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Abstract—Indoor localization is an important issue in wireless ~ consumption and cost competitiveness. For instance, ih [13
sensor networks for a very large number of applications. Reently, and [14], interval-based methods using RSSI measurement:
localization techniques based on the received signal strgth  are proposed; these methods perform an outer approximatior
indicator (RSSI) have been widely used due to their simple ah  of the solution area, leading to boxes guaranteed to include
low cost implementation. In this paper, we propose an algothm 6 5ctyal location. In [15] and [16], the authors introdace
for localization in wireless sensor networks based on radio gy ted strategy for localization in wireless sensemorks

location fingerprinting and kernel methods. The proposed méod b Vi th . bl . duci K |
is compared to another well-known localization algorithm h the y solving the pre-image problem In a reproducing kerne

case of real data collected in an indoor environment where RS Hilbert space.

ff i her interf . . N L
measures are affected by noise and other interferences Another technique for RSSI-based localization is finger-

Keywords—fingerprinting, kernel methods, localization, wireless printing [17],[18],[19]. The advantage of location fingar-
sensor networks ing technique is that it takes into account the stationagrch
acteristics of the environment such as multipath propagati
i.e. wall attenuation. This technique consists of two phase
the offline phase and thenline phase. Theoffline phase is a

Wireless sensor networks (WSNs) have become a majdraining phase where the goal is to build a training databarse
research field during the last years. They are composed @fach reference location; a radio map is then created where ea
a large number of tiny autonomous wireless sensors that aféference node has RSSI measures received from the anchol
spatially distributed and can communicate and exchange da@ssociated to its position. To determine the position of @eno
[1],[2]. The sensors are mostly battery powered; therettwey  in the online phase, RSSI values collected from the node are
have a limited lifetime, and hence all built-in algorithmsish ~ processed and the estimated location coordinates ardataidu
focus on reducing energy consumption. Nowadays, WSNs areased on the knowledge built during thufline phase. A
rapidly gaining importance in many fields of applications, well-known algorithm based on location fingerprinting i th
especially in military, environmental, and healthcare dova ~ Weighted K-Nearest Neighbor (WKNN) algorithm [20]. In the
[3]. Indeed, WSNs can be efficiently used for monitoring orbasic form of this algorithm, the RSSI values collected bg th
tracking of enemies in a battlefield [4], and for real-timesist ~ node whose position is unknown are compared to the samples
fire detection [5]. Sensor networks can also be used to detetit the database and the output is the weighted average of the
foreign chemical agents in the environment [6]. K nearest samples; the nearness indicator for this method is

o . _ . based on the Euclidean distance between RSSIs.
In all applications, awareness of location information is

fundamental since collected data are meaningless withgut a  In this paper, we propose a localization technique combin-
geographical context. A direct way to locate the nodes isng location fingerprinting and kernel methods. The propose
the use of GPS (Global Position System) devices; howevemethod employs fingerprinting information to define a model
this solution is not practical because of the high cost othat associates to the measured data the positions where the
integrating GPS receivers and also of the limited efficiencyare made. To this end, a fingerprinting database containing
of GPS signals in indoor environments. An alternative sotut RSSI measures for each reference node associated with it
consists of considering two types of sensarschorsandnon-  position is constructed. The model is then defined usingdtern
anchor nodesAnchors have known fixed locations, whereasmethods ([21],[22]) and the constructed database. Then, in
non-anchors nodes, or simphodes have unknown positions order to localize the nodes, each one collects, while mqving
and thus need to be localized. Many localization algorithmdRSSI measures at every time-step. These RSSI measures a
using anchors have been proposed. They are mainly based ased with the defined model to estimate the position of the
estimating the distances between the anchors and the nodesnsidered node. The rest of the paper is organized as &llow
using the Time Of Arrival (TOA) [8], the Time Difference Of Section Il outlines the proposed localization algorithmct®n
Arrival (TDoA) [9], the Angle of Arrival (AoA) [10], or the Il describes the use of kernel methods in our algorithm-Sec
Received Signal Strength Indicator (RSSI) [11],[12]. TH&SR  tion IV illustrates the effectiveness of the method by corima
methods are based on the attenuation of the signal stremgth o it to KNN-based methods. Finally, Section V concludes the
distance. They have become popular due to their low-powepaper.

I. INTRODUCTION



Il. DESCRIPTION OF THE PROPOSED ALGORITHM functional in (2), we take the functional derivative witlspect

) to ¥4(-) and set it to zero [22], namely
We consider two types of sensors: anchors and non-anchor

nodes. Anchors have known fixed locations, denoted.;by € N

{1,...,N,}, whereN, is their number. Non-anchor nodes or *ZZ(PM = (Wa (), 60 p))n) K( pe) +2mba (-) = 0.
simply nodes are mobile having unknown positions, and hence =1 - .

needing to be localized regularly. Nodes positions at argive This optimality condition leads to the expression

time ¢ are denoted byr;(t),j € {1,..., N}, where N, is N

their number. Ya() =Y (Pea = (Wa (), 505 po))n) k(. pp). (3)

n

The proposed algorithm consists of two phas#fine and _ =1 _
onlinephases. In thefflinephaseN offlinepositions, denoted Having va(p,) = (a (:),%(-, py))3 from the reproducing
by p,, ¢ € 1,...,N, are generated in a uniformly distributed property, we can write (3) as follows:

manner in the studied environment. A node is then placed N
at each of theseffline positions to perform measurements. Y () = Z (Pe.d = Ya(pe)) k(. pg)
Indeed, each anchor broadcasts signals in the network with - n

the initial powerpy. By placing the node at a positiop,, : ; .
it becomes possible to measure the Received Signal Streng'tzﬁna”y’ we get the following model :

Indicator (RSSI) of anchors signals at this location. Th&SRS N
is assumed to follow the Okumura-Hata model [23] given by: ba) =Y arar(py,-), (4)
=1
Paip, = Po — 10nplogiolla; — p,| +civ (1)  where
0, = Pra—valp,) 5)
In this expression,, p, (in dBm) is the power received from 6d = n :

the anchom, by the node at positiop,, po is the initial power

(in dBm), np is the path-loss exponenta; — p,| is the Eu-
clidian distance between the considered node at pogiti@amd
the anchomr;, ande; ¢ is the noise affecting the RSS measures.
Therefore, a database ofcouples(p,, p,) is obtained, where (K +nln)og = Pa, (6)
¢ € {1,...,N}, and wherep, = (pa,p,,---+Pax,.p,) IS
the vector of received powers at positipp.

By injecting expression (4) in the cost function (2), we get
a least squares optimization problem that can be written in
matrix form as follows :

whereay = (@14, ana) » Pa= (pra, .- pna) > In

is the N-by-N identity matrix, K is a N-by-N matrix whose
Based on the information collected in the database, thé,Jj)-th entry is given byx(p;, p;).

objective is to define a set of functions; (-) : R"* — IR, In this paper, we consider the case of the Gaussian kerne

that associate to each enipy the corresponding outpyt.a,  given by:

whered € {1,...,D}, D being the space’s dimension and )

pe.a is an element op, = (po1,...,pe.p) " . As we will show ( ) = ex —llp; — P]||

in Section 11, kernel methods provide an elegant framework Pir Pj) = XD 202 '

to determine these functions. Ongg () has been defined, a ) ) ) )

the online phase. Indeed, consider a nogd® be localized ata €quation (4) approximates the unknown function by a weighte
given timet. This node receives signals from the anchorsin  SUPerposition of Gaussian functions. The weight; of each
the environment, measures their RSSI values, and storas thd>aussian is taken such as to minimize the error on the t@inin
in a vectorp; (¢). The estimated coordinates of the nodare set. The bandwidth of the Gaussian kernel, together with the

then aiven bvi 1(+) — (1)), whered € {1,...,D}. regularization parameter, co_ntro_l the degree Qf smoo#ines
g ¥e;a(t) = valp; (1)) { ' noise tolerance, and generalization of the solution.

I1l. DEFINING ¢ (-) USING KERNEL METHODS IV." SIMULATION AND RESULTS

In order to evaluate the performance of our method, we
tested it using various scenarios considerikglaenvironment.
In the first part of this section, results are shown in the case
of Matlab-generated data where RSSI values are obtainec
using the Okumura-Hata model [23]. However, experimental
estudies have shown that most of the state of the art locedizat
algorithms, once deployed in real testbeds, achieve muckeno
performance than what was expected. Therefore, it is gasent
N to test localization algorithms in the presence of real data

_ 2 2 In the second part of this section, the proposed method is

Z((w”d Valpe))” + nllvale, @ tested with real data gathered inl@m x 10m real indoor
environment [24]. In the third section, the results using th
wheren is a regularization parameter that controls the tradeofproposed method are compared to ones obtained with the
between the training error and the complexity of the sofytio well-known K-Nearest Neighbor localization algorithm,tkwvi
as measured by the norm in the RKHS. To minimize thedifferent weighting functions.

Let us consider a reproducing kernel IR« x RN« s IR,
and let us denote by its reproducing kernel Hilbert space
(RKHS) with inner product(-,-)s. From the reproducing
property, we can say that evety; (-) of 4 can be evaluated at
any p, € RN by ¢a(p,) = (¢a (-) , k(- pg)) 2. The function
14 (-) must minimize the mean quadratic error between th
model’'s outputs)q(p,) and the desired outpujs 4 :

{=1
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Fig. 1. Generated topology
Fig. 3. Estimation of the trajectory in the presence of noise

1000 + T + —t — + - +
TABLE I. ESTIMATION ERROR(IN METERS) FOR DIFFERENT VALUES
900F 5+ Ao+ R OF 7] AND o - MATLAB -SIMULATED DATA WITHOUT NOISE
8001 + + + + ;* + P 7= 5—20 = o1 N = 5~ 10 0= o114 7= 512
7001 N N 1 2‘f 32.764 32.764 32.763 32.757 32.735
£ ool | 2; 6.352 6.353 6.371 6.505 6.875
e L 4 4 1 2 3.172 2.974 2.670 2.487 4119
£ soof ] 27 1.063 2.455 5.235 7.066 7.953
s 1 + + + 28 6.846 7.442 7.693 7.930 10.961
S 400- o o ] 29 7.666 7.806 10.671 25.648 41.617
300L A 210 10.620 25.664 41.902 49.256 51.238
200 * O anchors
+ offline positions
100F © * *\\\:‘ © —+—real traFjJeclory [ . .
o L wt | estimated wajectory B. Evaluation of the proposed method using real data
0 200 400 600 800 1000

X coordinate (m)

The set of collected measurements used in this section
Fig. 2. Estimation of the trajectory in the absence of noise are available from [24]. The authors deployesl EyesIFX
nodes in a room measuring approximatélym x 10m. The
nodes are uniformly distributed over the area and suspendec
at approximately75 centimeters from the ceiling. Furniture
and people present in the room cause multi-path interfeenc
affecting the collected RSSI values. Fig. 4 shows the tapplo
gf the testbed. We chos& nodes to be anchors in our

A. Evaluation of the proposed method on simulated data

For the training phasel00 offline positions and16 an-

chors are generated in a uniformly distributed manner over . . . . -
1000m x 1000m area (Fig. 1). Anchors are assumed to beS|mulat|on, leaving us witl3 nodes to use asffline positions.

static. The RSS! values needed to construct the database gPWeVer. to get better results, we used the present data tc
N couples(p,, p,), where? € {1,...,N} (N = 100), are generateh7 new offline positions in order to get a total abo

generated using the Okumura-Hata model given by (1) Wiﬂ,pfflinepos_itions (Fig. 5). To evaluate our algor_ithm in thg case
parameters set top — 4 and po — 150dBm of a moving node, we also generated a trajectory using the

data. Fig. 6 shows the generated trajectory and the estimate

We generated a trajectory and calculated the RSS! valud¥'e- The estimation error is equaldd 95m for n = 2~'? and
received by the moving node using the same RSSI modél = 16- Fig. 7 shows how) ando affect the estimation error,
without noise; we then estimated the position of the noddVheren = 2° with s € {~20,-19,.--, ~1} ando = 2 with
during its movement using our localization algorithm. F. te{l2,--,10}.
shows the generated trajectory and the estimated one. The
two trajectories are superimposed. Let the estimationr dxeo
the root mean squared distances between the exact positiof8BLE . ESTIMATION ERROR(IN METERS) FOR DIFFERENT VALUES
and the estimated ones. Then the estimation error is equal ©OF7AND o - MATLAB-SIMULATED DATA WITH NOISE (o}, = 1dB)

to 1.063m for n = 272° ando = 27. Results for different = [, s [, =T [, T [y =
values ofn ando are shown in Table I. In Fig. 3, a zero-mean[ 2* 35.347 36.113 35.766 35.625 35.600
Gaussian white noise of standard deviatign= 1dB is added 22 12.628 12.795 12.787 13.032 12.514
to the RSSI values. The estimated trajectory follows theadct | 2 b o e el oo
one and the estimation error is equalltb656m for n = 2712 28 15.071 13.653 12.405 12.816 14.033
ando = 26; results for different parameter values are showr| 2° 12.817 12.771 14.457 26.987 43.108
in Table Il. 210 14.818 27.711 42.690 49.467 52.322
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Fig. 7. Variations of the estimation error in termsmpfand o
C. Comparison to Weighted K-Nearest Neighbor algorithm

TABLE IIl. L IST OF SELECTED WEIGHT FACTOR%0},
The Weighted K-Nearest Neighbor (WKNN) algorithm is a _

well-known localization algorithm based on the fingergrigt oe EXprei‘;’(” Ohwy,

technique and the Euclidean distances between the RS®lsvalu - /0%

received by the node to be localized and the fingerprints in vel; D5

the database. Let us denote B, = |[p;(t) — p,|l the “cr %

Euclidean distance between the RSSI vegtft) of the node Z“f’/fDd_/ I

j we want to localize at time and p, of the database where D ﬁ

¢ e {1,...,n}. Let I; be the set of indices op, yielding = S D)

the K smallest distanced,, at time ¢. I; of cardinality 2ver; P~ Dj.v)

K corresponds to the set of tH€ nearest neighboroffline
positions) to the nodg at timet. Then nodej’s position is

estimated by: using weight “C” andK = 4. Using our proposed method, we
@;(t) = Z Wk Pr, found an estimation error df.063m for n = 2720 ando = 27
rel, (see Table I).
wherep,, is one of the nearesiffline positions neighboring After adding a zero-mean Gaussian white noise of standard

the node, andu;, is the normalized weight factor depending deviationo, = 1dB to the RSSI values, we get the results in
on thek'* minimal distance. The weight factor is important in Table V, where the estimation error is presented in the case
contributing to position accuracy; in fact, neighbors wiigh ~ of WKNN algorithm. The lowest error obtained using WKNN
weight contribute more to position coordinates than elgsien is equal to17.644m when using weight “C” and< = 5. Our

with low weight, since weights and distances vary in inverseproposed method gives an estimation error16f656m for
proportion to one another. Weight values used in simulationny = 2712 ando = 6 (see Table Il) which is also smaller than
are listed in Table Il1. the best result obtained with WKNN.

Table IV shows the estimation error obtained while estimat- We now consider the same scenario as in Section IV.B (rea|

ing the same trajectory of Fig. 2 (without adding noise to therss) values are used). Table VI shows the estimation error
RSSI values) using WKNN algorithm foK” € {1,---,15}  optained while estimating the trajectory of Fig. 6 using VWMN
and for five different weights (Table Ill). The lowest error gigorithm. The lowest error obtained is equabt40m when
obtained USing WKNN in this case is equal]Iﬁ)863m when using We|ght “E” and K c {107 11, 127 13} Our proposed
method gives an estimation error @fi95m for n = 2719 and
o = 16 which is a better result than the one obtained with

12 ‘ ‘ ‘ O anchors WKNN.
+ offline positions
100 + + + + + + | —+ real trajectory
Lo i++§:%&%§;:ff"a‘mw V. CONCLUSION
c 8k o+ m*f%?#fﬁl A In this paper, we presented a new localization algorithm
- R | based on radio-location fingerprinting and kernel methods.
g ,,;ﬁ%*i*f oot The simulation results show that the proposed method allows
> Af{\’j/ + o+ of o+ 4+ o+ | a more accurate localization than the WKNN algorithm, for
A T different weight models and parameters. We also analyzed th
R ﬁi}ﬁw e e .4 behavior of our algorithm in the presence of real data, aed th
2; L ?ﬁx L. . 1 results were satisfying. However, we cannot but notice et
© b results obtained in the case of Matlab simulated data withou
I the additive noise are more than excellent, leaving us with
X coordinate (m) the conclusion that, in the case of an accurate radio channe

model, the proposed model technique overcome many existing
Fig. 6. Estimation of the trajectory (real data) localization techniques in terms of accuracy.



TABLE IV. ESTIMATION ERROR(IN METERS) BETWEEN REAL AND TABLE VI. ESTIMATION ERROR(IN METERS) BETWEEN REAL AND
ESTIMATED TRAJECTORY- MATLAB -SIMULATED DATA WITHOUT NOISE ESTIMATED TRAJECTORY- REAL DATA (SECTIONlV.B)

K A’ “B” “C" ‘D" “E” K A “‘B” “‘c” “D” 1=

1 48.376 | 48.376 | 48.376 | 48.376 | 48.376 1 0.500 | 0.500 | 0.500 | 0.500 | 0.500

2 36.538 | 27.603 | 27.647 | 29.801 | 38.935 2 0.543 | 0.486 | 0.475 | 0.475 | 0.467

3 28.882 | 20.535 | 20.108 | 23.030 | 37.641 3 0.480 | 0.431 | 0.426 | 0.433 | 0.406

4 29.114 | 19.865 | 16.863 | 19.516 | 37.245 4 0.550 | 0.432 | 0.410 | 0.417 | 0.400

5 28.969 | 20.062 | 16.966 | 19.242 | 37.230 5 0.564 | 0.438 | 0.404 | 0.408 | 0.383

6 35.913 | 24.720 | 18.424 | 18.959 | 37.228 6 0.606 | 0.453 | 0.405 | 0.408 | 0.378

7 35.705 | 25.655 | 19.472 | 19.592 | 37.227 7 0.596 | 0.448 | 0.391 | 0.400 | 0.362

8 38.163 | 27.503 | 20.287 | 19.618 | 37.227 8 0.618 | 0.460 | 0.382 | 0.393 | 0.348

9 39.979 | 29.327 | 21.120 | 19.636 | 37.227 9 0.644 | 0.480 | 0.384 | 0.389 | 0.341

10 37.017 | 27.591 | 19.970 | 18.965 | 37.227 10 0.636 | 0.485 | 0.388 | 0.389 | 0.340

11 36.504 | 27.353 | 19.829 | 18.728 | 37.227 11 0.615 | 0.483 | 0.394 | 0.393 | 0.340

12 36.870 | 27.059 | 19.468 | 18.456 | 37.227 12 0.620 | 0.483 | 0.394 | 0.393 | 0.340

13 38.415 | 27.958 | 19.664 | 18.337 | 37.227 13 0.649 | 0.496 | 0.398 | 0.396 | 0.340

14 39.871 | 28.105| 19.491 | 18.087 | 37.227 14 0.714 | 0.527 | 0.407 | 0.397 | 0.341

15 39.939 | 28.295| 19.825| 18.304 | 37.227 15 0.758 | 0.547 | 0.413 | 0.399 | 0.341

TABLE V. ESTIMATION ERROR(IN METERS) BETWEEN REAL AND
ESTIMATED TRAJECTORY- MATLAB -SIMULATED DATA WITH NOISE
_ [10]
(O'b = 1dB)
K A “B” ‘C’ ‘D’ ‘E”
1 49.205 | 49.205 | 49.205 | 49.205 | 49.205
2 36.639 | 28.390 | 27.536 | 29.491 | 40.328 [11]
3 30.285 | 22.605 | 21.218 | 23.506 | 39.121
4 27.907 | 20.414 | 17.805 | 20.167 | 38.768
5 28.792 | 20.814 | 17.644 | 19.474 | 38.698
6 36.218 | 26.035 | 19.792 | 19.737 | 38.691 [12]
7 36.134 | 26.708 | 20.363 | 19.878 | 38.690
8 38.966 | 28.550 | 20.931 | 19.734 | 38.690
9 40.597 | 30.016 | 21.945| 20.046 | 38.690
10 || 37.429 | 28.559 | 20.986 | 19.413 | 38.690
11 || 37.629 | 28.677 | 20.838 | 19.126 | 38.690 [13]
12 || 37.398 | 27.831 | 20.041 | 18.618 | 38.690
13 39.135 | 28.912 | 20.384 | 18.541 | 38.690
14 || 40.254 | 29.231 | 20.512 | 18.443 | 38.690
15 || 40.334 | 29.079 | 20.599 | 18.471 | 38.690 [14]
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