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ABSTRACT

Machine learning techniques have become very popular in the
past decade for detecting nonlinear relations in large volumes
of data. In particular, one-class classification algorithms have
gained the interest of the researchers when the available sam-
ples in the training set refer to a unique/single class. In this
paper, we propose a simple one-class classification approach
based on the Mahalanobis distance. We make use of the ad-
vantages of kernel whitening and KPCA in order to compute
the Mahalanobis distance in the feature space, by projecting
the data into the subspace spanned by the most relevant eigen-
vectors of the covariance matrix. We also propose a sparse
formulation of this approach. The tests are conducted on sim-
ulated data as well as on real data.

Index Terms— Kernel methods, one-class classification,
Mahalanobis distance.

1. INTRODUCTION

Machine learning techniques have gained a lot of attention
in the past few years since they provide a powerful tool for
detecting nonlinear relations and hidden regularities in large
volumes of data [1][2]. They have been applied in different
fields for classification and regression problems, such as au-
tonomous robotics [3], biomedical signal processing [4], and
wireless sensor networks [5]. Machine learning techniques
use positive definite kernel functions to map the data into a
reproducing kernel Hilbert space, and provide an elegant way
to learn a nonlinear system without the need of the exact phys-
ical model [2][6]. In several applications as in industrialsys-
tems, the training set refer to a unique/single class while the
data from the other classes are difficult to obtain. This one-
class classification problem has gained the interest of the re-
searchers in the past decade, where the classifier must accept
as many positive samples (target class) and reject as many
outliers as possible [7].
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One-class classification algorithms have been applied in
many fields, namely for face recognition applications [8], mo-
bile masquerades detection [9], seizure analysis from EEG
signals [10], and recently for intrusion detection in industrial
systems [11]. Several approaches exist in the literature for
one-class classification problems. Taxet al. introduced in
[12][13] the Support Vector Data Description (SVDD) which
estimates the hypersphere with minimum radius enclosing
most of the training data. The drawbacks of the SVDD are
that it requires to solve a quadratic problem, and it does not
take into consideration the variance of the training data in
each feature direction. Tax proposed a kernel whitening nor-
malization in [14] to overcome the variance drawback, while
the quadratic problem remains unchanged. Schölkopfet al.
defines in [15] the hyperplane separating the mapped data
from the origin with maximum margin. This approach, called
the one-class Support Vector Machines (SVM), is equiva-
lent to the SVDD when the Gaussian kernel is used and has
the same drawbacks of variance inequality in each feature
direction. Kernel Principal Component Analysis (KPCA) is
introduced in [16] for several applications, and Hoffman used
in [17] the KPCA for novelty detection. The implementation
of the KPCA is faster than the SVDD, but its computational
complexity is cubic with the size of the training dataset.
Tsanget al. used in [18] the covariance information to learn
the kernel in one-class SVM, but it requires the optimiza-
tion of a second order cone programming (SOCP) problem.
Wanget al. proposed in [19] another approach that uses the
Mahalanobis distance in the feature space for SVDD. This
approach is also a SOCP problem, and its complexity is cubic
with the size of the training dataset.

A first attempt for a fast and a simple one-class approach
is introduced in [20], and it computes the Euclidean distance
in the feature space between the samples and the center of the
data. This approach is faster than the aforementioned meth-
ods, but it is very sensitive to outliers. In this paper, we pro-
pose a one-class classification approach based on the use of
the Mahalanobis distance in the feature space. The Maha-
lanobis distance takes into account the covariance in each fea-
ture direction and the different scaling of the coordinate axes
[21]. We take advantage of the properties of KPCA [17] and
kernel whitening [14] to project the data into the subspace



spanned by the most relevant eigenvectors having the same
variance in each feature direction. The Mahalanobis distance
is computed in this subspace, and it is used for novelty detec-
tion. Then, we propose a sparse formulation of this approach,
where only a very small fraction of the training data are taken
into account in order to obtain the decision boundary of the
classifier. The remainder of this paper is organized as follows.
Section 2 describes the proposed one-class approach. Section
3 discusses the results on simulated and real datasets. Section
4 provides conclusion and future works.

2. THE PROPOSED APPROACH

In this paper, we propose a one-class classification approach
based on the Mahalanobis distance in the feature space. The
main objective for using the Mahalanobis distance is that it
is a multivariate dissimilarity that takes into account theco-
variance in each feature direction and the different scaling of
the coordinate axes. The proposed approach and its sparse
formulation are discussed next.

2.1. Mahalanobis-based one-class

Let’s consider a training datasetxi , i = 1, . . . , N in a d-
dimensional input spaceX . The data are mapped into a Re-
producing Kernel Hilbert SpaceH via the mapping function
φ(xi) = k(xi, ·), and the mapping is applied in a way to
use only the pairwise inner product between the data. The in-
ner product is computed directly from the input data using a
kernel function, and the entries of theN × N kernel matrix
K take this form:kij = k(xi,xj) = 〈φ(xi), φ(xj)〉H for
x1, · · · ,xn ∈ X , where〈·, ·〉H represents the dot-product in
the RKHS. This property is known as the kernel trick, and it
allows to construct classification algorithms in inner product
spaces without any explicit knowledge of the mapping func-
tionφ.

The simple one-class approach consists on computing the
distance in the feature space between the training samples
and the center of the data in that space. Based on this dis-
tance, a decision function classifies new samples as normal
or outliers. In fact, the mean of the mapped data is given
by the expectation of the data in the feature space, namely
E[φ(x)]. One can estimate this expectation by the empirical
computation of the center of the data in the feature space, with
cn = 1

N

∑N
i=1

φ(xi).
The Mahalanobis distance between a sampleφ(x) and the

centercn is given as follows:
∥∥φ(x)− cn

∥∥2
Σ
=

(
φ(x)− cn

)T
Σ

−1
(
φ(x)− cn

)
, (1)

whereΣ is the covariance matrix of the data in the feature
space, namelyΣ = 1

N

∑N
i=1

(φ(xi) − cn)(φ(xi) − cn)
T .

Without any explicit knowledge on the mapping function
φ(·), the covariance matrix cannot be expressed in terms of
the dataφ(x) in the feature space. To overcome this problem,

we use the singular value decomposition of the covariance
matrix Σ, namelyΣ = V TDV , havingV the matrix of
eigenvectorsvk of Σ, andD the diagonal matrix with the
correspondent eigenvaluesλk for k = 1, 2, · · · , N . SinceV
is an orthogonal matrix,Σ−1 can be expressed as follows:

Σ
−1 = V TD−1V (2)

Each eigenvalueλk satisfiesλkv
k = Σvk. From the defini-

tion of the matrixΣ, it is easy to see that each eigenvector
is a linear combination of the samplesφ(xi) in the feature
space, namelyvk =

∑N

i=1
αk
i

(
φ(xi)− cn

)
. By injecting the

expression ofvk into the eigen decomposition ofΣ, namely
λkv

k = Σvk, the coefficientsαi are given by solving the
eigen decomposition problem NNλkα

k = K̃αk, where the
kernel matrix̃K is the centered version ofK.

Next, equation (1) takes this form
∥∥φ(x)− cn

∥∥2
Σ
= aTa

having: a = D− 1

2V
(
φ(x) − 1

N

∑N
i=1

φ(xi)
)
, where each

entryak of a is associated to an eigenvectorvk, with:

ak = λ
− 1

2

k

( N∑

i=1

αk
i k(xi,x)−

1

N

N∑

i,j=1

αk
i k(xi,xj)

−
N∑

i=1

αk
i

1

N

N∑

j=1

k(xj ,x) +
N∑

i=1

αk
i

1

N2

N∑

j,j′=1

k(xj ,xj′)

= λ
− 1

2

k

N∑

i=1

αk
i k̃(xi,x).

The kernel functioñk(xi,xj) = k̃ij is the centered version
of k(xi,xj), and its computed as follows:

k̃ij = kij −
1

N

N∑

r=1

kir −
1

N

N∑

r=1

krj +
1

N2

N∑

r,s=1

krs.

Finally, the Mahalanobis distance in equation (1) is computed
in the feature space as follows:

∥∥φ(x)− cn
∥∥2
Σ
=

N∑

k=1

λ−1

k

( N∑

i=1

αk
i k̃(xi,x)

)2

. (3)

After calculating the Mahalanobis distance in the feature
space between each training sampleφ(xi) and the center
cn, and knowing the number of outliersnout in the training
dataset, we fix a thresholdR which represents the radius in
that space. The decision function of our classifier consid-
ers a new sample as an outlier if its Mahalanobis distance
in the feature space is greater than this threshold, namely∥∥φ(xi)− cn

∥∥2
Σ
> R. Otherwise, the sample is considered as

a normal sample.

2.1.1. Advantages of kernel whitening and KPCA

As detailed in the previous section and in equation (3), the
Mahalanobis distance in the feature space is computed via



the projection of the data into the subspace spanned by the
eigenvectors of the covariance matrixΣ. Instead of using all
the eigenvectorsvk for the projection, we make use of the ad-
vantages in the KPCA approach, where only the most relevant
eigenvectors whose correspondent eigenvalues satisfyλk 6= 0
are taken into consideration. The remaining eigenvectors are
considered as noise.

We also adopt the kernel whitening normalization of the
eigenvectors as proposed in [14], where the variance of the
mapped data is constant for all feature directions. The nor-
malization is achieved as follows:

(Nλk)
2‖αk‖2 = 1 =⇒ ‖αk‖ =

1

Nλk

for all components k.

2.1.2. Theoretical results

Given a training datasetxi , i = 1, . . . , N in ad-dimensional
input space with its covariance matrixΣ, and letP be the
projection operator onto the subspace spanned by thek most
relevant eigenvectorsvk.

Theorem 1 The error of projecting the center of the datacn
onto this subspace can be upper bounded by

1

N2

N∑

i=k+1

λi,

whereλk+1, . . . , λN represent the least relevant eigenvalues
related to the remaining eigenvectors unused in the projection
operation.

Proof The error of projecting the center is expressed as fol-
lows:

∥∥(I − P)cn
∥∥2
H =

∥∥ 1

N

N∑

i=1

(I − P)φ(xi)
∥∥2
H

≤
1

N2

N∑

i=1

∥∥(I − P)φ(xi)
∥∥2
H

≤
1

N2

N∑

i=k+1

λi,

where the first inequality follows from the generalized trian-
gular inequality, and the error of projecting the samplesφ(xi)

can be bounded by
∑N

i=k+1
λi as detailed in [2](chapter 5).

2.2. Sparse Mahalanobis-based one-class

We consider a sparse formulation of the aforementioned pro-
posed method, especially for large training datasets, in order
to reduce the computational complexity of the algorithm, and
to maintain a good description boundary around the data. We
propose to approximate the center of the datasetcn using the
furthest samples which are known as the support vectors. The

sparse center is a linear combination of the support vectors,
and only these samples are taken into account in the calcula-
tion of the Mahalanobis distance. Then we define a threshold
based on the predefined number of outliers, in order to dis-
criminate new samples as normals or outliers.

Many approaches have been proposed in the literature for
the choice of the support vectors, based on the coherence cri-
terion [22] or on the distance criterion [20]. The coherenceis
defined by the largest absolute values of the off-diagonal en-
tries of the kernel matrix, namelymaxi,j,i6=j |k(xi,xj)|, and
the least coherence set is considered as the relevant set. The
distance criterion lies on the computation of the Euclidean
distance in the feature space between the samples and the cen-
ter of the data, and the setI containing the furthest samples
to the center:I = {xi,

∥∥φ(xi)−cn
∥∥2
2
> R2}, whereR is the

radius/threshold based on the predefined number of outliers.
We note that regardless of the approach used for selecting the
support vectors, the following algorithm remains unchanged.

We adopt the distance criterion approach, after adapting it
to the computation of the Mahalanobis distance in the feature
space as detailed in the previous section. The sparse center
takes this form:cI =

∑
i∈I βiφ(xi), and the coefficientsβi

are computed by minimizing the error of approximating the
centercn with the sparse centercI :

argmin
βi

∥∥∥ 1

N

N∑

i=1

φ(xi)−
∑

i∈I
βiφ(xi)

∥∥∥
2

Σ

.

The partial derivative of this cost function with respect toeach
βi is computed and set to zero, and for each eigenvectorvk

we have:

λ
− 1

2

k

(
1

N

N∑

i=1

∑

k∈I
k(xi,xk)−

∑

j,k∈I
βjk(xj ,xk)

)
×

( N∑

i=1

αk
i

(
φ(xi)−

1

N

N∑

j=1

φ(xi)
))

= 0,

where the eigenvectorsvk and the eigenvaluesλk already sat-
isfy vk 6= 0 andλk 6= 0. This boils down to the following:

1

N

N∑

i=1

∑

k∈I
k(xi,xk) =

∑

j,k∈I
βjk(xj ,xk).

The coefficientsβi are computed through the matrix notation:

β = K−1

I k,

where the entries of the kernel matrixKI are k(xi,xj)
for i, j ∈ I, and k is the column vector with entries∑

k∈I k(xi,xk). In order to avoid non-invertible singular
matrixKI , we include a regularization parameterν, namely
β = (KI + νI)−1k.

The classifier fixes a thresholdR based on the predefined
number of outliersnout. The decision function for testing a



new sample is to measure the Mahalanobis distance between
this sample and the sparse centercI as follows:

m∑

k=1

1

λk

( N∑

i=1

αk
i k(xi,x)−

N∑

i=1

∑

j∈I
αk
i βjk(xi,xj)

−

N∑

i=1

αk
i

1

N

N∑

j=1

k(xj ,x) +

N∑

i=1

αk
i

1

N

N∑

j=1

∑

l∈I
βlk(xj ,xl)

)2

.

If this distance is greater than the radiusR2, the sample is
considered as an outlier. Otherwise, it is considered as a nor-
mal sample.

2.2.1. Theoretical results

Let c∞ denote the expectation of the data in the feature space,
namelyE[φ(x)], andǫ0 the projection error betweenc∞ and
cn, namelyǫ0 = ‖Pcn − Pc∞‖. The samples of the training
dataset are generated from the same distribution, the setI
represents the set of support vectors, andnout the number of
outliers among this dataset.

Theorem 2 If we consider the sphere centered onPcI with
radiusR, and by the symmetry of the i.i.d assumption, we can
bound the probability that a new random sampleφ(x) lies
outside this sphere excluding the outliers, with

P(‖Pφ(x)−PcI‖ > R+2ǫ0 +2‖Pcn−PcI‖) ≤
nout

N + 1
.

Proof When all the training samples are inside the sphere
centered oncn, it has been shown in [2] that the probabil-
ity of a new samplexN+1 that lies outside this description is
bounded by

P(‖φ(xN+1)− cn‖ > R1 + 2ǫ1‖) ≤
1

N + 1
,

havingǫ1 the error of approximatingc∞, andR1 the radius of
the sphere, namelyR1 = maxi=1,··· ,N ‖φ(xi) − cn‖. If we
consider the sphere centered on the projected sparse center
PcI , and the distance between the projected samplePφ(x)
andPcI , we apply the triangular inequality twice and we get
the following relations:

‖Pφ(x)− PcI‖ ≤ ‖Pφ(x)− Pcn‖+ ‖Pcn − PcI‖

≤ ‖Pφ(x)− Pc∞‖+ ǫ0 + ‖Pcn − PcI‖,

and

‖Pφ(x)− PcI‖ ≥ ‖Pφ(x)− Pcn‖ − ‖Pcn − PcI‖

≥ ‖Pφ(x)− Pc∞‖ − ǫ0 − ‖Pcn − PcI‖.

From these two inequalities, and by the symmetry of the i.i.d
assumption, the probability of a new samplexN+1 lying out-
side this distribution is bounded by

P(‖Pφ(xN+1)−PcI‖ > R+2ǫ0+2‖Pcn−PcI‖) ≤
nout + 1

N + 1
.

3. EXPERIMENTAL RESULTS

The Gaussian kernel is used in this paper, for it is the most
common and suitable kernel for one-class classification prob-

lems. It is given byk(xi,xj) = exp
(
−

‖xi−xj‖2

2

2σ2

)
, where

xi andxj are two input samples, and‖ · ‖2 represents the
l2-norm in the input space. The bandwidth parameterσ is
computed as proposed in [23], namelyσ = dmax√

2M
, wheredmax

refers to the maximal distance between any two samples in
the input space, andM represents the upper bound on the
number of outliers among the training dataset.

The proposed algorithms are applied in the first place on
two simulated datasets, the sinusoidal and the square noise
datasets [17]. We compared the results with three other one-
class classification approaches, namely SVDD, KPCA and
simple one-class as shown in figure 1. The proposed al-
gorithms have the best results with a very tight description
boundary around the data, the KPCA gives a good descrip-
tion, while the presence of outliers led to loose decision
boundaries with the simple one-class and the SVDD. We note
that the sparse approach used only 15% of the training data
to define these tight boundaries.

The proposed algorithms are now applied on two real
datasets, the gas pipeline and the water storage tank from the
Mississipi State University SCADA Laboratory [24]. The gas
pipeline is used to move natural gas or other petroleum prod-
ucts to market, it is connected to an air pump which pumps
air into the pipeline, and contains valves to release the air
pressure from it. A pressure sensor is attached to the pipeline
which allows pressure visibility at the pipeline and remotely
on a Human Machine Interface screen. The water storage
tank testbed is similar to the oil storage tanks found in the
petrochemical industry. It contains primary and secondary
storage tanks, a pump to move water from the secondary to
the primary tank, a relieve valve which allows water to flow
from the primary to the secondary tank, and a sensor which
provides the water level in the primary tank. Each input sam-
ple has 27 attributes for the gas pipeline and 24 attributes for
the water storage tank. The attributes represent heterogenous
variables, such as gas pressure, water level, pump state, target
gas pressure/water level, valve state, PID’s parameters, time
interval between packets, device ID in command/response
packets, and length of command/response packets. The di-
versity in the attributes requires a high performing classifier
capable of correctly discriminating between normal samples
and outliers. Furthermore, 28 types of attacks are injected
into the network traffic of the system in order to hide its real
functioning state and to disrupt the communication. These at-
tacks are arranged into 7 groups: Naive Malicious Response
Injection (NMRI), Complex Malicious Response Injection
(CMRI), Malicious State Command Injection (MSCI), Ma-
licious Parameter Command Injection (MPCI), Malicious
Function Command Injection (MFCI), Denial of Service
(DOS) and Reconnaissance Attacks (RA).



The error detection probabilities of the studied approaches
for the gas pipeline and the water storage testbeds are given
in tables 1 and 2, and the estimated time for each approach as
well as the time to test each new sample are computed in ta-
bles and 4 and 3. These results show that the simple one-class
approach is the fastest one, but with poorer results since itis
very sensitive to the presence of outliers among the training
dataset. The proposed approach gives better detection rates
than the others for different types of attacks, expect for the
MSCI and MFCI attacks on the gas pipeline. It is impor-
tant to draw attention to the fact that only 10% of the training
dataset are used in the sparse approach to define the descrip-
tion boundary, and this hardly affected the results that arestill
better than SVDD and KPCA. In addition, the proposed al-
gorithms take almost the same computational time, and they
are twice faster than KPCA and much more than SVDD. Fur-
thermore, our approaches are the fastest regarding the time
needed to test a new sample, and the spare approach is almost
10 times faster than SVDD. These results are very important
if we want to apply our algorithms in real-world scenarios,
where the sparse approach can process over 200 samples per
second, compared to only 25 samples for SVDD and 50 sam-
ples for KPCA.

Table 1. Error detection probabilities of several approaches
for the gas pipeline testbed.

SVDD KPCA simple proposed sparse
1-class 1-class 1-class

NMRI 98.1 98.7 91.7 99.6 99.3
CMRI 99.5 99.8 95.4 99.8 99.8
MSCI 89.1 86.2 22.6 83.1 81.1
MPCI 98.2 98.6 94.1 99.1 99.1
MFCI 89.9 89.3 31.6 85.1 85.4
DOS 96.1 96.8 68.51 97.7 96.7
RA 99.8 99.8 98.1 99.8 99.8

Table 2. Error detection probabilities of several approaches
for the water storage testbed.

SVDD KPCA simple proposed sparse
1-class 1-class 1-class

NMRI 95.1 97.1 88.2 98.8 98.5
CMRI 61.2 75.3 46.2 82.4 80.1
MSCI 97.3 98.1 96.3 98.7 98.4
MPCI 98.6 99.5 97.6 99.7 99.6
MFCI 97.9 99.9 40.6 99.9 99.9
DOS 71.7 79.9 55.3 83.3 80.6
RA 97.8 99.5 95.9 99.7 99.7

Table 3. Estimated time (in seconds) of each approach on the
gas pipeline and the water storage testbeds.

SVDD KPCA simple proposed sparse
1-class 1-class 1-class

gas 70.23 18.31 9.23 10.08 10.21
water 123.72 20.1 10.41 11.89 12.02

Table 4. Estimated time (in seconds) to test a new sample
for each approach on the gas pipeline and the water storage
testbeds.

SVDD KPCA simple proposed sparse
1-class 1-class 1-class

gas 0.039 0.019 0.011 0.010 0.0047
water 0.043 0.032 0.015 0.019 0.0051

4. CONCLUSION

In this paper, we investigated the use of the Mahalanobis dis-
tance in the feature space for one-class classification prob-
lems. We proposed a one-class method based on this distance,
and a sparse formulation of this approach. We tested the algo-
rithms on simulated data and on real data containing several
types of attacks. The proposed approach achieved the best
description boundaries on the simulated data, and the high-
est error detection rates with minimum computational costs
on the real datasets. These results proved that the use of the
Mahalanobis distance as a novelty measure has increased the
performance of our classifier, since it takes into account the
covariance among the variables and the different scaling of
the coordinate axes.

For future works, a further and more detailed study on the
effect of using the Mahalanobis distance on the stability ofthe
studied system is required. Furthermore, we should consider
to integrate our approach in the traditional intrusion detection
systems in industrial infrastructures, since these approaches
could play an important and complementary role to the IDS
in detecting malicious attacks on physical systems, and they
have a high processing performance (over 200 samples per
second).
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Fig. 1. The decision boundaries on the sinusoidal and the
square-noise datasets for different approaches. The two fig-
ures at the bottom (in each column) represent the proposed
approach.


