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ABSTRACT

The estimation of fractional abundances under physical con-
straints is a fundamental problem in hyperspectral data pro-
cessing. In this paper, we propose to adapt Kaczmarz’s cyclic
projections to solve this problem. The main contribution of
this work is two-fold: On the one hand, we show that the
non-negativity and the sum-to-one constraints can be easily
imposed in Kaczmarz’s cyclic projections, and on the sec-
ond hand, we illustrate that these constraints are advantageous
in the convergence behavior of the algorithm. To this end,
we derive theoretical results on the convergence performance,
both in the noiseless case and in the case of noisy data. Exper-
imental results show the relevance of the proposed method.

Index Terms— Constrained optimization, Kaczmarz’s
cyclic projections, hyperspectral data, unmixing problem

1. INTRODUCTION

Due to low spatial resolution of hyperspectral cameras (i.e.,
imaging spectrometers), acquired spectra are mixtures of
spectra of some pure materials. These pure components are
also called endmembers. The unmixing problem consists of
breaking down a spectrum into the pure spectra of endmem-
bers and their fractional abundances. A wide range of geo-
metrical and statistical methods has been devised for the un-
mixing problem. See [2] for an extensive overview. Hyper-
spectral data processing often suffers from a number of limi-
tations, which includes computation complexity and the ease
of implementation, making iterative and parallel algorithms
suitable for implementation [7, 1].

Assuming that the endmembers were extracted using any
off-the-shelf technique, the problem of estimating the frac-
tional abundances provides new opportunities and challenges
to both linear [9] as well as non-linear unmixing problems [4].
In order to have a coherent physical interpretation, two hard
constraints need to be satisfied in the estimation problem: the
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sum-to-one of all the fractional abundances and there non-
negativities. In this work, we study the problem of estimat-
ing constrained fractional abundances, by suitably adapting a
cyclic orthogonal projection scheme.

Methods of orthogonal projections onto spaces, and more
recently onto convex sets, have been successfully applied
for solving many optimization problems, in the field of sig-
nal processing in particular. These methods include the cel-
ebrated Cimmino’s parallel projections [5] and Kaczmarz’s
cyclic projections [10]. More recently, projections onto
spaces have been generalized to projections onto convex
sets. These methods provide a unified framework for tackling
many signal processing problems, including adaptive filtering
and machine learning [14, 13]. To the best of our knowl-
edge, these methods have not yet been exploited in hyper-
spectral image processing. Very recently, we have success-
fully adapted Cimmino’s parallel projections [5] for the hy-
perspectral unmixing problem [8].

Coupled with these advances, this paper shows that the
spectral unmixing problem can take advantage of these devel-
opments. To this end, we propose to adapt Kaczmarz’s cyclic
projection for estimating the fractional abundances. Appro-
priate strategies for enforcing the non-negativity and sum-to-
one constraints are advanced as a natural extension of the con-
ventional unconstrained Kaczmarz’s method: the sum-to-one
constraint is enforced by a projection scheme, while the non-
negativity is satisfied by relaxing the projections.

2. THE LINEAR UNMIXING MODEL

Given a spectrum with L wavelength x = [x1 x2 · · · xL]!

(e.g. a pixel in a hyperspectral image), the linear mixing
model takes the form

Mα = x+ ε, (1)

where M is the L-by-K matrix of the K spectral signatures
of a pure material, i.e., endmember, and ε is the vector of
fitness error, and α is the vector of K abundances to be de-
termined. In this work, we assume that the endmembers have



been properly identified, using a supervised or an unsuper-
vised endmember extraction technique. The paper [2] pro-
vides an extensive overview of existing techniques and state-
of-the-art methods.

To adopt a physical interpretation of the unmixing prob-
lem, the linear combination in model (1) needs to be convex.
In other words, the following constraints are required:

• The sum-to-one of the contributions, 1!α = 1, where
1 denotes the unit column-vector of K entries;

• and the non-negativity of the contributions, α ≥ 0,
where the inequality is taken component-wise.

An iterative scheme is required to solve the constrained opti-
mization problem: argminα ‖Mα − x‖2, under the above
constraints. See for instance [6].

3. CONSTRAINED KACZMARZ’S CYCLIC
PROJECTIONS

To revisit the unconstrained Kaczmarz’s method, we consider
the noiseless model, defined by

Mα = x. (2)

In other words, Kaczmarz’s method assumes that x belongs
to the range of the matrix M . The impact of the presence of
noise, as given in model (1), is studied in next Section.

3.1. Unconstrained Kaczmarz’s cyclic projections

The linear system (2) of L equations and K unknowns gives
rise to a set of L affine hyperplanes,

H! =
{
α

∣∣∣ m!
! α = x!

}
. (3)

In this expression,m!
! denotes the !-th row ofM , namely the

spectral signatures of the endmembers at the !-th wavelength
band. The solution of the linear system (2) is the intersection
of the L affine hyperplanes, i.e., H1∩H2∩. . .∩HL, where the
intersection is a unique point in the noiseless case. It is worth
noting that M is full column rank by construction, since non
of the endmembers can be written as a linear combination of
other endmembers.

The conventional Kaczmarz’s method sweeps through the
affine hyperplanes, by projecting orthogonally onto each and
taking this as the next iterate. In a mathematical form, at the t-
th iteration, the projection of αt−1 onto the affine hyperplane
H! reads

αt−1⊥! = αt−1 +
x! −m!

! αt−1

‖m!‖2
m!, (4)

with α0 some initial guess. This process is iterated until a
given convergence criterion is satisfied. In this expression, !

1H

m
!

H!

αt−1

αt−1⊥!

αt

θ!

αopt

Fig. 1. Illustration in two-dimensions of the constrained Kacz-

marz’s cyclic projections. The affine hyperplane of the sum-to-one

constraint is H (black line), i.e., the hyperplane defined by the nor-

mal vector 1.

is selected at each iteration t, i.e., a slight abuse of notation is
made in using ! rather than !(t).

Several strategies [11, 12, 3] have been proposed to
choose the sequence of selected affine hyperplanes, i.e., the
choice at iteration t of the !-th row in the matrix M . The
classical cyclic selection, i.e., ! = t mod L, is the simplest
one; however it could lead to low convergence. Other strate-
gies have been proposed to overcome this drawback, the most
known are the maximum error selection and the randomiza-
tion. The maximum error selection requires the evaluation of
the numerator in (4) for all ! at each iteration t, which leads
to a high computational burden. In randomization ! is chosen
randomly with probability proportional to the denominator in
(4), i.e., ‖m!‖2. This strategy has shown very interesting
properties [12], but is also criticized in [3].

This paper shows that, in the case of a constrained solu-
tion as in the unmixing problem, Kaczmarz’s method does not
suffer from the problem of appropriate selection of the affine
hyperplanes. Moreover, we provide theoretical results on the
convergence, for the noiseless and the noisy cases.

3.2. Sum-to-one constraint

To impose the sum-to-one constraint, we consider a two-step
strategy at each iteration t: a projection of αt−1 onto the
affine hyperspace H!, yielding αt−1⊥!, followed by a nor-
malization to satisfy the constraint, yielding αt. The pro-
posed strategy is illustrated in Figure 1.

Let H be the affine hyperplane defined by the sum-to-one,
namely H =

{
α | 1!α = 1

}
. By analogy with the expres-

sion of the projection (4), the normalization of any αt−1⊥! is
given by

αt = αt−1⊥! +
1
K

(
1− 1

!
αt−1⊥!

)
1, (5)

where m! is now substituted with 1, the unit column-vector



of K ones. By combining this projection (5) with the projec-
tion onto H!, as given in (4), at iteration t, we get:

αt = αt−1⊥! + 1
K

(
1− 1

!
αt−1+⊥!

)
1

= αt−1 +
x! −m!

! αt−1

‖m!‖2
m!

+ 1
K

(
1− 1

!
αt−1 −

x! −m!
! αt−1

‖m!‖2
1
!
m!

)
1.

Since we have the identity 1!αt−1 = 1 from the previous
iteration, we obtain the following update rule:

αt = αt−1 +
x! −m!

! αt−1

‖m!‖2
(
I− 1

K
11

!
)
m!. (6)

Here, I denotes the matrix identity of size K-by-K , and the
matrix I − 1

K
11! is often called centering matrix in the ma-

chine learning literature.

It is worth noting that there is another way to satisfy the
sum-to-one constraint, by normalizing using the form:

αt =
αt−1⊥!

1!αt−1⊥!
.

This normalization can also be viewed as a non-orthogonal
projection, and therefore looses the property of nonexpansive
transformation. Technically, this means that the distance be-
tween two projections may exceed the distance between the
two original elements, and therefore compromising the speed
of convergence. For these reasons, this normalization is not
considered in this paper, as we adopt the (orthogonal) projec-
tion given in (5).

3.3. Imposing also the non-negativity constraint

To enforce the non-negativity constraint, namely αt ≥ 0 at
each iteration, we propose to relax the projection in (6), by
considering the following update rule:

αt = αt−1 + ηt
x! −m!

! αt−1

‖m!‖2
(
I− 1

K
11

!
)
m!. (7)

The relaxation parameter ηt ∈ [0 ; 1] is chosen in order to
impose the non-negativity of entries in αt.

To this end, let

ηt = min
i=1,...,K

η(i)t ,

where η(i)t is a valid stepsize in the i-th direction. The value
of the latter depends on one of the two cases:

• If
x!−m

!

!
αt−1

‖m!‖2

[(
I− 1

K
11!

)
m!

]
i
> 0, there is no

constraint on the stepsize, and therefore could be set

to η(i)t = 1;

• Otherwise, the stepsize should be reduced such that

η(i)t ≤ [αt−1]i
[(

I−
1
K

11!
)

m!

]

i

.

In order to account for noise, we consider always a relaxation
of the projection. The stepsize is set to a smaller value than
one (e.g., 0.1 or below depending on the above relations), as
recommended in adaptive filtering literature. Essentially, the
update rule (7) is a normalized least mean squares (NLMS)
algorithm applied on centered data.

Other strategies to enforce the non-negativity constraint
can also be applied, such as a post-processing by replacing
every negative entry in αt with zero. However, this strategy of
projection onto the positive half-space may destroy the sum-
to-one constraint, and therefore it is not recommended.

4. THEORETICAL RESULTS

In this section, we provide theoretical results, namely on the
convergence rate in both the noiseless (2) and the noisy cases
(1). To this end, we consider the influence of both sum-to-one
and non-negativity constraints by using the update rule (7).

First of all, the impact of the non-negativity constraint is
clear. All the results are enforced to be on the non-negative
orthant in the K-dimensional space. Furthermore, the studied
hyperspectral unmixing problem has the following interest-
ing property: Since m! is a vector of values from spectral
signatures at the !-th wavelength band, we have m! ≥ 0,
and therefore all affine hyperplanes defined by (3) have non-
negative normal vectors. Moreover, the sum-to-one affine hy-
perplane H is the bisector of the orthant, and therefore the
angle between it and any H! cannot exceed π/4. Let θ! be
the angle between the two affine hyperplanes H! and H, then
cos(θ!) > 1/

√
2, for all ! = 1, 2, . . . , L.

Let αopt be the (unknown) optimal solution of the noise-
less problem (2).

4.1. The noiseless case

The following theorem provides the rate of convergence for
the proposed constrained Kaczmarz’ method, in the case of
the noiseless model (2). To this end, we consider the influence
of the sum-to-one constraint on the convergence.

Theorem 1 (Convergence in the noiseless case).
Starting from an initial guess α0, the algorithm converges to

the optimal solution αopt at the rate

‖αt −αopt‖ = ‖α0 −αopt‖
∏

!(t′)
t′≤t

cos2(θ!),

where θ! is the angle between H! and H, and the product is

taken over all visited affine hyperplanes until iteration t.



Proof. As in the conventional Kaczmarz’s method, it is as-
sumed that the solution of the linear system exists, is unique,
and belongs to the set H!. On the one hand, we have from
projection (i.e., according to the Pythagorean theorem)

cos(θ!) =
‖αt−1⊥! −αopt‖
‖αt−1 −αopt‖

,

where cos(θ!) is positive as discussed above. On the other
hand, we also have

cos(θ!) =
‖αt −αopt‖

‖αt−1⊥! −αopt‖
.

By combining both expressions, we get

‖αt −αopt‖ = ‖αt−1⊥! −αopt‖ cos(θ!)
= ‖αt−1 −αopt‖ cos2(θ!)
...

= ‖α0 −αopt‖
∏

!(t′)
t′≤t

cos2(θ!).

This concludes the proof.

This theorem demonstrates the rate of convergence of the
proposed algorithm. It is worth noting that cos(θ!) can be eas-

ily evaluated, since cos(θ!) =
1
!
m!

‖1‖‖m!‖
, where the numerator

is the sum of the entries of m!, and the denominator involves
the sum of their squares.

Moreover, each iteration in the proposed algorithm is
essentially a double projection. This alternating projection
can be applied infinitely on a fixed !, i.e., affine hyperplane
H!, without the need to sweep through all the affine hyper-
planes. In this case, the Theorem 1 becomes for a fixed !:
‖αt − αopt‖ = ‖α0 − αopt‖ (cos(θ!))2t . In practice, due
to the presence of noise, it is not enough to use a single !,
but rather to sweep over all the hyperplanes. The next Sec-
tion provides a study of the impact of noise on the proposed
algorithm.

4.2. The noisy case

Very few works consider the influence of noise in the con-
ventional (unconstrained) Kaczmarz’s cyclic projections. The
presence of noise is seldom considered; see [11] for the ran-
domized Kaczmarz’s method. In this section, we provide a
theoretical analysis of the presence of an error in the pro-
posed constrained optimization problem. We assume that
the endmember spectra have been well estimated, and the
noise is on the investigated spectrum as given in (1), namely
Mα = x+ ε, where ε = [ε1 ε2 . . . εL]! is the error vector.

The solution of this noisy problem belongs to the intersec-
tion of the L affine hyperplanes H̃1 ∩ H̃2 ∩ . . .∩ H̃L, defined
by

H̃! =
{
α

∣∣∣m!
! α = x! + ε!

}
.

H

H!

H̃!

α̃t−1

α̃t−1⊥!

αt−1⊥!

α̃tαt

ε!
m

!

‖m
!
‖2

θ! θ!

αopt

Fig. 2. Illustration in two-dimensions of the presence of
noise. In this case, H! is not available (neither all gray el-
ements), but the affine hyperplane H̃! associated to the noisy
data. Therefore, at instant t−1, the approximation α̃t−1 leads
to α̃t, rather than αt.

It is easy to see that these affine hyperplanes can also be de-
fined from the hyperplanes associated for the noiseless case,
with (See for instance [11, Lemma 2.2]):

H̃! =
{
α+ ε!

‖m!‖2m!

∣∣∣ α ∈ H!

}
. (8)

Let α̃t−1 be the estimate obtained at iteration t in presence

of noise, and α̃t−1⊥! its projection onto H̃!. The following
theorem is a generalization of Theorem 1 to the case of noisy
data. See Figure 2 for an illustration.

Theorem 2 (Convergence in the noisy case). Starting from

an initial guess α̃0, the algorithm converges at the rate

‖α̃t −αopt‖2 = ‖α̃0 −αopt‖2
∏

!(t′)
t′≤t

cos4(θ!)

+
∑

!(t′)
t′≤t

ε2!
‖m!‖2

cos2(θ!)
∏

!(t′′)
t′′<t′

cos4(θ!′′),

where θ! is the angle between H and H! (as well as H̃!).

Proof. First, we have from projection the following relation:
cos(θ!) = ‖α̃t −αopt‖/‖α̃t−1⊥! −αopt‖. By applying the
Pythagorean theorem, the above denominator can be decom-
posed into

‖α̃t−1⊥! −αopt‖2 = ‖αt−1⊥! −αopt‖2 + ‖ ε!
‖m!‖2m!‖2,

where the orthogonality and the definition (8) are used. The
second term in the right-hand-side is simply ε2!/‖m!‖2. The
first term in the right-hand-side is (see the proof of Theo-
rem 1): ‖αt−1⊥! − αopt‖ = ‖α̃t−1 − αopt‖ cos(θ!). By



combining these expressions, we get

‖α̃t −αopt‖2 =‖α̃t−1 −αopt‖2 cos4(θ!) +
ε2!

‖m!‖2
cos2(θ!)

...

=‖α̃0 −αopt‖2
∏

!(t′)
t′≤t

cos4(θ!)

+
∑

!(t′)
t′≤t

ε2!
‖m!‖2

cos2(θ!)
∏

!(t′′)
t′′<t′

cos4(θ!′).

This concludes the proof.

This theorem demonstrates the impact of the selection,
i.e., !(t) at each iteration t, on the approximation error. In
fact, thanks to the geometric progression of the cosines, the
hyperplanes considered in the first iterations have their errors
highly reduced, as opposed to the last projections with less
“cosine” weights. In other words, it is clear that the band-
widths in the hyperspectral data with the largest errors, i.e.,
large values of ε2!/‖m!‖2, should be used in the first itera-
tions. Therefore, this theorem provides a new selection cri-
terion for the cyclic projections, optimal for the studied con-
strained optimization problem.

5. EXPERIMENTATIONS

The proposed learning algorithm was used for hyperspectral
data unmixing, generated by a linear combination of three
pure materials with abundance α = [0.4 0.65 − 0.05]!,
where we injected a sign error on the third abundance. These
materials are grass, cedar and asphalt, with spectral signa-
tures extracted from the USGC library. These spectra con-
sist of 2151 bands covering wavelengths ranging from 0.35
to 2.5 µm. The data were corrupted by an additive Gaussian
noise. Figure 3 illustrates the convergence of the proposed al-
gorithm, for a SNR of ≈ 25 dB and ≈ 18 dB, with the largest
value of the stepsize fixed to 0.1 and a single sweep over all
the bandwidths. For a comparative results, we also show in
the same figure the estimates using non-negative least-squares
and the fully-constrained least-squares techniques [6].

6. CONCLUSION AND PERSPECTIVES

In this paper, we presented the development of a new class
of unmixing methods, by providing constrained counterpart
of projection-based algorithms [14, 13]. New theoretical re-
sults were derived for the studied constrained optimization
problem, including the impact of noise on the analyzed spec-
trum. Experimentations collaborate these results. As for fu-
ture work, we seek to study the impact of noise on the end-
members. We are also conducting a statistical analysis on the
impact of noise, as well as connections with adaptive filtering.

SNR ≈ 25dB SNR ≈ 18dB
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Fig. 3. Convergence of the constrained Kaczmarz’s optimization

method, for a mixture of two spectra with additive noise. The dotted

lines correspond to the real abundances α = [0.4 0.65 − 0.05]! .

The estimates using non-negative least-squares (given by “+”) and

the fully-constrained least-squares (given by “!”) are also given.
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