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Estimation locale d'un champ de diffusion par modèles à noyaux

Introduction

Les Réseaux de Capteurs sans Fil (RCF) sont introduits comme une solution économique et facilement déployable pour la surveillance à distance de phénomènes physiques [START_REF] Akyildiz | A survey on sensor networks[END_REF]. Initialement développés pour des applications militaires, leur domaine d'application ne cesse de s'élargir pour inclure la surveillance dans les domaines civil, industriel et environnemental [START_REF] Steere | Research challenges in environmental observation and forecasting systems[END_REF]. Les RCF sont constitués de noeuds déployés en grand nombre en vue de collecter et de transmettre les données environnementales, d'une manière autonome. Cette autonomie impose des contraintes d'énergie et de débit de communication, ce qui exige une optimisation des algorithmes correspondants : les capteurs communiquent de proche en proche, entre voisins. Dans ce papier, nous traitons le problème de la modélisation de la diffusion d'un champ de gaz, ainsi que le suivi de son évolution au cours du temps. Notre but revient ainsi à estimer la distribution de gaz aux endroits dépourvus de capteurs. Vu l'application considérée, nous devons recourir à des méthodes de modélisation adéquates. Pour cela, nous considérons un cadre similaire à celui donné dans [START_REF] Honeine | A decentralized approach for non-linear prediction of time series data in sensor networks[END_REF], tout en proposant une approche locale pour l'estimation.

Description de la méthode

Supposons que le réseau est composé d'un grand nombre de capteurs déployés dans une région χ, où χ ⊂ R 2 pour un espace de dimension 2, ou bien χ ⊂ R 3 comme dans le cas des drones navigant dans un espace de dimension 3. Les capteurs communiquent entre eux de proche en proche. Considérons un capteur i de position x i ∈ χ, et soit ϑ i l'ensemble des indices des k plus proches capteurs voisins au capteur i. Dans notre approche, nous considérons que x i est voisin à lui-même, c'est à dire i ∈ ϑ i . A chaque instant, chaque capteur i reçoit de ses voisins j ∈ ϑ i , j = i, des informations comportant leurs positions x j , et les valeurs de la quantité physique mesurée y j . L'objectif est alors de trouver, pour chaque capteur, un modèle local ψ i (•) pour représenter le champ mesuré de façon à avoir ψ i (x j ) = y j pour tout j ∈ ϑ i . Nous proposons d'utiliser le formalisme des méthodes à noyaux [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] pour trouver ces modèles.

Le problème de minimisation de l'erreur quadratique entre les sorties du modèle ψ i (x j ) et les réponses mesurées y j nous amène au problème d'optimisation suivant :

ψ * i = arg min ψ∈H j∈ϑi (y j -ψ i (x j )) 2 + η ψ i 2 H ,
où H est un espace de Hilbert à noyau reproduisant κ(•, •) constitué de fonctions de χ dans R, η est un paramètre de régularisation qui contrôle le compromis entre le raccord aux données 1 disponibles et la douceur de la solution. D'après le théorème de représentation [START_REF] Schölkopf | A Generalized Representer Theorem[END_REF], la solution de ce problème est donnée sous la forme d'une combinaison linéaire de noyaux κ(x j , •), selon

ψ * i (•) = j∈ϑi α i,j κ(x j , •),
où les coefficients α i,j , pour j ∈ ϑ i , sont à déterminer. Soient α i le vecteur contenant ces coefficients et y i le vecteur des mesures effectuées y j , pour j ∈ ϑ i . Nous démontrons que :

α i = (K i + ηI) -1 y i ,
où K i est la matrice d'éléments κ(x m , x n ), pour m, n ∈ ϑ i , et I la matrice identité de même taille.

Simulations

Afin d'illustrer les résultats de ce travail, nous considérons la diffusion d'un gaz dans un espace carré χ = [-0.8; 0.8] × [-0.8; 0.8]. Une source de gaz placée au point S(0.47; 0.42) est ainsi activée de t = 1 jusqu'à t = 100. Les capteurs déployés aléatoirement fournissent des mesures relevées en tout instant t. Sur 100 capteurs, 66 sont utilisés pour l'apprentissage et 34 pour la validation du modèle calculé. Soit Ω val l'ensemble de validation. La Figure 1 représente la répartition des capteurs dans χ. Les cercles bleus désignent les capteurs d'apprentissage, et les carrés rouges, numérotés de 1 à 34, désignent les capteurs de validation. Nous utilisons dans ce papier le noyau Gaussien donné par κ(x m , x n ) = exp(-1 2σ 2 x mx n 2 ), σ étant la largeur de bande du noyau. La Figure 2 illustre les résultats obtenus. On remarque un bon accord entre les mesures du champ de gaz réel et celles estimées à partir du modèle.
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 1 FIG. 1 -Répartition des capteurs (apprentissage • et validation ).
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 2 FIG.2 -a-Estimation au capteur 3 ; b-Erreur quadratique mesurée sur l'ensemble Ω val ; c-Erreur absolue au capteur 1.