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In recent years, nonlinear unmixing of hyperspectral data has become an attractive topic in hyperspectral image analysis, because nonlinear models appear as more appropriate to represent photon interactions in real scenes. For this challenging problem, nonlinear methods operating in reproducing kernel Hilbert spaces have shown particular advantages. In this paper, we derive an efficient nonlinear unmixing algorithm based on a recently proposed linear mixture/nonlinear fluctuation model. A multi-kernel learning support vector regressor is established to determine material abundances and nonlinear fluctuations. Moreover, a low complexity locally-spatial regularizer is incorporated to enhance the unmixing performance. Experiments with synthetic and real data illustrate the effectiveness of the proposed method.

INTRODUCTION

Hyperspectral imagery provides data with a wide spectral range and high spectral resolution. These characteristics are desirable for detection and classification of surfaces and chemical elements in real images. Hyperspectral image processing has become a continuously growing area, and now receives considerable attention.

Due to multiple factors, including the possible low spatial resolution of some hyperspectral-imaging devices, the diversity of materials, the reflections of photons onto several objects, etc., problems with mixed pixels can occur and be critical for proper interpretation of images. Spectral unmixing is an important issue to analyze hyperspectral data. It consists of decomposing each mixed pixel into pure endmember spectra, and estimating the fractional abundance of each endmember [START_REF] Keshava | Spectral unmixing[END_REF].

Linear unmixing methods have been extensively considered within the area of remote sensing. In the recent years, researchers have progressively focused on nonlinear unmixing method, as there are many situations in which the classical linear mixture model may be insufficient [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approches[END_REF]. Recent nonlinear unmixing approaches dedicated to hyperspectral images can be divided into the following classes: 1) Direct methods: Some techniques mimic the nonlinear interactions between endmember spectra by incorporating them into the regression model in an explicit way. For instance, the authors in [START_REF] Raksuntorn | Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment[END_REF][START_REF] Nascimento | Nonlinear mixture model for hyperspectral unmixing[END_REF] extended the collection of endmembers by adding artificial crossed spectra to model photon interactions. 2) Manifold learning methods: These approaches exploit low dimensional manifolds embedded in high-dimensional sensed data [START_REF] Bachmann | Exploiting manifold geometry in hyperspectral imagery[END_REF]. Algorithms based on Isomap and LLE, which assume the local linearity of data, were recently used. 3) Kernel-based methods: These approaches can model complex interactions among material signatures by the virtue of kernel trick.

In [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF], we introduced a new framework for estimating abundances involved in a nonlinear mixture of hyperspectral data. It overcomes the drawbacks of former heuristic kernel unmixing methods [START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF]. 4) Bayesian methods: In [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF][START_REF] Dobigeon | Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery[END_REF], Bayesian inference was used to estimate the fraction of abundances within the context of nonlinear mixing scenarios, using generated samples distributed according to the posterior distribution. 5) Neural networks: This family refers to techniques that intend to establish, based on a collection of training data, an input-output relation between some observed data and their abundances via black-box modeling [START_REF] Guilfoyle | A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks[END_REF][START_REF] Plaza | Nonlinear neural network mixture models for fractional abundance estimation in AVIRIS hyperspectral images[END_REF].

Among the above mentioned methods, kernel-based algorithms have demonstrated great generality and excellent performance for nonlinear unmixing [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF][START_REF] Chen | A novel kernel-based nonlinear unmixing scheme of hyperspectral images[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral images with multi-kernel learning[END_REF]. In this paper, the inherent spectral mixing mechanism is modeled by a partial linear model, consisting of linear mixture components and a nonlinear fluctuation term defined in a reproducing kernel Hilbert space (RKHS). A multi-kernel support vector regression algorithm is derived to estimate the material abundances, and to automatically adjust the proportion between the linear and the nonlinear components. Furthermore, spatial correlation is also considered by a local regularization term which does not introduce extra computational complexity. This work is a followon work of the state-of-the-art kernel unmixing work [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral images with multi-kernel learning[END_REF]. Benefiting from the specific structure of the unmixing problem, and from the spatial information, the proposed approach provides a reliable estimation of fractional abundances. Its advantages are illustrated via comparative experiments.

NOTATIONS AND NONLINEAR MIXTURE MODEL

Consider that an observed scene consists of R significant endmembers with spectral signature mi ∈ R L , where L denotes the number of spectral bands. Note that, usually, we have R ≪ L. Let r ∈ R L be an hyperspectral pixel, and α ∈ R R the unknown abundance vector associated to the latter. Let M = [m1, . . . , mR] ∈ R L×R be the matrix of the endmember spectra. For the sake of convenience, the ℓ-th row of M is denoted by m ⊤ λ ℓ ∈ R L , that is, m λ ℓ is the vector of the endmember signatures at the ℓ-th wavelength band.

Nonlinear mixture usually results from complex interactions of light sources scattered by multiple materials in the scene. Linear mixing model is a reasonable approximation in cases where these interactions are not significant. However, when such effects cannot be neglected, it is more reasonable to assume that mixing consists of a linear trend and a nonlinear fluctuation term, rather than leaving a nonlinear model totally uncontrolled. Based on this point of view, we model the mixing mechanism with respect to each spectral band

ψ(m λ ℓ ) = θ α ⊤ m λ ℓ + ψnlin(m λ ℓ ) + e ℓ ( 1 
)
where θ is an additional factor that affects the linear mixture, which is parameterized by the abundance vector α. Function ψnlin is supposed to describe the nonlinear interactions between spectra, and e ℓ is the modeling error. In this paper, the function ψnlin is restricted to be an element of a RKHS, say Hnlin, such that

ψnlin(m λ ℓ ) = ψ, κnlin(•, m λ ℓ ) H nlin , ∀ψnlin ∈ Hnlin (2)
The corresponding kernel satisfies to the reproducing property

κnlin(m λ ℓ , m λ k ) = κnlin(•, m λ ℓ ), κnlin(•, m λ k ) (3) 
Several nonlinear models, for instance the bilinear model and postnonlinear models, can be expressed or approximated by this model. Moreover, the non-negativity and the sum-to-one constraints are usually considered for abundance α estimation, namely, α 0 and

1 ⊤ α = 1 (4) 
It should be noticed that the rationality of imposing the sum-to-one constraint is under discussion among researchers. In this paper, we preserve it because discarding this constraint will only simplify the mathematical problem and the proposed algorithm. They can be easily modified to be adapted to this case.

NONLINEAR UNMIXING WITH LEAST-SQUARES SUPPORT VECTOR REGRESSION

We assume that the endmember matrix M has been determined by an endmember extraction algorithm. This approach is usually referred to as supervised unmixing. Pixel unmixing using the model ( 1) is achieved by estimating θ, α, and ψnlin. In order to further control the balance between the linear trend and the nonlinear fluctuation term, we propose to solve the following multi-kernel least-squares support vector problem, in which these proportions are controlled via functional norms.

ψ * ,θ * ,u * = arg min ψ,θ,u 1 2 ψlin 2 H ′ lin u + ψnlin 2 H ′ nlin 1 -u + 1 2µ L ℓ=1 e 2 ℓ
subject to e ℓ = r ℓψ(m λ ℓ )

and ψ = ψlin + ψnlin with ψlin(m λ ℓ ) = θ α ⊤ m λ ℓ α 0 1 ⊤ α = 1 θ ∈ IR * + 0 ≤ u ≤ 1
where Hlin and Hnlin are RKHS. This problem is not convex, and is difficult to solve as formulated. Fortunately, it can be transformed into an equivalent convex problem in the sense of [14, p. 130]. Consider the variable change h = θ α. The cost function can be directly reformulated as a function of h. The linear function is expressed by

ψlin(m λ ℓ ) = h ⊤ m λ ℓ , (5) 
and the two constraints over α become

(h 0) and (1 ⊤ h = θ with θ ∈ IR * + )
The latter constraint can be eliminated because it is trivial due to the former one. Because h = θ α and 1 ⊤ α = 1, we have α * = h * /θ * with θ * = 1 ⊤ h * . This leads us to the following problem

min u J(u) subject to 0 ≤ u ≤ 1 (6) 
where J(u) is defined by

J(u) =              min ψ F (u, ψ) = 1 2 ψ lin 2 H lin u + ψ nlin 2 H nlin 1-u + 1 2µ L ℓ=1 e 2 ℓ subject to e ℓ = r ℓ -ψ(m λ ℓ ) ψ = ψlin + ψnlin ψlin(m λ ℓ ) = h ⊤ m λ ℓ h 0 (7) 
Appropriate definitions for Hlin and Hnlin, and continuity considerations, are used for defining J(u) in u = 0 and 1. See [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF] for details. It can be shown that the problem ( 6)-( 7) is a convex optimization problem by virtue of the convexity of the so-called perspective function defined by f (u, ψ) = ψ 2 H lin/nlin /u over IR+ × Hlin/nlin [START_REF] Boyd | Convex Optimization[END_REF]. This allows to formulate a two-stage optimization procedure, with respect to ψ and u successively.

Solving with respect to ψ

By the strong duality property, we shall now derive a dual problem that has the same solution J(u) = F (u, ψ * ) as the primal problem [START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF]. Let us introduce the Lagrange multipliers β ℓ and γr. The Lagrange function associated with the problem [START_REF] Broadwater | Kernel fully constrained least squares abundance estimates[END_REF] can be written as

G = 1 2 1 u h 2 + 1 1 -u ψnlin 2 H nlin + 1 2µ L ℓ=1 e 2 ℓ - L ℓ=1 β ℓ (e ℓ -r ℓ + ψ(m λ ℓ )) - R r=1 γr hr (8) 
with γr ≥ 0, where we have used that ψlin 2 H lin = h 2 . The conditions for optimality of G with respect to the primal variables are given by

     h * = u L ℓ=1 β * ℓ m λ ℓ + γ * ψ * nlin = (1 -u) L ℓ=1 β * ℓ κnlin(•, m λ ℓ ) e * ℓ = µ β * ℓ (9) 
Substituting ( 9) into (8) leads us to the dual problem [START_REF] Guilfoyle | A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks[END_REF], see next page, where Knlin is the Gram matrix defined by

[Knlin] ℓk = κnlin(m λ ℓ , m λ k ) (11) 
Problem ( 10) is a standard quadratic programming problem which can be solved by a generic solver. Once β * and γ * are determined, pixel reconstruction can be performed using [START_REF] Dobigeon | Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery[END_REF]. Finally, using the relation between h and α, the estimated abundance vector is given by

r * = [ψ * (m λ 1 ), . . . , ψ * (m λ L )] ⊤ with ψ * (m λ ℓ ) = m ⊤ λ ℓ h * + ψ * nlin (m λ ℓ ) defined in equation
α * = M ⊤ β * + γ * 1 ⊤ (M ⊤ β * + γ * ) (12) 

Solving with respect to u

In the general framework for multi-kernel learning described in [START_REF] Rakotomamonjy | Sim-pleMKL[END_REF], the kernel weights were updated by the reduced gradient method.

In [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF][START_REF] Chen | Nonlinear unmixing of hyperspectral images with multi-kernel learning[END_REF], a gradient descent was also used to update u. However, gradient based updates usually have low convergence rates. An optimal step size search strategy is often considered to accelerate the convergence rate, with a an additional computational cost. We shall now show that there is a closed-form expression for the optimum u * . Notice that the function fp,q(u) = p u + q 1u with p, q ≥ 0 (13)

J(u) =          max β,γ G ′ (u, β, γ) = - 1 2 β γ ⊤ Ku + µI uM uM ⊤ uI β γ + r 0 ⊤ β γ subject to γ 0 with Ku = uM M ⊤ + (1 -u)Knlin (10) 
Jsp(u) =              max β,γ G ′ sp (u, β, γ) = - 1 2 β γ ⊤ Ku + µI ξM ξM ⊤ ξI β γ + r -ξζ M i∈Nn ωih * i -ξζ i∈Nn ωih * i ⊤ β γ subject to γ 0 with Ku = ξM M ⊤ + (1 -u)Knlin and ξ = u 1 + uζ (19)
is convex over the interval (0, 1). The optimum value is achieved at

u * = (1 + q/p) -1 (14) 
Now considering the problem (6), and using the stationarity conditions ( 9), we conclude that the optimum value u * at each iteration is given by

u * = 1 + (1 -u * -1 ) (β * ⊤ Knlinβ * )/ h * 2 -1 (15) 
where u * -1 denotes the optimal u * obtained at the previous iteration.

LOCALLY-SPATIAL REGULARIZATION

One of the distinguishing properties of remotely sensed data is that they convey multivariate information into a 2D pictorial representation [START_REF] Plaza | Foreword to the special issue on spectral unmixing of remotely sensed data[END_REF]. Incorporating spatial information may have a positive impact on hyperspectral unmixing. Exploiting spatial information can be conducted by designing appropriate criteria, usually, by adding a penalizing term to the modeling error that promotes similarity of fractional abundances between one pixel and some others to be defined. Spatial regularization techniques incorporating all the pixels, such as TV norm, lead to a global optimization problem that notably increase the computational burden [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF][START_REF] Chen | Nonlinear estimation of material abundances of hyperspectral images with l1-norm spatial regularization[END_REF]. To overcome this drawback, we adopt hereafter a local regularization strategy, and we associate it to the nonlinear unmixing algorithm presented before. Let us identify the current pixel under analysis by the index n. In addition to estimating hn via the optimization problem ( 6)-( 7), we shall also promote the similarity between hn and its neighbors by considering the quadratic penalty term

Jreg(hn) = ζ 2 i∈Nn ωi hn -h * i 2 . ( 16 
)
where the dissimilarities with the neighboring pixels i in Nn are weighted by ωi. The abundance vectors h * i are considered to have already been estimated. If the image is treated one pixel after another, sequentially along rows, an example of such a neighborhood is defined by {n -1, nw, nw -1}, where w is the width of the image. Although ℓ1-type regularization has favorable properties in image processing, it adds significant complexity to the nonlinear algorithm. For this reason, we shall employ this ℓ2 regularization combined with the following strategy 1. Calculate ωi = rn -ri 2 / rn 2 , which represents the normalized spectral distance between pixel n and its neighbors;

2. If mini ωi > ν0, with ν0 a given threshold, the algorithm is conducted without spatial regularization using [START_REF] Guilfoyle | A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks[END_REF].

3. Otherwise, the weights ωi are determined from the ωi's by

ωi = 1/ ωi i∈Nn 1/ ωi (17) 
and the algorithm is conducted with the spatial regularization term (16).

Step 2. allows to disable spatial regularization in the case where the spectral distance between pixel n and its neighbors is significant, which may preserve transient phenomena. This step can obviously be eliminated if preferred, and the definition (17) changed. Finally, unmixing with spatial regularization is performed by adding ( 16) to the Lagrange function [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF]. The conditions for optimality yield

     h * n = u 1+uζ L ℓ=1 β * ℓ m λ ℓ + γ * + ζ i∈Nn ωih * i ψ * nlin = (1 -u) L ℓ=1 β * ℓ κnlin(•, m λ ℓ ) e * ℓ = µ β * ℓ (18) 
Substituting [START_REF] Chen | Nonlinear estimation of material abundances of hyperspectral images with l1-norm spatial regularization[END_REF] into the Lagrange function leads us to the dual problem [START_REF] Baldridge | The ASTER spectral library version 2.0[END_REF]. It is interesting to note that this optimization problem has the same computational complexity as [START_REF] Guilfoyle | A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks[END_REF]. Once the duality variables are determined, the vector of fractional abundances can be estimated as follows

α * n = M ⊤ β + γ * + ζ i∈Nn ωih * i 1 ⊤ M ⊤ β + γ * + ζ i∈Nn ωih * i . (20) 
Finally, note that the update equation ( 15) for u remains unchanged.

EXPERIMENT RESULTS

Experiments with synthetic data

Let us first report some experimental results on synthetic images. The endmembers were randomly selected from the library ASTER where signatures have reflectance values measured over 224 spectral bands, uniformly distributed in the interval 3 -12 µm [START_REF] Baldridge | The ASTER spectral library version 2.0[END_REF].

Spatially-uncorrelated pixels

Random pixels were first generated to test the performance of the basic nonlinear unmixing algorithm. Pixels with three, five and eight endmembers were generated respectively with the linear model, the generalized bilinear mixture model [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF], and the post-nonlinear mixing model (PNMM) defined by r = (M α) 0.7 +n. In each scenario, 1000 pixels were generated for evaluating and comparing the performance. All these images were corrupted with an additive white Gaussian noise n with SNR = 30 dB. The Gaussian kernel defined as κnlin(m λp , m λ ℓ ) = exp(-m λpm λ ℓ 2 /2σ 2 0 ) was used. Our approach was compared with the fully constrained least square method (FCLS) [START_REF] Heinz | Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery[END_REF], and the extended endmember-matrix method (ExtM) [START_REF] Raksuntorn | Nonlinear spectral mixture analysis for hyperspectral imagery in an unknown environment[END_REF], and the K-Hype algorithm [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF]. The root mean square error (RMSE) of the abundance vectors was used to compare these algorithms. Preliminary runs were performed with independent data to set their parameters. The results are reported in Table 1. The proposed method had better performance than the other algorithms except for linearly-mixed data. It however outperformed K-Hype in this case because it can automatically balance ψlin and ψnlin. This is a key advantage because nonlinear mixing effects can be weak in some situations, in particular if there is a locally-dominant material. Figure 1 illustrates this situation, where material #9 is dominant in the center of the scene. See image DC2 in [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF], mixed with a bilinear model.

Spatially-correlated pixels

We shall now check the advantage of incorporating spatial information, and validate the proposed locally-spatial regularization. A synthetic image of 75 × 75 pixels was generated with the bilinear mixture model using five signatures. The pure regions and mixed regions involved between 2 and 5 endmembers, spatially distributed in the form of square regions. See image DC1 in [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF] for details. The image was corrupted by a white Gaussian noise with SNR = 25 dB. The regularization parameter ζ was set to 10. The threshold ν0 was set to 0.01. The true abundances and estimated abundances of the 4-th and 5-th materials are illustrated in Figure 2, with RMSE at the bottom of each image. The effect of spatial regularization can be clearly observed.

Experiments with real data

This experiment illustrates the performance of the proposed algorithms, when applied to real hyperspectral data. This scene is the well-known image captured on the Cuprite mining district (NV, USA) by AVIRIS. A sub-image of 250 × 191 pixels was chosen to evaluate the algorithms. This area of interest has L = 188 spectral bands. The number of endmembers was first estimated via the virtual dimensionality, and R was accordingly set to 12 [START_REF] Nascimento | Vertex Component Analysis: A fast algorithm to unmix hyperspectral data[END_REF]. VCA algorithm was then used to extract the endmembers. The proposed algorithms, with/without spatial regularization, were run with the Gaussian kernel. The kernel bandwidth was set to σ 2 0 = 2. The regularization parameter µ was fixed to 5 • 10 -3 . The spatial regularization parameter ζ was set to 10. The unmixing results for three materials are shown in Figure 3. It can be observed that the mineral distributions are consistent with the reference map [START_REF] Clark | Imaging spectroscopy: Earth and planetary remote sensing with the usgs tetracorder and expert systems[END_REF], and the US Highway 95 can be clearly identified whereas the linear unmixing failed to separate it [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinearfluctuation model[END_REF]. 

CONCLUSION AND PERSPECTIVES

We presented a least-squares support-vector regression approach for hyperspectral data unmixing. The model is partially linear, that is, it combines a linear trend and a nonlinear correction term. Multikernel learning was used to tune the balance between the linear and nonlinear components, resulting in a convex optimization problem.

A locally-spatial regularizer, which does not introduce extra computational expenses, was proposed to enhance the unmixing performance. Future work will focus on endmember extraction within this nonlinear unmixing framework.
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Table 1 .

 1 Spatially-uncorrelated pixels: RMSE comparison (×10 -2 )

			R = 3			R = 5			R = 8	
		linear	bilinear	PNMM	linear	bilinear	PNMM	linear	bilinear	PNMM
	FCLS	1.10 ± 0.02	33.2 ± 4.37	21.3 ± 1.31	1.65 ± 0.03	23.6 ± 1.73	14.8 ± 0.72	3.16 ± 0.08	21.3 ± 1.31	12.7 ± 0.49
	ExtM	1.29 ± 0.02	6.27 ± 0.43	19.6 ± 1.42	2.31 ± 0.07	6.50 ± 0.29	14.5 ± 0.61	3.98 ± 0.16	7.36 ± 0.31	12.3 ± 0.52
	K-Hype	2.61± 0.07	3.30 ± 0.13	5.40 ± 0.28	3.37 ± 0.11	3.34 ± 0.13	5.13 ± 0.24	3.65 ± 0.13	3.56 ± 0.14	5.11 ± 0.24
	Proposed	1.92 ± 0.04	3.66 ± 0.14	3.21 ± 0.12	3.18 ± 0.11	3.65 ± 0.14	4.99 ± 0.24	3.21 ± 0.11	3.70 ± 0.14	4.95 ± 0.26