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Abstract—Indoor localization is an important issue in wireless
sensor networks for a very large number of applications. Recently,
localization techniques based on the received signal strength
indicator (RSSI) have been widely used due to their simple and
low cost implementation. In this paper, we propose an algorithm
for localization in wireless sensor networks based on radio-
location fingerprinting and kernel methods. The proposed method
is compared to another well-known localization algorithm in the
case of real data collected in an indoor environment where RSSI
measures are affected by noise and other interferences.
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I. I NTRODUCTION

Wireless sensor networks (WSNs) have become a major
research field during the last years. They are composed of
a large number of tiny autonomous wireless sensors that are
spatially distributed and can communicate and exchange data
[1],[2]. The sensors are mostly battery powered; therefore, they
have a limited lifetime, and hence all built-in algorithms must
focus on reducing energy consumption. Nowadays, WSNs are
rapidly gaining importance in many fields of applications,
especially in military, environmental, and healthcare domains
[3]. Indeed, WSNs can be efficiently used for monitoring or
tracking of enemies in a battlefield [4], and for real-time forest
fire detection [5]. Sensor networks can also be used to detect
foreign chemical agents in the environment [6].

In all applications, awareness of location information is
fundamental since collected data are meaningless without any
geographical context. A direct way to locate the nodes is
the use of GPS (Global Position System) devices; however,
this solution is not practical because of the high cost of
integrating GPS receivers and also of the limited efficiency
of GPS signals in indoor environments. An alternative solution
consists of considering two types of sensors,anchorsandnon-
anchor nodes. Anchors have known fixed locations, whereas
non-anchors nodes, or simplynodes, have unknown positions
and thus need to be localized. Many localization algorithms
using anchors have been proposed. They are mainly based on
estimating the distances between the anchors and the nodes,
using the Time Of Arrival (TOA) [8], the Time Difference Of
Arrival (TDoA) [9], the Angle of Arrival (AoA) [10], or the
Received Signal Strength Indicator (RSSI) [11],[12]. The RSSI
methods are based on the attenuation of the signal strength over
distance. They have become popular due to their low-power

consumption and cost competitiveness. For instance, in [13]
and [14], interval-based methods using RSSI measurements
are proposed; these methods perform an outer approximation
of the solution area, leading to boxes guaranteed to include
the actual location. In [15] and [16], the authors introducea
distributed strategy for localization in wireless sensor networks
by solving the pre-image problem in a reproducing kernel
Hilbert space.

Another technique for RSSI-based localization is finger-
printing [17],[18],[19]. The advantage of location fingerprint-
ing technique is that it takes into account the stationary char-
acteristics of the environment such as multipath propagation,
i.e. wall attenuation. This technique consists of two phases:
the offline phase and theonline phase. Theoffline phase is a
training phase where the goal is to build a training databasefor
each reference location; a radio map is then created where each
reference node has RSSI measures received from the anchors
associated to its position. To determine the position of a node
in the online phase, RSSI values collected from the node are
processed and the estimated location coordinates are calculated
based on the knowledge built during theoffline phase. A
well-known algorithm based on location fingerprinting is the
Weighted K-Nearest Neighbor (WKNN) algorithm [20]. In the
basic form of this algorithm, the RSSI values collected by the
node whose position is unknown are compared to the samples
in the database and the output is the weighted average of the
K nearest samples; the nearness indicator for this method is
based on the Euclidean distance between RSSIs.

In this paper, we propose a localization technique combin-
ing location fingerprinting and kernel methods. The proposed
method employs fingerprinting information to define a model
that associates to the measured data the positions where they
are made. To this end, a fingerprinting database containing
RSSI measures for each reference node associated with its
position is constructed. The model is then defined using kernel
methods ([21],[22]) and the constructed database. Then, in
order to localize the nodes, each one collects, while moving,
RSSI measures at every time-step. These RSSI measures are
used with the defined model to estimate the position of the
considered node. The rest of the paper is organized as follows.
Section II outlines the proposed localization algorithm. Section
III describes the use of kernel methods in our algorithm. Sec-
tion IV illustrates the effectiveness of the method by comparing
it to KNN-based methods. Finally, Section V concludes the
paper.



II. D ESCRIPTION OF THE PROPOSED ALGORITHM

We consider two types of sensors: anchors and non-anchor
nodes. Anchors have known fixed locations, denoted byai, i ∈
{1, . . . , Na}, whereNa is their number. Non-anchor nodes or
simply nodes are mobile having unknown positions, and hence
needing to be localized regularly. Nodes positions at a given
time t are denoted byxj(t), j ∈ {1, . . . , Nx}, whereNx is
their number.

The proposed algorithm consists of two phases:offlineand
onlinephases. In theofflinephase,N offlinepositions, denoted
by pℓ, ℓ ∈ 1, ..., N , are generated in a uniformly distributed
manner in the studied environment. A node is then placed
at each of theseoffline positions to perform measurements.
Indeed, each anchor broadcasts signals in the network with
the initial powerρ0. By placing the node at a positionpℓ,
it becomes possible to measure the Received Signal Strength
Indicator (RSSI) of anchors signals at this location. The RSSI
is assumed to follow the Okumura-Hata model [23] given by:

ρai,pℓ
= ρ0 − 10nP log10‖ai − pℓ‖+ εi,ℓ (1)

In this expression,ρai,pℓ
(in dBm) is the power received from

the anchorai by the node at positionpℓ, ρ0 is the initial power
(in dBm), nP is the path-loss exponent,‖ai − pℓ‖ is the Eu-
clidian distance between the considered node at positionpℓ and
the anchorai, andεi,ℓ is the noise affecting the RSS measures.
Therefore, a database ofn couples(ρℓ,pℓ) is obtained, where
ℓ ∈ {1, . . . , N}, and whereρℓ = (ρa1,pℓ

, . . . , ρaNa ,pℓ
)⊤ is

the vector of received powers at positionpℓ.

Based on the information collected in the database, the
objective is to define a set of functionsψd (·) : IR

Na 7→ IR,
that associate to each entryρℓ the corresponding outputpℓ,d,
whered ∈ {1, . . . , D}, D being the space’s dimension and
pℓ,d is an element ofpℓ = (pℓ,1, . . . , pℓ,D)

⊤. As we will show
in Section III, kernel methods provide an elegant framework
to determine these functions. Onceψd (·) has been defined, a
node’s position, at a given timet, can be directly estimated in
theonlinephase. Indeed, consider a nodej to be localized at a
given timet. This node receives signals from theNa anchors in
the environment, measures their RSSI values, and stores them
in a vectorρj(t). The estimated coordinates of the nodej are
then given byx̂j,d(t) = ψd(ρj(t)), whered ∈ {1, . . . , D}.

III. D EFINING ψ (·) USING KERNEL METHODS

Let us consider a reproducing kernelκ : IRNa×IRNa 7→ IR,
and let us denote byH its reproducing kernel Hilbert space
(RKHS) with inner product〈·, ·〉H. From the reproducing
property, we can say that everyψd (·) of H can be evaluated at
anyρℓ ∈ IRNa by ψd(ρℓ) = 〈ψd (·) , κ(·,ρℓ)〉H. The function
ψd (·) must minimize the mean quadratic error between the
model’s outputsψd(ρℓ) and the desired outputspℓ,d :

N
∑

ℓ=1

((pℓ,d − ψd(ρℓ))
2 + η‖ψd‖

2

H, (2)

whereη is a regularization parameter that controls the tradeoff
between the training error and the complexity of the solution,
as measured by the norm in the RKHS. To minimize the

functional in (2), we take the functional derivative with respect
to ψd(·) and set it to zero [22], namely

−2
N
∑

ℓ=1

(pℓ,d − 〈ψd (·) , κ(·,ρℓ)〉H) κ(·,ρℓ) + 2ηψd (·) = 0.

This optimality condition leads to the expression

ψd (·) =

N
∑

ℓ=1

(pℓ,d − 〈ψd (·) , κ(·,ρℓ)〉H)

η
κ(·,ρℓ). (3)

Having ψd(ρℓ) = 〈ψd (·) , κ(·,ρℓ)〉H from the reproducing
property, we can write (3) as follows:

ψd (·) =

N
∑

ℓ=1

(pℓ,d − ψd(ρℓ))

η
κ(·,ρℓ)

Finally, we get the following model :

ψd(·) =

N
∑

ℓ=1

αℓ,dκ(ρℓ, ·), (4)

where

αℓ,d =
pℓ,d − ψd(ρℓ)

η
. (5)

By injecting expression (4) in the cost function (2), we get
a least squares optimization problem that can be written in
matrix form as follows :

(K + ηIN )αd = P d, (6)

whereαd = (α1,d, . . . , αN,d)
⊤, P d = (p1,d, . . . , pN,d)

⊤, IN
is theN -by-N identity matrix,K is aN -by-N matrix whose
(i, j)-th entry is given byκ(ρi,ρj).

In this paper, we consider the case of the Gaussian kernel
given by:

κ(ρi,ρj) = exp

(

−‖ρi − ρj‖
2

2σ2

)

,

whereσ is the bandwidth of the Gaussian kernel. In this case,
equation (4) approximates the unknown function by a weighted
superposition of Gaussian functions. The weightαℓ,d of each
Gaussian is taken such as to minimize the error on the training
set. The bandwidth of the Gaussian kernel, together with the
regularization parameter, control the degree of smoothness,
noise tolerance, and generalization of the solution.

IV. SIMULATION AND RESULTS

In order to evaluate the performance of our method, we
tested it using various scenarios considering a2D environment.
In the first part of this section, results are shown in the case
of Matlab-generated data where RSSI values are obtained
using the Okumura-Hata model [23]. However, experimental
studies have shown that most of the state of the art localization
algorithms, once deployed in real testbeds, achieve much worse
performance than what was expected. Therefore, it is essential
to test localization algorithms in the presence of real data.
In the second part of this section, the proposed method is
tested with real data gathered in a10m × 10m real indoor
environment [24]. In the third section, the results using the
proposed method are compared to ones obtained with the
well-known K-Nearest Neighbor localization algorithm, with
different weighting functions.
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Fig. 1. Generated topology
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Fig. 2. Estimation of the trajectory in the absence of noise

A. Evaluation of the proposed method on simulated data

For the training phase,100 offline positions and16 an-
chors are generated in a uniformly distributed manner over a
1000m × 1000m area (Fig. 1). Anchors are assumed to be
static. The RSSI values needed to construct the database of
N couples(ρℓ,pℓ), where ℓ ∈ {1, . . . , N} (N = 100), are
generated using the Okumura-Hata model given by (1) with
parameters set tonP = 4 andρ0 = 150dBm.

We generated a trajectory and calculated the RSSI values
received by the moving node using the same RSSI model
without noise; we then estimated the position of the node
during its movement using our localization algorithm. Fig.2
shows the generated trajectory and the estimated one. The
two trajectories are superimposed. Let the estimation error be
the root mean squared distances between the exact positions
and the estimated ones. Then the estimation error is equal
to 1.063m for η = 2−20 and σ = 27. Results for different
values ofη andσ are shown in Table I. In Fig. 3, a zero-mean
Gaussian white noise of standard deviationσb = 1dB is added
to the RSSI values. The estimated trajectory follows the actual
one and the estimation error is equal to10.656m for η = 2−12

andσ = 26; results for different parameter values are shown
in Table II.
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Fig. 3. Estimation of the trajectory in the presence of noise

TABLE I. ESTIMATION ERROR (IN METERS) FOR DIFFERENT VALUES
OF η AND σ - MATLAB -SIMULATED DATA WITHOUT NOISE

σ η = 2
−20 η = 2

−18 η = 2
−16 η = 2

−14 η = 2
−12

2
4 32.764 32.764 32.763 32.757 32.735

2
5 6.352 6.353 6.371 6.505 6.875

2
6 3.172 2.974 2.670 2.487 4.119

2
7 1.063 2.455 5.235 7.066 7.953

2
8 6.846 7.442 7.693 7.930 10.961

2
9 7.666 7.806 10.671 25.648 41.617

2
10 10.620 25.664 41.902 49.256 51.238

B. Evaluation of the proposed method using real data

The set of collected measurements used in this section
are available from [24]. The authors deployed48 EyesIFX
nodes in a room measuring approximately10m × 10m. The
nodes are uniformly distributed over the area and suspended
at approximately75 centimeters from the ceiling. Furniture
and people present in the room cause multi-path interferences
affecting the collected RSSI values. Fig. 4 shows the topology
of the testbed. We chose5 nodes to be anchors in our
simulation, leaving us with43 nodes to use asofflinepositions.
However, to get better results, we used the present data to
generate57 newofflinepositions in order to get a total of100
offlinepositions (Fig. 5). To evaluate our algorithm in the case
of a moving node, we also generated a trajectory using the
data. Fig. 6 shows the generated trajectory and the estimated
one. The estimation error is equal to0.195m for η = 2−19 and
σ = 16. Fig. 7 shows howη andσ affect the estimation error,
whereη = 2s with s ∈ {−20,−19, · · · ,−1} andσ = 2t with
t ∈ {1, 2, · · · , 10}.

TABLE II. E STIMATION ERROR (IN METERS) FOR DIFFERENT VALUES

OF η AND σ - MATLAB -SIMULATED DATA WITH NOISE (σb = 1dB)

σ η = 2
−20 η = 2

−18 η = 2
−16 η = 2

−14 η = 2
−12

2
4 35.347 36.113 35.766 35.625 35.600

2
5 12.628 12.795 12.787 13.032 12.514

2
6 12.991 11.545 12.266 11.377 10.656

2
7 16.547 14.533 13.165 13.201 12.349

2
8 15.071 13.653 12.405 12.816 14.033

2
9 12.817 12.771 14.457 26.987 43.108

2
10 14.818 27.711 42.690 49.467 52.322
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Fig. 4. Original testbed
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Fig. 5. Modified testbed

C. Comparison to Weighted K-Nearest Neighbor algorithm

The Weighted K-Nearest Neighbor (WKNN) algorithm is a
well-known localization algorithm based on the fingerprinting
technique and the Euclidean distances between the RSSI values
received by the node to be localized and the fingerprints in
the database. Let us denote byDj,ℓ = ‖ρj(t) − ρℓ‖ the
Euclidean distance between the RSSI vectorρj(t) of the node
j we want to localize at timet andρℓ of the database where
ℓ ∈ {1, . . . , n}. Let Ij be the set of indices ofρℓ yielding
the K smallest distancesDj,ℓ at time t. Ij of cardinality
K corresponds to the set of theK nearest neighbors (offline
positions) to the nodej at time t. Then nodej’s position is
estimated by:

x̂j(t) =
∑

k∈Ij

wkpk,

wherepk is one of the nearestoffline positions neighboring
the node, andwk is the normalized weight factor depending
on thekth minimal distance. The weight factor is important in
contributing to position accuracy; in fact, neighbors withhigh
weight contribute more to position coordinates than elements
with low weight, since weights and distances vary in inverse
proportion to one another. Weight values used in simulations
are listed in Table III.

Table IV shows the estimation error obtained while estimat-
ing the same trajectory of Fig. 2 (without adding noise to the
RSSI values) using WKNN algorithm forK ∈ {1, · · · , 15}
and for five different weights (Table III). The lowest error
obtained using WKNN in this case is equal to16.863m when
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Fig. 6. Estimation of the trajectory (real data)
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Fig. 7. Variations of the estimation error in terms ofη andσ

TABLE III. L IST OF SELECTED WEIGHT FACTORSwk

Type Expression ofwk

“A” 1/K

“B”
1/Dj,k∑

v∈Ij
1/Dj,v

“C”
1/D2

j,k
∑

v∈Ij
1/D2

j,v

“D”
1/D3

j,k
∑

v∈Ij
1/D3

j,v

“E”
exp(−Dj,k)

∑
v∈Ij

exp(−Dj,v)

using weight “C” andK = 4. Using our proposed method, we
found an estimation error of1.063m for η = 2−20 andσ = 27

(see Table I).

After adding a zero-mean Gaussian white noise of standard
deviationσb = 1dB to the RSSI values, we get the results in
Table V, where the estimation error is presented in the case
of WKNN algorithm. The lowest error obtained using WKNN
is equal to17.644m when using weight “C” andK = 5. Our
proposed method gives an estimation error of10.656m for
η = 2−12 andσ = 6 (see Table II) which is also smaller than
the best result obtained with WKNN.

We now consider the same scenario as in Section IV.B (real
RSSI values are used). Table VI shows the estimation error
obtained while estimating the trajectory of Fig. 6 using WKNN
algorithm. The lowest error obtained is equal to0.340m when
using weight “E” andK ∈ {10, 11, 12, 13}. Our proposed
method gives an estimation error of0.195m for η = 2−19 and
σ = 16 which is a better result than the one obtained with
WKNN.

V. CONCLUSION

In this paper, we presented a new localization algorithm
based on radio-location fingerprinting and kernel methods.
The simulation results show that the proposed method allows
a more accurate localization than the WKNN algorithm, for
different weight models and parameters. We also analyzed the
behavior of our algorithm in the presence of real data, and the
results were satisfying. However, we cannot but notice thatthe
results obtained in the case of Matlab simulated data without
the additive noise are more than excellent, leaving us with
the conclusion that, in the case of an accurate radio channel
model, the proposed model technique overcome many existing
localization techniques in terms of accuracy.



TABLE IV. ESTIMATION ERROR(IN METERS) BETWEEN REAL AND

ESTIMATED TRAJECTORY- MATLAB -SIMULATED DATA WITHOUT NOISE

K “A” “B” “C” “D” “E”
1 48.376 48.376 48.376 48.376 48.376
2 36.538 27.603 27.647 29.801 38.935
3 28.882 20.535 20.108 23.030 37.641
4 29.114 19.865 16.863 19.516 37.245
5 28.969 20.062 16.966 19.242 37.230
6 35.913 24.720 18.424 18.959 37.228
7 35.705 25.655 19.472 19.592 37.227
8 38.163 27.503 20.287 19.618 37.227
9 39.979 29.327 21.120 19.636 37.227
10 37.017 27.591 19.970 18.965 37.227
11 36.504 27.353 19.829 18.728 37.227
12 36.870 27.059 19.468 18.456 37.227
13 38.415 27.958 19.664 18.337 37.227
14 39.871 28.105 19.491 18.087 37.227
15 39.939 28.295 19.825 18.304 37.227

TABLE V. ESTIMATION ERROR(IN METERS) BETWEEN REAL AND
ESTIMATED TRAJECTORY- MATLAB -SIMULATED DATA WITH NOISE

(σb = 1dB)

K “A” “B” “C” “D” “E”
1 49.205 49.205 49.205 49.205 49.205
2 36.639 28.390 27.536 29.491 40.328
3 30.285 22.605 21.218 23.506 39.121
4 27.907 20.414 17.805 20.167 38.768
5 28.792 20.814 17.644 19.474 38.698
6 36.218 26.035 19.792 19.737 38.691
7 36.134 26.708 20.363 19.878 38.690
8 38.966 28.550 20.931 19.734 38.690
9 40.597 30.016 21.945 20.046 38.690
10 37.429 28.559 20.986 19.413 38.690
11 37.629 28.677 20.838 19.126 38.690
12 37.398 27.831 20.041 18.618 38.690
13 39.135 28.912 20.384 18.541 38.690
14 40.254 29.231 20.512 18.443 38.690
15 40.334 29.079 20.599 18.471 38.690
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