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ABSTRACT
Sensors localization has become an essential issue in wireless
sensor networks. This paper presents a decentralized localiza-
tion algorithm that makes use of radio-location fingerprinting
and kernel methods. The proposed algorithm consists of di-
viding the network into several zones, each of which having a
calculator capable of emitting, receiving and processing data.
By using radio-information of its zone, each calculator con-
structs, by means of kernel methods, a model estimating the
nodes positions. Calculators estimates are then combined to-
gether, leading to final position estimates. Compared to cen-
tralized methods, this technique is more robust, less energy-
consuming, with a lower processing complexity.

Index Terms— decentralized processing, fingerprinting,
localization, machine learning, wireless sensor networks

1. INTRODUCTION

Recent advances in electronics and wireless communication
technologies have led to the emergence of wireless sensor net-
works (WSNs). A WSN consists of a large number of tiny
autonomous sensors, each of which being capable of sens-
ing, processing, and transmitting environmental information
[1]. One fundamental issue in WSNs is the sensors localiza-
tion, since all collected data are meaningless if they are not
coupled with their correct locations. A trivial solution to this
problem consists of equipping each sensor with a position-
ing device such as the Global Positioning System (GPS) [2].
However, since WSNs are expected to scale up to thousands
of sensors, using GPS is impractical. A better solution is to
perform relative positioning, where two types of sensors are
considered: anchors and nodes. While anchors have known
fixed locations, nodes have unknown positions and thus they
are localized with respect to anchors.

Many anchor-based localization algorithms have been
proposed in literature, especially those based on estimating
nodes distances to anchors using the Received Signal Strength
Indicator (RSSI) [3, 4, 5, 6, 7]. RSSI methods have become
popular due to their low-power consumption and cost compet-
itiveness. However, using exact RSSIs to estimate distances
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is not always reliable, due to additive noise, obstacles, etc.
A more robust RSSI-based approach performs fingerprinting
[8, 9]. This technique consists in setting a certain number
of positions in the environment called offline positions, then
building a radio map where each reference position is asso-
ciated to the RSSI measurements received at this position. A
node’s position is then determined by processing the RSSI
values collected by this node using the constructed radio
map. The advantage of location fingerprinting technique is
that it takes into account the stationary characteristics of the
environment such as multipath propagation, wall attenuation,
etc.

In terms of computational concept, algorithms in WSNs
can be divided into centralized and decentralized algorithms
[10, 11]. The centralized algorithms require the transmission
of all measurements to a fusion center (e.g., a sink node) for
processing, which often results in unnecessary wasteful en-
ergy costs and bandwidth consumption and thereby reduces
the lifetime and utility of the network. In decentralized al-
gorithms, local information exchanged between neighboring
nodes is processed locally and, hence, information processing
is no more limited to one fusion center. Compared to the cen-
tralized strategy, the decentralized approach is more robust to
failures, since several fusion centers are engaged. It is also
less energy consuming and thus more adapted to WSNs limi-
tations. In our previous work [12], we proposed a centralized
localization algorithm combining location fingerprinting and
kernel methods. The processing of the collected data and all
positions estimations were done by one single entity, i.e., a
fusion center.

In this paper, we present a novel decentralized localiza-
tion algorithm based on our previous work. The proposed
algorithm consists in dividing the region of interest into dis-
tinct zones depending on the characteristics of the environ-
ment, and then setting for each zone a calculator perform-
ing computations. The localization algorithm is then run at
each calculator, using an offline an online phase. In the of-
fline phase, reference positions are generated in each zone,
and RSSI measurements are collected at these positions, lead-
ing to a local power map representing the radio of each zone.
Then, using kernel methods [13], each calculator defines a
local model that associates to the RSSI measurements of its



local map the geographical positions where they were col-
lected. In the online phase, each node regularly collects RSSI
measurements. Calculators use these RSSIs along with their
models to compute local estimates of nodes positions. The lo-
cal estimates are then combined, leading to one final estimate
for each node at a given time. Having multiple calculators
for performing estimations highly improves the robustness of
the method.The rest of the paper is organized as follows. The
proposed method is described in Section 2. In Section 3, the
kernel methods are presented. Section 4 illustrates the effec-
tiveness of the method. Finally, Section 5 concludes the paper.

2. DESCRIPTION OF THE PROPOSEDMETHOD

The objective of the proposed method is to compute the ge-
ographical locations of sensor nodes in an environment of D
dimensions, with D = 2 for a 2D environment or D = 3
for a 3D environment. To this aim, two types of sensors are
considered: anchors and mobile nodes. Anchors have known
fixed locations, denoted by ai, i ∈ {1, . . . , Na}, and mo-
bile nodes are moving with unknown positions, denoted by
xj(t), j ∈ {1, ..., Nx}, and hence need to be regularly lo-
calized. The region of interest is then partitioned into Z dis-
tinct zones depending on the characteristics of the environ-
ment. Each zone has a calculator, that is a smart device (e.g.,
a small computer) capable of handling data, performing cal-
culations, and exchanging information with the sensors. Cal-
culators could also be anchors having high computation capa-
bilities. These smart devices have fixed known locations and
can be placed anywhere in a zone. Without loss of general-
ity, we consider that zones are rectangular, each having one
calculator located at their centers, as shown in Fig. 1. The
localization is then performed locally at every calculator.

Each local algorithm consists of two offline and online
phases. In the offline phase, n(z) offline positions, denoted
by p

(z)
! , ! ∈ 1, . . . , n(z), are generated in a uniformly dis-

tributed manner in the studied zone z, z ∈ {1, ..., Z}. Then,
anchors broadcast signals in the network with the same ini-
tial power. Meanwhile, a sensor is temporarily placed at
each offline position of each zone, it detects the anchors
signals and measures their Received Signal Strength Indi-
cators (RSSIs). All anchors signals are assumed to be re-
ceived at all offline positions regardless of their zones. Let
ρ
(z)
! = (ρ

a1,p
(z)
!

, . . . , ρ
aNa ,p

(z)
!

)! be the RSSI vector of sig-

nals received from the Na anchors at the position p(z)
! , with

! ∈ {1, ..., n(z)}. Therefore, for each zone z, a local power
map is obtained, composed of n(z) couples

(

ρ
(z)
! ,p

(z)
!

)

.
Once the local map is set, the algorithm aims at defining a
function ψ(z)(·) that associates to each RSSI vector ρ(z)

! , for
! ∈ {1, ..., n(z)}, the corresponding position p

(z)
! . Kernel

methods provide an elegant framework to determine these
functions, as it will be shown in Section 3.

In the online phase, each node travels freely in the net-

Fig. 1. Network topology- ! represents the calculators, "
represents the anchors, and ◦ represents the offline positions.

work and collects meanwhile RSSIs from anchors. Let ρj(t)
be the Na-vector of RSSIs collected by the node j, at time
t, from the Na anchors, with j ∈ {1, ..., Nx}. Then, each
node sends its RSSI vector ρj(t) to all the calculators lo-
cated within its communication range. Let Ij(t) be the set
of indices of the calculators detected by the node j at time
t. Calculators referred in Ij(t) apply their defined functions
ψ(z)(·) to the RSSI vector ρj(t) to compute local estimates
of the node’s position as follows:

x̃
(z)
j (t) = ψ(z)(ρj(t)), z ∈ Ij(t), j ∈ {1, ..., Nx}.

Then, local estimates are sent to the nearest calculator, where
a global estimate is given by a combination of all local esti-
mates using:

x̃j(t) =
∑

z∈Ij(t)

wz x̃
(z)
j (t), j ∈ {1, ..., Nx}.

The quantities wz are weights computed with respect to the
distances separating the node from the calculators. Indeed,
the more the node is close to a given calculator, the more the
calculator’s estimate is reliable and thus the greater the corre-
sponding weight should be. Since distances to calculators are
not available, we will use instead the powers of the messages
emitted by the nodes to the calculators while sending their
RSSI-vectors. Let ξz,j(t) be the RSSI of the message sent by
the node j to the calculator z at time t. Since signal powers
decrease with the increase of their traveled distance, the closer
the node j is to the calculator z, the greater ξz,j(t) theoreti-
cally is. Then, the weights wz are given by ξz,j(t)∑

v∈Ij (t) ξv,j(t)
,

z ∈ Ij(t). By using several computation points, the proposed
method is more robust to failures compared to the centralized
scheme where only one fusion center is considered. Indeed, a
failure of the fusion center in the centralized method is fatal,
whereas it is much less binding in our decentralized method,
since many fusion centers, that is calculators, exist. Also, the
localization in this method is less energy consuming, since
nodes only send information to calculators in their sensing
range, whereas in the centralized scheme data must be routed
to a single fusion center regardless of the distance to be trav-
eled.



3. ESTIMATION OF THE LOCAL MODELS

In this section, we take advantage of kernel-based machine
learning to define, for each zone z, a model ψ(z)(·) that
associates to each RSSI vector ρ(z)

! , for ! ∈ {1, ..., n(z)},
the corresponding position p

(z)
! . To this end, let ψ(z)(·) =

(

ψ
(z)
1 (·), . . . ,ψ(z)

D (·)
)!, where ψ(z)

d : IRNa $→ IR estimates
the d-th coordinate. Thus, the function ψ

(z)
d , for an input

ρ
(z)
! , yields the d-th coordinate in p(z)

! = (p(z)!,1 , . . . , p
(z)
!,D)

!.
Let us consider a reproducing kernel κ : IRNa × IRNa $→ IR,
and letH be the induced space.

The function ψ
(z)
d ∈ H is estimated by minimizing the

mean quadratic error between the model’s outputs ψ(z)
d (ρ(z)

! )

and the desired outputs p(z)!,d , for ! ∈ {1, ..., n(z)} :

min
ψ

(z)
d ∈H

n(z)
∑

!=1

(

(p(z)!,d − ψ
(z)
d (ρ(z)

! )
)2

+ η(z)‖ψ(z)
d ‖2H, (1)

where the regularization parameter η(z) controls the tradeoff
between the training error and the complexity of the solution.
According to the representer theorem [14], the optimal func-
tion can be written as follows :

ψ
(z)
d (·) =

n(z)
∑

!=1

α
(z)
!,d κ(ρ(z)

! , ·). (2)

By injecting (2) in (1), we get the dual optimization problem:

min
α

(z)
d

‖p(z)
d −K(z)α

(z)
d ‖2 + η(z)(α(z)

d )!K(z)α
(z)
d ,

where α(z)
d =

(

α
(z)
1,d, . . . ,α

(z)
n(z),d

)!, p(z)
d is the vector of en-

tries p(z)!,d for ! ∈ {1, ..., n(z)}, and K(z) is a n(z)-by-n(z)

matrix whose (s, s′)-th entry is given by κ(ρ(z)
s ,ρ

(z)
s′ ), for

s, s′ ∈ {1, ..., n(z)}. The solution of the above problem is
given by the following linear system :

(K(z) + η(z)In(z)) α
(z)
d = p

(z)
d , (3)

where In(z) is the n(z)-by-n(z) identity matrix. It is easy to
see the impact of the regularization parameter on the well-
posedness of the problem, since the matrix between parenthe-
sis is always non-singular for an appropriate value of η(z).

Equation (3) shows that the samematrix (K(z)+η(z)In(z))
needs to be inverted in order to estimate each coordinate d.
Nevertheless, it is reasonable to collect all D estimations
(D being the space’s dimension) in a single matrix inversion
problem, thus reducing the computational complexity:

α(z) = (K(z) + η(z)In(z))−1P (z), (4)

whereα(z) =
(

α
(z)
1 , . . . ,α

(z)
D

)

andP (z) =
(

p
(z)
1 , . . . ,p

(z)
D

)

.
Using equation (2) and the definition of the vector of func-
tions ψ(z)(·), we define now a model for each zone that

allows us to find theD coordinates at once as follows:

ψ(z)(·) =
n(z)
∑

!=1

α(z)κ(ρ(z)
! , ·).

We have now defined, for each zone z, a model ψ(z) that
associates to each RSSI vector ρ(z)

! , for ! ∈ {1, ..., n(z)},
the corresponding position p(z)

! . The Z models are used for
localization as explained at the end of Section 2.

In this paper, we consider the Gaussian kernel given by:

κ(ρs,ρs′) = exp

(

−‖ρs − ρs′‖
2

2(σ(z))2

)

,

where ‖·‖ is the Euclidian norm and σ(z) the bandwidth of the
Gaussian kernel associated to zone/calculator z. This quan-
tity, together with the regularization parameter η(z), control
the degree of smoothness, noise tolerance, and generalization
of the solution. Since we have different data and a differ-
ent model for each zone, σ(z) and η(z) vary from zone to
zone. Choosing σ(z) and η(z) for each zone is performed us-
ing the cross-validation technique. This approach is a statisti-
cal method of evaluating and comparing learning algorithms
by dividing data into two segments: one for training the model
and the other one for validating it. We employ this technique
to choose proper values for η(z) and σ(z) for each model z
[15]. In this paper, we use the k-fold cross-validation which
is the basic form of cross-validation. The data in each zone
z is first partitioned into k roughly equal sized folds. Subse-
quently, k iterations of training and validation are performed
such that, within each iteration, k−1 folds are used for learn-
ing and the remaining one for validation. In each iteration, we
estimate the error on the validation set for different values of
η(z) and σ(z). In the end, we choose η(z) and σ(z) that give a
minimum error for all iterations.

4. SIMULATIONS

In this section, we evaluate the performance of the proposed
method using various scenarios. In the first part, the proposed
method is tested with Matlab-generated data. In the second
section, the results are shown in the case of real data gath-
ered in a 10m × 10m real indoor environment [16]. In the
final section, the results obtained with the proposed method
are compared to the ones obtained when performing local-
ization using connectivity information or the Weighted K-
Nearest Neighbor (WKNN) algorithm.

4.1. Evaluation of the proposed method on Matlab-
simulated data

We consider a 120m× 120m area partitioned into four equal
zones and we generate 16 static anchors uniformly distributed
over the area. For the training phase, 144 offline positions



are generated in a uniformly distributed manner over the area,
leading to n(z) = 36 offline positions per zone, z = 1, ..., 4.
The RSSI values needed to construct the local power maps are
generated using the well-known Okumura-Hata model [17]
given by:

ρ
ai,p

(z)
!

= ρ0 − 10nP log10 ‖ai − p
(z)
! ‖+ ε

(z)
i,! ,

where ρ
ai,p

(z)
!

(in dBm) is the power received from the an-

chor ai by the node at position p
(z)
! , ρ0 is the initial power

(in dBm) set to 150, nP is the path-loss exponent set to 4,
‖ai − p

(z)
! ‖ is the Euclidian distance between the position

p
(z)
! of the considered node and the anchor position ai, and

ε
(z)
i,! is the noise affecting the RSS measures. We use cross-
validation to find the proper values of the tunable parame-
ters η(z) and σ(z) for each model z, considering η(z) = 2s

with s ∈ {−20,−19, · · · ,−1} and σ(z) = 2s
′ with s′ ∈

{1, 2, · · · , 10}.
We then consider the localization problem of one mobile

node. To this end, we generate a trajectory and calculate the
RSSI values collected by the moving node using the same
RSSI model as for the offline positions. The powers of mes-
sages exchanged between the node and the calculators are
also computed using this model and the node is assumed to
communicate with all calculators. Fig. 2 shows the generated
trajectory and the estimated one using noiseless RSSIs. It is
obvious that the estimation is almost exact. The estimation er-
ror, measured by the root mean squared distance between the
exact positions and the estimated ones, is in this case equal to
0.14m. If we consider the centralized version of this method
[12], the error is equal to 0.16m. To evaluate the robustness
of our method against noise, we add a zero-mean Gaussian
white noise of standard deviation σb = 1dB to the RSSI val-
ues. The estimated trajectory still follows the actual one and
the estimation error is equal to 1.30m, while the centralized
version yields 1.23m of errors. Both centralized and decen-
tralized methods have almost the same efficiency when the
noise is spread in the same way all over the network. How-
ever, besides the robustness of the method, the decentralized
method outperforms the centralized one in terms of computa-
tion complexity. Indeed, while our proposed method requires
only O((n(z))3) for the matrix inversion, with n(z) = 36 in
this case, the centralized method considers all the offline po-
sitions at once with O(n3), where n = 144.

4.2. Evaluation of the proposed method using real data

In this section, we study the performance of the new method
in the case of real collected data. The set of collected mea-
surements used are available from [16]. The authors deployed
48 uniformly distributed EyesIFX nodes in a room measur-
ing approximately 10m × 10m. Furniture and people in the
room cause multi-path interferences affecting the collected
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0 2 4 6 8 10
0

2

4

6

8

10

1 2 3

4 5 6

7 8 9

 

 

anchors
offline positions
calculators
real trajectory
estimated trajectory−proposed method
estimated trajectory−centralized method

1st coordinate
2n

d
co
or
di
na
te

Fig. 3. Localization in the case of real data.

RSSI values. We chose 5 nodes to be anchors in our simu-
lation and used the available data to generate 57 new offline
positions in order to get a total of 100 offline positions. We
partitioned the area into 9 zones and generated one calcula-
tor for each zone. To evaluate our algorithm in the case of
a moving node, we generated a trajectory using the available
data. Fig. 3 shows the estimated trajectories obtained using
the proposed method and the centralized one. The estima-
tion errors are equal to 0.28m and 0.37m respectively. By
dividing the region into several zones, noises due to the space
configuration being higher in some zones than in others would
only affect some local models, the others leading to good esti-
mates. This diversity is absent in the centralized model where
anywhere noises impact the one and only model.

4.3. Comparison with previous techniques

In this section, we compare the results obtained when using
the new method to the results obtained when using two dif-
ferent approaches: localization by connectivity and localiza-
tion using the WKNN algorithm. We first consider the local-
ization by connectivity [18] where nodes are localized using
only neighboring anchors information. Assume that the trans-
mission range is an ideal disk with equal transmission radius
for all anchors. The position of an unknown node detect-
ing its neighboring anchors is given by the intersection of all



Table 1. Comparison of the proposed method to the
connectivity-based one.

No. of anchorsNa 16 49 81 100
Connectivity 8.43 4.07 3.68 3.25

Proposed method 0.14 0.20 1.04 1.37

Table 2. Comparison of the proposed method to the WKNN-
based one, for different weight models.

“A” “B” “C” “D” “E” Proposed
K=2 K=4 K=4 K=10 K=10 method
0.69 0.63 0.58 0.57 0.60 0.28

the range disks of these detected anchors. Table 1 shows the
estimation error (in meters) in the case of noiseless Matlab-
simulated data for different numbers of anchors. By adding
anchors, the learning process in the proposed method leads
to a rougher model with less freedom degrees, which yields
increasing estimation errors. However, the error remains less
than the connectivity-based one. We consider at second the
WKNN algorithm [19] using fingerprinting coupled to RSSI-
Euclidean distances computations. In WKNN, estimated po-
sitions are given by weighted combinations of the positions of
the K nearest offline positions. Different weights are used in
simulations of WKNN, as listed in Table III of [12], and the
optimal value of K is determined using the cross-validation
approach. Table 2 shows the estimation errors (in meters) ob-
tained while estimating the same trajectory as in the case of
real data (Fig. 3) with different weights of WKNN and with
our method. The simulation results show that our method is
more accurate than the WKNN based one. Note that localiza-
tion by connectivity is not tested here because there are only
5 anchors in the network, which is insufficient for the con-
nectivity technique to operate properly, while our approach is
expected to yield good results in such case.

5. CONCLUSION

In this paper, we propose a novel decentralized localization
method using radio-location fingerprinting and kernel meth-
ods. The proposed algorithm divides the network into sev-
eral zones where different local position estimates are com-
puted. A global estimate is then obtained by combining the
local ones. Being a decentralized scheme, this method out-
performs centralized ones in terms of robustness and compu-
tation complexity. Simulation results show that this method is
more efficient than the WKNN algorithm for different weight
models. It also gives better estimates than localization by con-
nectivity for different number of anchors. Future works will
handle improvements of this method, especially in terms of
zones definitions and anchors signals ranges.
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