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Abstract—This paper deals with the problem of tracking and
monitoring physical phenomena using wireless sensor networks.
It proposes an original mobility scheme that aims at improving
the tracking process. To this end, a model is defined using kernel-
based methods and a learning process. The sensors are given the
ability to move in a manner that minimizes the approximation
error, and thus improves the efficiency of the model. First and
second derivatives of the approximation error are used to define
the new positions of the nodes. The performance of the proposed
method is illustrated in the context of monitoring gas diffusion
with wireless sensor networks.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) constitute a multidis-

ciplinary research field at the crossroads of communities

such as microelectronics, wireless communication, and signal

processing. Originally developed for military purposes, their

scope of application continues to expand by including the

monitoring in civil and industrial domains [1], [2]. A WSN

is composed of a large number of nodes, also called micro-

sensors, which have communication, computing, and sensing

functions [3]. However, these tiny devices usually have limited

amounts of memory, reduced processing capabilities, limited

power resources, and low range communication capacities.

Challenges in WSNs gave rise to an active research field in

machine learning, with kernel-based methods for regression

and pattern recognition, including problems such as localiza-

tion [4], detection [5], and regression [6], [7] in WSNs. The

framework presented in [8] allows the representation of the

investigated field by a global model linking information from

all sensors. These sensors are often densely and randomly de-

ployed to insure a good coverage of the region under scrutiny.

In order to overcome this problem, one may consider mobile

sensors, which move in a manner that optimizes coverage [9],

[10], [11]. In this paper, some sensors are assumed to be robots

having a controlled mobility, and thus they move in such a way

to collect more relevant information.

More specifically, this study tackles the problem of sen-

sors mobility using a kernel-based regression in a wireless

sensor network. For this purpose, we propose a kernel-based

model and we update it using information from robot sensors.

We show that the proposed framework allows us to derive

an efficient scheme for sensor mobility, by minimizing the

approximation error. It turns out that the resulting problem

has tight connections with a well-known problem in machine

learning, the so-called pre-image problem [12], [13]. We take

advantage of recent developments in this area to derive two

optimization schemes for the mobility problem.

The rest of this paper is organized as follows: In the next

section, we derive the framework of kernel-based methods for

learning in WSNs. In Section III, we present the optimiza-

tion problem and describe several optimization schemes in

Section IV. Section V provides experimentation results and

discussions, whereas Section VI concludes the paper.

II. KERNEL-BASED METHODS IN WSNS

We aim to estimate a diffusion field using a WSN by

constructing a model based on information collected from

sensors. This paper considers the framework of kernel-based

methods. Let N be the number of sensors deployed in a

region X, where X ⊂ R
2 or X ⊂ R

3, for a two- or three-

dimensional space. Let xi ∈ X be the position of sensor i,
1 ≤ i ≤ N , yi ∈ R be the measurement made by sensor i of

the studied physical quantity such as a temperature measure or

a gas concentration. The field is modeled using the information

of the N sensors. For this purpose, their measurements are

collected and the field is estimated by the real-valued function

ψ(·) defined on X such that

ψ(xj) ≈ yj for all j.

In order to define the function ψ(·), the reproducing kernel

formalism is considered [14]. Let H be a reproducing kernel

Hilbert space constituted by functions from X to R. We denote

by 〈·, ·〉H the associated scalar product, and by ‖ · ‖H the

corresponding norm. A (positive definite) kernel κ(·, ·) denotes

a real-valued function defined on X× X, and verifying

∀xj ∈ X, ∀ψ(·) ∈ H, ψ(xj) = 〈ψ(·), κ(·,xj)〉H.

For some arbitrary reproducing kernel Hilbert space H given

by the choice of the corresponding kernel κ(·, ·), the optimiza-

tion problem is given by minimizing the mean-squared-error

between the model output ψ(xj) and the desired output yj :

ψ(·) = arg min
ψ∈H

N
∑

j=1

|yj − ψ(xj)|
2 + ν‖ψ‖2H, (1)

where ν is a regularization parameter that controls the tradeoff

between fitting the available data and the smoothness of the



solution. Note that the appropriate choice of a neighborhood

also allows such control, thereby reducing the contribution of

ν in the optimization problem.

Due to the Representer Theorem [14], the solution to

this regularized optimization problem is given by a linear

combination of the κ(xj , ·), for j ∈ {1, 2, · · · , N}, namely:

ψ(·) =

N
∑

j=1

αjκ(xj , ·). (2)

Since the model is linear with the parameters αj , the latter can

be easily estimated as follows. Let α be the vector containing

the αj for j ∈ {1, 2, · · · , N}. We can show that

α = (K + νI)−1y, (3)

where y is the vector containing yj and K is the Gram matrix

whose entries are κ(xj ,xl), for j, l ∈ {1, 2, · · · , N}.

In this paper, we use radial kernels of the form:

κ(xi,xj) = g(‖xi − xj‖
2), (4)

where g(·) is a positive real function. Radial kernels are very

natural for the studied problem, since they depend only on the

distance and are translation invariant. Let g′(·) denote the first

derivative of the function g(·) with respect to its argument,

i.e., g′(z) = ∂g(z)/∂z. The most used radial kernel is the

Gaussian kernel, where g(·) = exp−
1

2σ2
(·), with σ the tunable

bandwidth parameter. In this case, we have g′(z) = − 1
2σ2 g(z).

III. MOBILITY

The aim of the proposed method is to adapt iteratively

the learning set in such a way to improve the regression

model. Let At = {(x1,t, y1,t), (x2,t, y2,t), · · · , (xN,t, yN,t)}
be the learning set at iteration t, where A0 is the set with the

initial learning sensors, and let ψt(·) be the model computed

according to Section II using At, namely

ψt(·) =

N
∑

j=1

αj,t κ(xj,t, ·), (5)

where the coefficients αj,t are obtained using expression (3)

with the set At. The quadratic validation error of the model at

any given (x+, y+) is given by the squared difference between

the desired output y+ and the estimated model output ψt(x
+):

εt(x
+) = |y+ − ψt(x

+)|2. (6)

Optimizing jointly all the positions xj,t and the coefficients

αj,t, for j = 1, 2, . . . , N , is an intractable problem. This is

mainly due to the nonlinearity of ψt(·) with respect to each

of the samples xj,t, while it remains linear with respect to

the coefficients. Moreover, the estimated coefficients αj,t can

cancel the model error at any entry of the learning set At.

To overcome these difficulties, we propose to use M robot

sensors. These robot sensors are denoted by the set Bt =
{(x∗

1,t, y
∗
1,t), (x

∗
2,t, y

∗
2,t), · · · , (x

∗
M,t, y

∗
M,t)}, where x∗

i ∈ X

and y∗i ∈ R for i ∈ {1, 2, · · · ,M}. Only a single robot is

moved at each iteration. Consider the mobility of the i-th robot

at iteration t. Therefore, the entry (x∗
i,t−1, y

∗
i,t−1) of the set

Bt−1 is updated into (x∗
i,t, y

∗
i,t), namely

Bt = Bt−1\{(x
∗
i,t−1, y

∗
i,t−1)} ∪ {(x∗

i,t, y
∗
i,t)}. (7)

Several strategies can be adopted to choose the robot to move

at each iteration: a cyclic selection, a randomization, or a

selection by considering the largest prediction error. It is worth

noting that the latter outperforms other selection criteria. It is

therefore considered in our method.

The proposed optimization strategy operates in the follow-

ing steps at each iteration t:

1) Estimate the model ψt(·) using the learning subset At,

according to Section II, with

ψt(·) =

N
∑

j=1

αj,t κ(xj,t−1, ·).

2) Compute, for i = 1, 2, . . . ,M , the quadratic prediction

error for each robot (x∗
i,t−1, y

∗
i,t−1), according to (6)

with

εt(x
∗
i,t−1) = |y∗i,t−1 − ψt(x

∗
i,t−1)|

2.

3) Select, from all M indices, the index i whose robot

is yielding the largest error εt(x
∗
i,t−1) and then move

the robot from x∗
i,t−1 to x∗

i,t in order to reduce the

prediction error, namely by minimizing the function

εt(·),
x∗
i,t = argmin

x∈X

εt(x). (8)

All other robots remain fixed, i.e., x∗
j,t = x∗

j,t−1 for all

j = 1, 2, . . . ,M and j 6= i.
4) Update the set Bt−1 to Bt as given in (7).

5) Update the set At−1 to At by adding the previous infor-

mation (x∗
i,t−1, y

∗
i,t−1) to the set At−1, and increasing

by one the number N : At = At−1 ∪ {(x∗
i,t−1, y

∗
i,t−1)}.

The main difficulty is the optimization problem (8), i.e., the

minimization with respect to x of the quadratic cost function

εt(x) =
∣

∣

∣
y∗i,t−1 −

N
∑

j=1

αj,t κ(xj,t−1,x)
∣

∣

∣

2

. (9)

The exact solution corresponds to solving ∇εi,t(x) = 0 for

which H(x) is positive semi-definite, where ∇εt(x) is the

gradient of the cost function εt(·) with respect to its argument

and H(x) is its Hessian matrix applied on x. However,

this is a hard problem, since it is a non-linear and non-

convex optimization problem, mainly due to the nature of the

considered kernel. Having a first guess which is the initial

position x∗
i,t−1, one is able to optimize it within its vicinity

using iterative optimization schemes. In this case, x is within

the vicinity of x∗
i,t−1 where the desired output is assumed

to be constant and equal to y∗i,t−1. The rest of this paper is

devoted to the minimization process using such schemes.

IV. OPTIMIZATION SCHEMES

In this section, we derive two first-order and one second-

order iterative optimization schemes for adaptive sampling.



To this end, we propose three possible schemes: the fixed-

point method, the gradient descent method, and the Newton’s

method. While the proposed methods can be applied for any

type of kernel, the formulation is given here for radial kernels,

i.e., of the form (4). In this case, the gradient of the error

function (9) is given by

∇εt(x) =− 4
(

y∗i,t−1 −

N
∑

j=1

αj,tκ(xj,t−1,x)
)

×

N
∑

j=1

αj,t g
′(‖x− xj,t−1‖

2)(x− xj,t−1).

In this expression, we assume that x is within the vicinity of

x∗
i,t−1 where the desired output remains constant and equal to

y∗i,t−1.

A. Fixed-point method

The minimum of the quadratic cost function (9) is obtained

when its gradient goes to zero. Therefore, at the minimum

∇εt(x) = 0, namely

N
∑

j=1

αj,t−1 g
′(‖x− xj,t−1‖

2) (x− xj,t−1) = 0.

This equation leads to the so-called fixed-point expression,

with the following update rule of sample x∗
i,t−1 to the new

sample x∗
i,t:

x∗
i,t =

∑N
j=1 αj,t−1 g

′(‖x∗
i,t−1 − xj,t−1‖

2)xj,t−1
∑N

j=1 αj,t−1 g′(‖x∗
i,t−1 − xj,t−1‖2)

. (10)

B. Gradient descent method

The gradient descent scheme adapts in the direction opposed

to the gradient, with the update rule

x∗
i,t = x∗

i,t−1 − ηt∇εt(x
∗
i,t−1), (11)

where ηt > 0 is the stepsize parameter, which depends on the

iteration t. The use of the stepsize here allows controlling the

convergence, as opposed to the fixed-point method, the price

to pay being the appropriate choice of its value.

For appropriate convergence, the stepsize ηt should decrease

at each iteration [15]. A common choice of the stepsize is

ηt = η0/t, where η0 is a positive constant parameter. Another

possibility is a “search then converge” approach [16], with

ηt = η0
1+t/τ . In this case, the delay parameter τ determines

the duration of the initial search phase, with ηt ≃ η0 when

t ≪ τ , before a converge phase where ηt decreases as η0/t
when t ≫ τ . This is well suited to the hypothesis of the

sensors’ limited energy.

C. Newton’s method

The step size η is taken based on the Hessian matrix H .

Thus, we obtain:

x∗
i,t = x∗

i,t−1 −H−1∇εt(x
∗
i.t−1). (12)

This method allows to follow the curvature of εt(x
∗
i,t−1) by

considering its second partial derivatives. By this way, the step

size is imposed by the curvature of the cost function. How-

ever, this calculation has a greater computational complexity

compared to the gradient descent method.

V. EXPERIMENTS

In order to illustrate the results of this work, we consider

the diffusion of a gas in a two-dimensional space X =
[−0.5, 0.5]× [−0.5, 0.5]. This distribution is governed by the

following differential equation:

∂G(x, t)

∂t
− c∇

x
2G(x, t) = Q(x, t), (13)

where G(x, t) is the density of gas depending on the position

and time, ∇
x

2G(x, t) is the Laplace operator, Q(x, t) corre-

sponds to the added quantity of gas, and c is the conductivity

of the medium. A gas source placed at position S(0, 0) is

activated. We consider N = 36 sensors deployed with a

uniform distribution, and M = 5 mobile (robot) sensors

randomly deployed in the region under scrutiny X. The volume

of the sensors is assumed to be very small compared to

the dimension of the space. The simulations, realized using

Matlab, aim at determining the quantity of gas at any spot

of the space. Once it has reached a certain equilibrium, the

distribution of gas in the space is assumed to be invariant with

respect to time. In the following, two settings are investigated.

In the first one, the sensors are assumed to be fixed, i.e., static,

and a global model is estimated ψs (subscript s for static).

In the second one, robot sensors are mobile, and the model

denoted by ψm (subscript m for mobile) is computed and robot

sensors are able to move according to either update rules (10),

(11) or (12).

At each time step, the learning set is updated by moving

a single robot sensor, selected from the 5 available mobile

sensors by considering the largest predictive error. The global

model is then estimated using the whole updated learning set.

The relevance of the resulting model is evaluated with the

root mean-squared error estimated using 16 test sensors. These

test sensors are uniformly deployed in the region X under

scrutiny and measure at these positions the corresponding gas

density. Called test sensors, they have fixed positions and

the corresponding information is not used in the learning

process. In the following, we consider 100 iterations, i.e.,

t = 1, 2, . . . , 100. At each iteration, a single sensor is moved

using a mobility scheme according to one of the methods given

in Section IV. Moreover, since the mobility must be performed

within the space X, if the calculation sends the sensor outside

X, the sensor remains in its place. The Gaussian kernel is

considered in all simulations.

In order to illustrate the proposed methods, we need to

tune up some parameters. In kernel-based machine learning,

the kernel parameter need to be adjusted. The bandwidth of

the Gaussian kernel can be fine-tuned in the static setting,

by using any cross-validation scheme. The bandwidth of the

Gaussian kernel is set to σ = 0.5. The fixed-point optimization
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Figure 1. Root mean squared error over the test sensors.

Table I
AVERAGE DISTANCE AND MAXIMUM DISTANCE FOR EACH

MOBILITY SCHEME.

Mobility scheme: Fixed-point Gradient Newton

Average distance: 0.1660 0.0664 0.0768
Largest distance: 0.8299 0.1875 0.1854

method and Newton’s method do not require the tuning of

any additional parameter, while the gradient descent method

depends on the stepsize parameter ηt, which is taken of the

form
η0

1+t/τ as recommended in Section IV-B. We set η0 to

2−12 and τ to 70 for the gradient descent optimization scheme.

Figure 1 shows the root-mean-squared errors at each time

step for the static settings, i.e., without mobility, and the

mobility governed by the three proposed optimization meth-

ods. The plot shows that the proposed methods are able to

reduce significantly the validation error and thus improve the

estimated model. Moreover, the Newton’s method performs

better than the gradient descent and the fixed-point one, since

the error decreases continuously until getting to convergence.

Beyond the approximation error, one is often interested

in the traveled distance, which is directly related to the

energy consumption in a mobile WSN. Keeping limited node

movements is crucial, because of the limited energy constraint

of sensors. That is why we are interested in small paths for the

sensors. Table I shows the average of the traveled distances of

all sensors, as well as the largest distance. It is easy to see that

the fixed-point method provides large variations, mainly due

to the absence of a stepsize parameter to control the mobility.

The Newton’s method has, on average, a better efficiency.

However, this method has a more important computational

cost compared to the others. Therefore, we can conclude that,

depending on the application case and the constraints imposed,

one can choose one or the other of these methods.

VI. CONCLUSION

In this paper, we model a gas field measured by a network

of mobile wireless sensors. We optimize this model by mov-

ing five robot sensors deployed randomly in the area to be

monitored. Models built using both fixed sensors and mobile

sensors are compared. In both cases, the objective is to define

the global model that best matches the measured neighboring

amount of gas. These models are determined by means of a

non-linear learning process using Gaussian kernels. According

to the realized simulations, we demonstrated a great deal of

error reduction by the proposed methods, compared to the

static case.
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