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ABSTRACT

Within the area of hyperspectral data processing, nonlinear
unmixing techniques have emerged as promising alternatives
for overcoming the limitations of linear methods. In this pa-
per, we consider the class of post-nonlinear mixing models
of the partially linear form. More precisely, these composite
models consist of a linear mixing part and a nonlinear fluctu-
ation term defined in a reproducing kernel Hilbert space, both
terms being parameterized by the endmember spectral signa-
tures and their respective abundances. These models consider
that the reproducing kernel may also depend advantageously
on the fractional abundances. An iterative algorithm is then
derived to jointly estimate the fractional abundances and to
infer the nonlinear functional term.

Index Terms— Nonlinear unmixing, post-nonlinear mix-
ing model, kernel methods, hyperspectral data processing

1. INTRODUCTION

There has been tremendous effort in the last decade to
solve the linear unmixing problem, in the supervised, semi-
supervised and unsupervised learning setting, motivated by
its simplicity and acceptable approximation error in many
scenarios. However, in the very recent years, researchers
have started developing nonlinear unmixing techniques, as
nonlinear models may provide more accurate estimations of
mixtures, in particular when there are significant physical
interactions of photons scattered by multiple materials [1].

Several algorithms have been proposed to address the
nonlinear unmixing problem. For instance, bilinear models
were considered to handle complex scenarios such as mul-
tilayered scenes [2, 3], by introducing additional interaction
terms in the linear model. An unmixing algorithm based on
a manifold learning process was investigated in [4], under
the assumption that hyperspectral data may be embedded
into a low-dimensional manifold. Kernel methods aim to
avoid high computational complexity by using more simple
physics-inspired models. Some kernels were designed to
be sufficiently flexible for matching various nonlinearity de-

grees [5]. Finally, artificial neural networks were considered
to conduct unmixing with training data [6].

More recently, it has been argued that both linear and non-
linear mixtures can be present in a single pixel [5, 7, 8], mean-
ing that partially linear models may be advantageously used.
In [7], we proposed a kernel-based nonlinear unmixing tech-
nique based on the partially linear assumption. In [8], the au-
thors combined the linear mixture model with intimate mix-
tures. In [5], we investigated this problem under the frame-
work of functional learning theory, where the tradeoff be-
tween the linear and the nonlinear components is automati-
cally adjusted by solving a convex multi-kernel learning prob-
lem. However, in [5, 7], in order to make the problem con-
vex and tractable, the nonlinear component of the model was
assumed to be only a function of the material spectral signa-
tures, and thus to be independent of their abundances.

In this paper, we consider a more general problem where
the nonlinear mixing term also depends on the fractional
abundances. This means that the reproducing kernel depends
on the abundances, and is directly learned from data. A spe-
cific kernel is proposed, and an efficient iterative algorithm
based on the augmented Lagrangian principle is derived to
jointly estimate the abundances and to infer the nonlinear
functional term.

2. NOTATIONS AND THE MIXTURE MODEL

2.1. Notations

Suppose that in a scene, there exist R significant endmem-
bers with spectral signature mi ∈ RL, for i = 1, . . . , R,
where L denotes the number of spectral bands. Let r ∈ RL
be an observed pixel, andα ∈ RR be the associated vector of
abundances. Let us denote byM = [m1, . . . ,mR] ∈ RL×R
the matrix of the endmember spectra. For the sake of conve-
nience, the `-th row of M will be denoted by m>λ`

∈ RL,
that is, the column vector mλ`

contains the R endmember
signatures at the `-th wavelength band.



2.2. Post-nonlinear mixture model

In order to estimate the mixing ratios of the endmembers, we
modeled in [5] the nonlinear mixing mechanism ψ by a linear
trend parameterized by the abundance vector α, combined
with a nonlinear fluctuation term represented by ψnlin, namely

ψ(mλ`
,α) = ψlin(mλ`

,α) + ψnlin(mλ`
)

with ψlin(mλ`
,α) = α>mλ`

where the nonlinear fluctuation ψnlin(mλ`
) is independent of

the abundance vector α. It can be expected that incorporat-
ing the abundance into the nonlinear function should be ad-
vantageous for a more accurate modeling. In this paper, we
consider the following post-nonlinear model for ψnlin

ψ(mλ`
,α) = ψlin(mλ`

,α) + ψnlin(α
>mλ`

)

with ψlin(mλ`
,α) = α>mλ`

.
(1)

This model can characterize many different nonlinearities.
For example, with the parabolic transform ψnlin(x) = x2,
model (1) is a polynomial post-nonlinear mixture model that
mimics second-order interactions between material signa-
tures, including cross-terms of the bilinear mixture model
discussed in [3].

3. KERNEL-BASED NONLINEAR UNMIXING WITH
THE POST-NONLINEAR MODEL

3.1. Problem formulation

Considering the problem (1), we intend to estimate the abun-
dance vector α and to infer the nonlinear function ψnlin by
solving the following functional optimization problem1

ψ∗ = argmin
ψ

1

2

(
‖ψlin‖2Hlin

+ ‖ψnlin‖2Hnlin

)
+

1

2µ

L∑
`=1

e2`

where ψ = ψlin + ψnlin with ψlin(mλ`
) = α>mλ`

subject to e` = r` − (α>mλ`
+ ψnlin(α

>mλ`
))

α � 0 and 1>α = 1. (2)

The functional ψnlin is restricted to be an element of the re-
producing kernel Hilbert space Hnlin, with the reproducing
property

ψnlin(x) = 〈ψnlin, κnlin(·, x)〉,

where κnlin is the reproducing kernel associated to the Hilbert
space Hnlin. It should be noticed that solving problem (2)
is challenging because it is no longer convex, and the dual
variables cannot be expressed in closed-form as in [5]. For-
tunately, we can take advantage of its dual form for seeking
a local optimum in an efficient way, via a variable splitting
technique.

1The sum-to-one constraint, which may not be necessary in some con-
texts, can be removed without effecting the structure of the algorithm.

Let us introduce a new variable u that replaces α in the
nonlinear fluctuation ψnlin. An equality constraint that con-
nects u and α must also be introduced to ensure the equiva-
lence between the transformed problem and the original one.
The problem (2) is now formulated as

α∗ = argmin
ψ,α,u,e

J(ψ,α,u, e)

subject to u = α
(3)

with

J(ψ,α,u, e) =
1

2

(
‖ψlin‖2Hlin

+ ‖ψnlin‖2Hnlin

)
+

1

2µ

L∑
`=1

e2`

where ψ = ψlin + ψnlin with ψlin(mλ`
) = α>mλ`

subject to e` = r` − (α>mλ`
+ ψnlin(u

>mλ`
))

α � 0 and 1>α = 1.

Thanks to this strategy, the derivatives with respect to each of
the two variables α and u can now be evaluated separately.
On the one hand, the variable α is estimated using an algo-
rithm similar to the one derived in [5]. On the other hand, the
variable u is updated by using a gradient descent approach.

3.2. Problem solving with an ADMM-like algorithm

The augmented Lagrange function of the problem (3) is

Joa(ψ,α,u, e,ν) = J(ψ,α,u, e)

+ν>(u−α) + 1

2ζ
‖u−α‖2

where ζ > 0 is a positive parameter and ν ∈ RR is the dual
variable associated to the constraint u = α. For simplicity,
the function Joa can also be written in an equivalent scaled
form Ja with d the scaled dual variable [9]

Ja(ψ,α,u, e,d) = J(ψ,α,u, e) +
1

2ζ
‖u−α− d‖2

Minimizing the above cost function can be performed by iter-
ating the following three steps:

• Step 1: Update the variables α, ψ and e by

α(k+1), ψ(k+1), e(k+1)= argmin
α,ψ,e

Ja(ψ,α,u
(k), e,d(k))

• Step 2: Update the variable u via a gradient descent

u(k+1)= u(k)−η∇uJa(ψ(k+1),α(k+1),u, e(k+1),d(k))

with η the step size.

• Step 3: Update the scaled dual variable d by

d(k+1) = d(k) + (u(k+1) −α(k+1)).



This three-step iterative strategy corresponds to the ADMM
algorithm in the convex case, which is known to converge to
the global optimum. Unfortunately, the problem (3) is not
convex, and the algorithm may lead to a local minimum de-
pending on the initial values for the variables [9]. However,
the algorithm can take advantage of two properties of the post-
nonlinear mixture model. Firstly, the non-negativity and sum-
to-one constraints over α severely limit the space of accept-
able solutions. Secondly, it is possible to initialize the algo-
rithm with an appropriate solution obtained with conventional
algorithms, e.g., a linear unmixing algorithm. During the ex-
tensive numerical simulations we carried out, we observed
that the proposed algorithm always converged to reasonable
solutions and usually provided better estimation results than
state-of-the-art algorithms.

After presenting the principle of the algorithm, we shall
now provide some extra details on Steps 1 and 2 calculation.
In Step 1, variables α, ψnlin and e can be updated via the
Lagrange duality formulation, by fixing the other variables.
By introducing the Lagrange multipliers β`, γ` and λ, where
the superscript (k) has been omitted for simplicity of notation,
the Lagrange function of the optimization problem described
in Step 1 writes

Ga =
1

2

(
‖α‖2 + ‖ψnlin‖2Hnlin

)
+

1

2µ

L∑
`=1

e2`

−
L∑
`=1

β` (e` − r` + ψnlin(u
(k)>mλ`

))−
R∑
r=1

γr αr

+ λ(1>α− 1) +
1

2ζ
‖u(k) −α− d(k)‖2. (4)

The conditions for optimality ofGa with respect to the primal
variables are given by

α(k+1) = ζ
ζ+1 (M

>β∗ + γ∗−λ∗1+ 1
ζ (u

(k) − d(k)))
ψ
(k+1)
nlin =

∑L
`=1 κnlin(·,u(k)>mλ`

)β∗`
e
(k+1)
` = µβ∗` .

By substituting these conditions into equation (4), we get the
dual problem (5) (see next page), whereKnlin is the Gram ma-
trix with (`, p)-th entry [Knlin]`p = κnlin(α

>mλ`
,α>mλp

).
This allows us to estimate the optimum dual variables and
thereby to obtain the optimal values of the primal variables.

In Step 2, due to the highly nonlinear kernel function, we
suggest to update u using a gradient descent step

∇uJa = −1

2

∂β∗>Knlinβ
∗

∂u
+
1

ζ
(u−α(k+1) − d(k)). (6)

3.3. Proposed kernel and gradient update

We propose the following kernel function for the model (2)

κnlin(α
>mλ`

,α>mλp
) = exp(α>mλ`

m>λp
α).

It is easy to see that this kernel corresponds to an infinite-
order polynomial function of the linear mixture. This leads to
the following expression

∂β>Knlinβ

∂u
=M>diag{β}Knlindiag{β}Mu,

which allows to complete the evaluation of the gradient in (6).

4. EXPERIMENTAL RESULTS

4.1. Experiments on synthetic data

We first report experimental results on synthetic images.
Three and five material spectra with 420 bands from ENVI
software library were selected respectively to generate two
scenes. For each scene, 2500 pixels were generated with
different mixture models to evaluate and compare the perfor-
mance of several algorithms. These models were the linear
model, the bilinear mixture model, and the post-nonlinear
mixing model (PNMM) defined by r = (Mα)0.7 + n. The
abundance vectors αn, with n = 1, . . . , 2500, were uni-
formly generated in the simplex defined by non-negative and
sum-to-one constraints. Finally, the images were corrupted
with an additive white Gaussian noise n with SNR of 30 dB.

Before comparing the unmixing performance of different
methods, we illustrate the convergence of our algorithm when
applied to a pixel mixed by the post-nonlinear model. Typi-
cal evolutions of the abundance vector α and its counterpart
u are shown in Figure 1. Our approach was compared with
the fully constrained least square method (FCLS) [10], the
extended endmember matrix method (ExtM) [2], and our pre-
viously proposed K-Hype method [5]. The root mean square
error of the estimated abundances was used to compare these
algorithms. The comparative results are reported in Table 1.
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Fig. 1. Convergence of the proposed algorithms.

4.2. Experiments on real data

In order to overcome the absence of ground truth reference
for evaluating unmixing algorithms, unmixing was performed
with various algorithms to estimate abundances in each pixel.
The abundance vectors were used as features with an SVM
classifier, based on a Gaussian kernel. Note that other classi-
fication algorithms such as [11] could have been used. This



max
β,γ,λ

Ga(β,γ, λ) = −ρ
2

 β

γ

λ

>  1
ρ
(K + µI) M −M1

M> I −1

−1>M> −1 R

 β

γ

λ

+

 r − ρ
ζ
M(u(k) − d(k))

− ρ
ζ
(u(k) − d(k))

ρ
ζ
1>(u(k) − d(k))− 1


>  β

γ

λ


subject to γ � 0 (5)

with K =Knlin + ρMM> and ρ = ζ
ζ+1

Fig. 2. Classification map with 10% training data. From left to right: ground-truth, FCLS (61.36%), K-Hype (71.39%), Proposed (73.38%)

Table 1. RMSE comparison
R = 3 R = 5

linear bilinear PNMM linear bilinear PNMM
FCLS 0.0037±0.00002 0.0758±0.0019 0.0604±0.0017 0.0134±0.0002 0.1137±0.0032 0.1428±0.0039
ExtM 0.0079±0.0001 0.0312±0.0013 0.0601±0.0016 0.0157±0.0003 0.0575±0.0024 0.1427±0.0040

K-Hype 0.0208±0.0004 0.0349±0.0013 0.0446±0.0020 0.0231±0.0004 0.0307±0.0008 0.0398±0.0012
Proposed 0.0123±0.0002 0.0288±0.0009 0.0159±0.0003 0.0225±0.0005 0.0245±0.0006 0.0299±0.0008

Table 2. Classification accuracies with abundance features
Training percentage 5% 10% 15%

FCLS 56.41 61.36 62.32
K-Hype 67.67 71.39 74.68

Proposed 68.64 73.38 74.18

allowed us to evaluate the performance of unmixing algo-
rithms via an alternative way that benefits from the ground
truth reference of classification tasks. The scene used in our
experiment is the celebrated Indian Pines region captured by
AVIRIS. In this experiment, we used FCLS, K-Hype and the
proposed algorithm for unmixing-based feature extraction.
Training set was constructed by randomly selecting 5%, 10%
and 15% of pixels. The comparative results are illustrated
in Table 2 and Figure 2. These classification results clearly
highlight the advantage of nonlinear unmixing algorithms,
and in particular the proposed algorithm.
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