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ABSTRACT One-class classification algorithms have been applied in
many fields, namely for face recognition applications [8)-m

Machine learning techniques have become very popular in thsile masquerades detection [9], seizure analysis from EEG
past decade for detecting nonlinear relations in largenael  sjgnals [10], and recently for intrusion detection in intlias
of data. In particular, one-class classification algorghrave systems [11]. Several approaches exist in the literature fo
gained the interest of the researchers when the availafile sapne-class classification problems. Teial. introduced in
ples in the training set refer to a unique/single class. is th [12][13] the Support Vector Data Description (SVDD) which
paper, we propose a simple one-class classification agproagstimates the hypersphere with minimum radius enclosing
based on the Mahalanobis distance. We make use of the aghpst of the training data. The drawbacks of the SVDD are
vantages of kernel whitening and KPCA in order to computenat it requires to solve a quadratic problem, and it does not
the Mahalanobis distance in the feature space, by progctingke into consideration the variance of the training data in
the data into the subspace spanned by the most relevant eigeiach feature direction. Tax proposed a kernel whitening nor
vectors of the covariance matrix. We also propose a spar§fialization in [14] to overcome the variance drawback, while
formulation of this approach. The tests are conducted on simhe quadratic problem remains unchanged. Scholkop.

ulated data as well as on real data. defines in [15] the hyperplane separating the mapped data
Index Terms— Kernel methods, one-class classification,from the origin with maximum margin. This approach, called
Mahalanobis distance. the one-class Support Vector Machines (SVM), is equiva-

lent to the SVDD when the Gaussian kernel is used and has
the same drawbacks of variance inequality in each feature
1. INTRODUCTION direction. Kernel Principal Component Analysis (KPCA) is

introduced in [16] for several applications, and Hoffmaadis
Machine learning techniques have gained a lot of attentioH? [17] the KPCA for novelty detection. The implementation
in the past few years since they provide a powerful tool forof the KPCA is faster than the SVDD, but its computational
detecting nonlinear relations and hidden regularitiesigé ~ complexity is cubic with the size of the training dataset.
volumes of data [1][2]. They have been applied in differentTsanget al. used in [18] the covariance information to learn
fields for classification and regression problems, such as athe kernel in one-class SVM, but it requires the optimiza-
tonomous robotics [3], biomedical signal processing [afj a tion of a second order cone programming (SOCP) problem.
wireless sensor networks [5]. Machine learning technique¥/anget al. proposed in [19] another approach that uses the
use positive definite kernel functions to map the data into #ahalanobis distance in the feature space for SVDD. This
reproducing kernel Hilbert space, and provide an elegagt wa@PProach is also a SOCP problem, and its complexity is cubic
to learn a nonlinear system without the need of the exactphy4Vith the size of the training dataset.

ical model [2][6]. In several applications as in industsgs- A first attempt for a fast and a simple one-class approach
tems, the training set refer to a unique/single class white t s jntroduced in [20], and it computes the Euclidean distanc
data from the other classes are difficult to obtain. This onep the feature space between the samples and the center of the
class classification problem has gained the interest oféthe r qata. This approach is faster than the aforementioned meth-
searchers in the past decade, where the classifier musttaccggs, put it is very sensitive to outliers. In this paper, we-pr
as many positive samples (target class) and reject as magyse a one-class classification approach based on the use of
outliers as possible [7]. the Mahalanobis distance in the feature space. The Maha-
_ lanobis distance takes into account the covariance in each f

Rec;grizh(‘;‘,’,‘(’:;lg S‘;gr’;’toggil_gy the French "Agence Nationale de lay e girection and the different scaling of the coordinatesa

The authors W’O?,ﬂd like to thank Thomas Morris and the Migsisstate  [21]. We take advantage of the properties of KPCA [17] and
university SCADA Laboratory for providing the real dataset kernel whitening [14] to project the data into the subspace




spanned by the most relevant eigenvectors having the same use the singular value decomposition of the covariance
variance in each feature direction. The Mahalanobis distan matrix 3, namelyX = V7 DV, havingV the matrix of

is computed in this subspace, and it is used for novelty dete@igenvectora* of X, and D the diagonal matrix with the
tion. Then, we propose a sparse formulation of this approaclcorrespondent eigenvalugg for £ = 1,2,--- , N. SinceV
where only a very small fraction of the training data are take is an orthogonal matrixs2 ' can be expressed as follows:

into account in order to obtain the decision boundary of the 1 T
classifier. The remainder of this paper is organized asvallo =V DV ©

Section 2 describes the proposed one-class approachorbectiach eigenvalug,, satisfies\,v* = Zv*. From the defini-

4 provides conclusion and future works. is a linear combination of the samplesx;) in the feature
space, namely” = vazl of (¢(x;) — cn). By injecting the

2. THE PROPOSED APPROACH expression ob" into the eigen decomposition &, namely

MvP = ZoF, the coefficientsy; are given by solving the

In this paper, we propose a one-class classification approa‘égen decomposmon problem N\, o — Kok, where the
based on the Mahalanobis distance in the feature space. Tpgrnel matrixK is the centered version dt.

main objective for using the Mahalanobis distance is that it Next, equat|on (1) takes this fOffhﬁ cn||2 —a"a
is a multivariate dissimilarity that takes into account toe o =
variance in each feature direction and the different sgasin  Naving:a = D~2 2V ((x) — & LI, 6(w:)), where each

the coordinate axes. The proposed approach and its spaf@@yas of ais assouated toan e|genvectd“r with:
formulation are discussed next.

2.1. Mahalanobis-based one-class i=1 i,j=1
N
Let's consider a training dataset , i = 1,..., N in ad- gL
. . : ' Yo — o = xj, )+ o —= k(x;,x;
dimensional input spac&. The data are mapped into a Re- ; N Jz:; ! Z N? ”Z:l e
producing Kernel Hilbert SpacH via the mapping function N

o(x;) = k(xz;,-), and the mapping is applied in a way to ~ _ -3 ZO‘ 7

use only the pairwise inner product between the data. The in-

ner product is computed directly from the input data using a B B

kernel function, and the entries of thé x N kernel matrix — The kernel functiork(x;, x;) = k;; is the centered version

K take this form:k;; = k(z;,x;) = (¢(x;), ¢(x;))n for  of k(z;, z;), and its computed as follows:

x1, -, x, € X, where(., )4 represents the dot-product in

the RKHS. This property is known as the kernel trick, and it +~ B

allows to construct classification algorithms in inner prod Fig = kij = N Zk” Zk” T N2 Z Frs.

spaces without any explicit knowledge of the mapping func-

tion ¢. Finally, the Mahalanobis distance in equation (1) is coragut
The simple one-class approach consists on computing thie the feature space as follows:

distance in the feature space between the training samples N N

and the cent_er_ of the dgta in thg’lc space. Based on this dis- H¢($ _ CHH; _ Z)‘El(zaﬁ(wi,w))Q- 3)

tance, a decision function classifies hew samples as normal

or outliers. In fact, the mean of the mapped data is given ) o )

by the expectation of the data in the feature space, namely After calculating the Mahalanobis distance in the feature

E[4(z)]. One can estimate this expectation by the empiricaPP2c€ between each training samplec;) and the center

computauon of the center of the data in the feature spadk, wi ¢»» @nd knowing the number of outliers,. in the training
= LyN (). dataset, we fix a threshol@ which represents the radius in
Cn N i 2

that space. The decision function of our classifier consid-
ers a new sample as an outlier if its Mahalanobis distance
in the feature space is greater than this threshold, namely
| o () — cn||22 = (¢(z) — cn)TZ*l(gb(a:) —c), Q) o) c,LHQ2 > R. Otherwise, the sample is considered as
a normal sample.
whereX is the covarlance matrix of the data in the feature
T

space, namels = Yl (d(wi) — c)(@(@i) —n)” 5 qq Advantages of kernel whitening and KPCA

Without any explicit knowledge on the mapping function

o(+), the covariance matrix cannot be expressed in terms dis detailed in the previous section and in equation (3), the
the datap(x) in the feature space. To overcome this problemMahalanobis distance in the feature space is computed via

r,s=1

The Maﬁalanobis distance between a sanpde) and the
centerc, is given as follows:



the projection of the data into the subspace spanned by tteparse center is a linear combination of the support vectors
eigenvectors of the covariance matkix Instead of using all and only these samples are taken into account in the calcula-
the eigenvectors” for the projection, we make use of the ad- tion of the Mahalanobis distance. Then we define a threshold
vantages in the KPCA approach, where only the most relevailtased on the predefined number of outliers, in order to dis-
eigenvectors whose correspondent eigenvalues saijisf0  criminate new samples as normals or outliers.
are taken into consideration. The remaining eigenvectersa  Many approaches have been proposed in the literature for
considered as noise. the choice of the support vectors, based on the coherence cri
We also adopt the kernel whitening normalization of theterion [22] or on the distance criterion [20]. The cohereisce
eigenvectors as proposed in [14], where the variance of theéefined by the largest absolute values of the off-diagonal en
mapped data is constant for all feature directions. The nottries of the kernel matrix, nameiyiax; ; i, |k(x;, ;)|, and

malization is achieved as follows: the least coherence set is considered as the relevant set. Th
1 distance criterion lies on the computation of the Euclidean
(N kP =1 = ||a*| = oo for all componentsk  distance in the feature space between the samples and the cen
k

ter of the data, and the sétcontaining the furthest samples
to the centerZ = {x;, Hgf)(mi)—cnnz > R?}, whereR is the

2.1.2. Theoretical results
radius/threshold based on the predefined number of outliers

Given a training dataset; , 7 = 1,..., N in ad-dimensional We note that regardless of the approach used for selecting th
input space with its covariance matr®, and let? be the  support vectors, the following algorithm remains unchahge
projection operator onto the subspace spanned by thest We adopt the distance criterion approach, after adapting it
relevant eigenvectons”. to the computation of the Mahalanobis distance in the featur

space as detailed in the previous section. The sparse center
takes this formeez = >, _; Bi¢(x;), and the coefficients;

are computed by minimizing the error of approximating the
centere,, with the sparse center;:

Theorem 1 The error of projecting the center of the data
onto this subspace can be upper bounded by

1 N
WZA“

N
) 1 2
i=k+1 ; - ) . .
| argmin | 5 " é(@) — Y Aol .
where\. .1, ..., Ay represent the least relevant eigenvalues i=1 =
related to the remaining eigenvectors unused in the pr@act  The partial derivative of this cost function with respectth
operation. B; is computed and set to zero, and for each eigenvadtor
— . we have:
Proof The error of projecting the center is expressed as fol-
lows: 11 Y
N )\k2<ﬁzzk(%$k) Z ﬂjk(ﬂ?a‘,wk))x
9 1 9 i=1 kel j.keT
H(I - P>C"H7-L - H_ (- P)¢(”"Z’)HH N N
i > o (o) - S e@) ) =0
1 Y 2 = TN 7
< 53 2@ =Pyei|,
i=1 where the eigenvectotg’ and the eigenvalues, already sat-
1 X isfy v* # 0and); # 0. This boils down to the following:
S T Z >\i7
N? i=k+1 1 N
N Z Z k(x;, xy) = Z Bik(x;, k).

where the first inequality follows from the generalizedrtria i=1 keT 4.k€T

gular inequality, and the error of projecting the sampglés; ) - . .
The coefficientss; are computed through the matrix notation:
can be bounded bEfV:kJrl \; as detailed in [2](chapter 5). ¥ P g
B=K:'k,

2.2. Sparse Mahalanobis-based one-class where the entries of the kernel matri(; are k(zx;, ;)
We consider a sparse formulation of the aforementioned prder 7,5 € Z, and k is the column vector with entries
posed method, especially for large training datasets,deror >, . k(x;, zx). In order to avoid non-invertible singular
to reduce the computational complexity of the algorithng an matrix Kz, we include a regularization parametemamely
to maintain a good description boundary around the data. W8 = (K7 + vI) k.

propose to approximate the center of the dataseising the The classifier fixes a threshoklbased on the predefined
furthest samples which are known as the support vectors. Thmuimber of outliers:,,;. The decision function for testing a



new sample is to measure the Mahalanobis distance between 3. EXPERIMENTAL RESULTS
this sample and the sparse centeias follows:
N N N The Gaussian kernel is used in this paper, for it is the most
7 1 . _ . .
Z ™ ( Z o k(z, x) — Z Z ok Bk (25, ;) common. anq suitable kernel for one claﬁj(ilgshs?lflcat|ob4pro
o1 kN 0 ez lems. Itis given byk(z;, @;) = exp ( — =5342), where
N N N N , i andx; are two input samples, ang- ||» represents the
_ Z afi Z k(zj, x) + Z afl Z Z Bik(x;, mz)) _lp-norm in the input space. The bandwidth parametes
o N o o NioiE computed as proposed in [23], namely= \‘/i% wheredmax
refers to the maximal distance between any two samples in

If this distance is greater than the radiiz$, the sample is the input space, and/ represents the upper bound on the
considered as an outlier. Otherwise, it is considered as-a NOhumber of outliers among the training dataset.

mal sample.

The proposed algorithms are applied in the first place on
two simulated datasets, the sinusoidal and the square noise
2.2.1. Theoretical results datasets [17]. We compared the results with three other one-
glass classification approaches, namely SVDD, KPCA and
simple one-class as shown in figure 1. The proposed al-
9 gorithms have the best results with a very tight description

boundary around the data, the KPCA gives a good descrip-
tion, while the presence of outliers led to loose decision
boundaries with the simple one-class and the SVDD. We note
that the sparse approach used only 15% of the training data
Theorem 2 If we consider the sphere centered Bz with  to define these tight boundaries.
radius R, and by the symmetry of the i.i.d assumption, we can  The proposed algorithms are now applied on two real
bound the probability that a new random sampler) lies  datasets, the gas pipeline and the water storage tank frem th
outside this sphere excluding the outliers, with Mississipi State University SCADA Laboratory [24]. The gas

Nout pipeline is used to move natural gas or other petroleum prod-
P(IP(x) = Pezll > R+ 2¢0 +2[Pen — Pez|)) < 71 ucts to market, it is connected to an air pump which pumps

Proof When all the training samples are inside the spherg'r into the pipeline, and contains valves to release the air

centered or,, it has been shown in [2] that the probabil pressure fromit. A pressure sensor is attached to the pépeli

. . . . ... which allows pressure visibility at the pipeline and rentypte
ity of a new sampler v, that lies outside this description is on a Human Machine Interface screen. The water storage

Let ¢, denote the expectation of the data in the feature spac
namelyE[¢(x)], ande, the projection error between, and
¢n, Namelyeg = ||Pe, — Peoo||. The samples of the trainin
dataset are generated from the same distribution, th& set
represents the set of support vectors, apg the number of
outliers among this dataset.

bounded by tank testbed is similar to the oil storage tanks found in the
1 petrochemical industry. It contains primary and secondary

— <
Pll¢(@ni1) = enll > Ba+ 26ll) < +1 storage tanks, a pump to move water from the secondary to

the primary tank, a relieve valve which allows water to flow
from the primary to the secondary tank, and a sensor which

consider the sphere centered on the projected sparse cerft ?wdes the water level in the primary tank. Each input sam-

Pez, and the distance between the projected sarmplér) ple has 27 attributes for the gas.pipeline and 24 attributes f
andPcz, we apply the triangular inequality twice and we getthelwater storage tank. The attributes represent heteoogen
the following relations: variables, such as gas pressure, water level, pump staget ta

gas pressure/water level, valve state, PID’s parametars, t

havinge; the error of approximating,,, andR; the radius of
the sphere, namelR; = max;—1.... v ||¢(x;) — ¢ If we

([Pop(x) — Pez| < |Pop(x) — Peyl| + |Pen — Pezl| interval between packets, device ID in command/response
< |Po(x) — Peso|| + €0 + |Pen — Pezl], packetg, and Iength of command/rgsponse pagkets.. The di-
versity in the attributes requires a high performing cléessi
and capable of correctly discriminating between normal sasple

and outliers. Furthermore, 28 types of attacks are injected
IPé(x) = Pez|| 2 [[Pé(x) — Pen|| — [Pen — Pez] into the network traffic of the system in order to hide its real
> [[Pé(x) — Peooll — €0 = [[Pen — Pezll. functioning state and to disrupt the communication. Thése a

i_aacks are arranged into 7 groups: Naive Malicious Response
Injection (NMRI), Complex Malicious Response Injection
(CMRI), Malicious State Command Injection (MSCI), Ma-
. licious Parameter Command Injection (MPCI), Malicious
B _ Nout ~ 1 Function Command Injection (MFCI), Denial of Service

PIPo@n-+1)=Pezll > R+2e0+2|[Pen=Pezl) < N +1 ~ (DOS) and Reconnaissance Attacks (RA).

From these two inequalities, and by the symmetry of the i.
assumption, the probability of a new samglg 1 lying out-
side this distribution is bounded by



The error detection probabilities of the studied approache
for the gas pipeline and the water storage testbeds are giv«::l-ffil
in tables 1 and 2, and the estimated time for each approach

ble 3. Estimated time (in seconds) of each approach on the
gas pipeline and the water storage testbeds.

well as the time to test each new sample are computed in ta- SVDD | KPCA | simple | proposed | sparse
bles and 4 and 3. These results show that the simple one-class 1-class| 1-class | 1-class
approach is the fastest one, but with poorer results sirse it gas | 7023 | 1831 | 9.23 10.08 1021
very sensitive to the presence of outliers among the trginin water | 123721 201 | 1041 11.89 12.02
dataset. The proposed approach gives better detectio rate

than the others for different types of attacks, expect fer th
MSCI and MFCI attacks on the gas pipeline. It is impor-
tant to draw attention to the fact that only 10% of the tragnin

dataset are used in the sparse approach to define the desc

| -
tion boundary, and this hardly affected the results thastite teStbeds.

Table 4. Estimated time (in seconds) to test a new sample
for each approach on the gas pipeline and the water storage

better than SVDD and KPCA. In addition, the proposed al-

: ' _ SVDD | KPCA | simple | proposed | sparse
gorithms take almost the same computational time, and they 1-class| 1-class | 1-class
are twice faster than KPCA and much more than S_VDD. qu- gas | 0.039 | 0.019 | 0.011 0010 | 0.0047
thermore, our approaches are the fastest regarding the ti & ater | 0.043 | 0.032 | 0.015 0.019 | 0.0051
needed to test a new sample, and the spare approach is almest

10 times faster than SVDD. These results are very important

if we want to apply our algorithms in real-world scenarios,
where the sparse approach can process over 200 samples per
second, compared to only 25 samples for SVDD and 50 sa
ples for KPCA.

4. CONCLUSION

M this paper, we investigated the use of the Mahalanobis dis
tance in the feature space for one-class classification-prob
lems. We proposed a one-class method based on this distance,

Table 1. Error detection probabilities of several approacheé”}nhd asparse folrmulauon of this approlach. we tegtgd the algol

for the gas pipeline testbed. rithms on simulated data and on real data cont{:unlng severa

types of attacks. The proposed approach achieved the best

description boundaries on the simulated data, and the high-

SVDD | KPCA | simple | proposed | sparse : _ o .

1-class| 1-class | 1-class| €st error detection rates with minimum computational costs
NMRI | 98.1 98.7 917 996 993 on the real datasets. These results proved that the use of the
CMRI 995 998 954 99.8 99.8 Mahalanobis distance as a novelty measure has increased the
MSCI | 891 862 556 831 811 perfor_mance of our classifi_er, since it takes_ into accouat th
MPCI 982 986 941 99 1 99 1 cr:)varlan(;:_e among the variables and the different scaling of

the coordinate axes.
'\élzg ggi ggg 6381.51 g?% 32‘7" . For:utu_re wr(])rkla, erl]flljrthet;_aréq more detari]led stg_clj_{y‘or}the
oA 998 398 98 1 398 998 effect of using the Mahalanobis distance on the stabilitjre

studied system is required. Furthermore, we should conside
to integrate our approach in the traditional intrusion debae
systems in industrial infrastructures, since these ames
could play an important and complementary role to the IDS

Table 2. Error detection probabilities of several approachedn detecting malicious attacks on physical systems, ang the
for the water storage testbed. have a high processing performance (over 200 samples per

second).
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Fig. 1. The decision boundaries on the sinusoidal and the
square-noise datasets for different approaches. The two fig
ures at the bottom (in each column) represent the proposed

approach.




