNLMS

(d) 2nd-order behavior with constant weight mean (e) 2nd-order behavior for the non-stationary case (f) 2nd-order behavior for the Normalized NNLMS

Fig. 1. Evolution of system coefficients and excess mean square error. First column: NNLMS in a stationary environment (with additional theoretical curves
as a function of ξ(n) in the EMSE figure). Second column: NNLMS in non-stationary environments. Third column: Behavior of Normalized NNLMS in
non-stationary environments.

3.3. Models for Normalized NNLMS

Evaluation of the expected values of the first and second-order up-
date equations for the Normalized NNLMS (9) involves terms con-
taining the denominator x�(n)x(n)+ �. A common approximation
that works well for reasonably large N is to neglect the correlation
between this term and the others, as it tends to vary much slow-
er [24, 25]. Given this slow variation and � usually very small, we
approximate x�(n)x(n) + � by Nσ2

x, which is also reasonable for
large values of N . Therefore, all the models that have been derived
above can be used for Normalized NNLMS by replacing the step
size η by the equivalent step size η̃ = ηNσ2

x.

4. SIMULATION EXAMPLES

In this section, we present simulation examples to illustrate the prop-
erties of the algorithms and the accuracy of the derived models. In
these examples, the system order is N = 31. The unknown station-
ary system is defined by

α∗ (st.)
oi =

�
1− 0.05 i i = 0, . . . , 20

−0.01 (i− 18) i = 21, . . . , 30
(24)

The last ten negative coefficients are used to activate the non-
negativity constraint. For the non-stationary case, we consider an

unknown response defined by

α∗ (nst.)
oi (n) = α∗ (st.)

oi +
|α∗ (st.)

oi |
10

cos

�
2πn
T

+
2π(i− 1)

N

�
+ ξi(n)

where the period T of the deterministic sinusoidal component is set
to 3500, and ξ(n) is a zero-mean Gaussian random vector with cor-
relation matrix σ2

ξI and σ2
ξ = 0.001. The input x(n) is a corre-

lated signal generated by a first-order AR process defined as fol-
lows: x(n) = 0.5x(n− 1) + w(n), with w(n) an i.i.d. zero-mean
Gaussian variable. The variance σ2

w was set to 1 − 0.52 so that
σ2
x = 1. The noise z(n) is zero-mean i.i.d. Gaussian with variance

σ2
z = 10−2. The adaptive weights in αi(0) were all initialized at

10/N for all the realizations. Monte Carlo simulation results were
obtained by averaging 100 runs.

Firstly, we ran the NNLMS algorithm and the theoretical models
for both stationary and non-stationary environments with the step
size η = 0.005. In Figs. 1(a), 1(b), 1(d), 1(e), blue curves show
simulation results and red curves show the theoretical predictions.
It can be verified that the models accurately predict the algorithm
behavior. In Figs. 1(a) and 1(b), all the coefficients satisfy the non-
negativity constraint. Three more theoretical curves have been added
to the second-order plots in Figs. 1(d) and 1(e) to illustrate the effect
of the random parameter σ2

ξ . These curves illustrate the expected
extra EMSE due to tracking of the variations of the random optimal
solution. To preserve visibility of the graph, simulation curves are



not presented but it should be noticed that they coincide with the
theoretical ones.

Secondly, the Normalized NNLMS algorithm was tested to
highlight its properties. Only the results obtained in non-stationary
environments are given here. The step size η̃ of the normalized
algorithm was set to η̃ = ηNσ2

x = 0.005 × 30× 1 = 0.45 in
order to make its performance comparable with that of the NNLMS
algorithm depicted in Figs. 1(b) and 1(e), where σ2

x = 1. For the
Normalized NNLMS, variance σ2

w was set in order that σ2
x = 0.5.

The blue curves show simulation results and red curves represent the
theoretical predictions. It can be verified that the proposed models
accurately predict the algorithm behavior. Moreover, comparison
between Figs. 1(b), 1(e) and Figs. 1(c), 1(f) shows that normaliza-
tion allows the algorithm to basically converge in the same manner,
independently of the input power. As previously, three theoretical
curves have been added to Fig. 1(f) in order to illustrate the effect of
random perturbations on Normalized NNLMS.

5. CONCLUSION AND PERSPECTIVE

In this paper, we made further inspection into the NNLMS algo-
rithm to address the online system identification problem under non-
negativity constraints. The main contribution concerns the derivation
of the first-order and the second-order stochastic behavior models for
non-stationary environments. These models include as a particular
case the algorithm behavior in a stationary environment [20]. The
accuracy of these models will enable us to use them as important
design tools to estimate the transient, steady-state and tracking per-
formances of the proposed algorithms.
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